首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Objectives: Muscle stiffness increases during muscle contraction. The purpose of this study was to determine the strength of the correlation between myotonometric measurements of muscle stiffness and surface electromyography (sEMG) measurements during various levels of voluntary isometric contractions of the biceps brachii muscle. Subjects: Eight subjects (four female; four male), with mean age of 30.6±8.23 years, volunteered to participate in this study. Methods: Myotonometer and sEMG measurements were taken simultaneously from the right biceps brachii muscle. Data were obtained: (1) at rest, (2) while the subject held a 15 lb (6.8 kg) weight isometrically and, (3) during a maximal voluntary isometric contraction. Myotonometer force–displacement curves (amount of tissue displacement to a given unit of force applied perpendicular to the muscle) were compared with sEMG measurements using Pearson’s product–moment correlation coefficients. Results: Myotonometer and sEMG measurement correlations ranged from −0.70 to −0.90. The strongest correlations to sEMG were from Myotonometer force measurements between 1.00 and 2.00 kg. Conclusions: Myotonometer and sEMG measurements were highly correlated. Tissue stiffness, as measured by the Myotonometer, appears capable of assessing changes in muscle activation levels.  相似文献   

4.
This study was to investigate the properties of mechanomyography (MMG), or muscle sound, of the paretic muscle in the affected side of hemiplegic subjects after stroke during isometric voluntary contractions, in comparison with those from the muscle in the unaffected side of the hemiplegic subjects and from the healthy muscle of unimpaired subjects. MMG and electromyography (EMG) signals were recorded simultaneously from the biceps brachii muscles of the dominant arm of unimpaired subjects (n=5) and the unaffected and affected arms of subjects after stroke (n=8), when performing a fatiguing maximal voluntary contraction (MVC) associated with the decrease in elbow flexion torque, and then submaximal elbow flexions at 20%, 40%, 60% and 80% MVCs. The root mean squared (RMS) values, the mean power frequencies (MPF, in the power density spectrum, PDS) of the EMG and MMG, and the high frequency rate (HF-rate, the ratio of the power above 15Hz in the MMG PDS) were used for the analysis. The MMG RMS decreased more slowly during the MVC in the affected muscle compared to the healthy and unaffected muscles. A transient increase could be observed in the MMG MPFs from the unaffected and healthy muscles during the MVC, associated with the decrease in their simultaneous EMG MPFs due to the muscular fatigue. No significant variation could be seen in the EMG and MMG MPFs in the affected muscles during the MVC. The values in the MPF and HF-rate of MMG from the affected muscles were significantly lower than those from the healthy and unaffected muscles (P<0.05) at the high contraction level (80% MVC). Both the MMG and EMG RMS values in the healthy and unaffected groups were found to be significantly higher than the affected group (P<0.05) at 60% and 80% MVCs. These observations were related to an atrophy of the fast-twitch fibers and a reduction of the neural input in the affected muscles of the hemiplegic subjects. The results in this study suggested MMG could be used as a complementary to EMG for the analysis on muscular characteristics in subjects after stroke.  相似文献   

5.
6.
Vøllestad, N. K., I. Sejersted, and E. Saugen. Mechanical behavior of skeletal muscle duringintermittent voluntary isometric contractions in humans.J. Appl. Physiol. 83(5):1557-1565, 1997.Changes in contractile speed and force-fusionproperties were examined during repetitive isometric contractions withthe knee extensors at three different target force levels. Sevenhealthy subjects were studied at target force levels of 30, 45, and60% of their maximal voluntary contraction (MVC) force. Repeated 6-s contractions followed by 4-s rest were continued until exhaustion. Contractile speed was determined for contractions elicited by electrical stimulation at 1-50 Hz given during exercise and a subsequent 27-min recovery period. Contraction time remained unchanged during exercise and recovery, except for an initial rapid shift in thetwitch properties. Half relaxation time(RT1/2) decreased gradually by 20-40% during exercise at 30 and 45% of MVC. In the recovery period, RT1/2 values werenot fully restored to preexercise levels. During exercise at 60% MVC,the RT1/2 decreased for twitches and increased for the 50-Hz stimulation. In the recovery period after60% MVC, RT1/2 values declinedtoward those seen after the 30 and 45% MVC exercise. The forceoscillation amplitude in unfused tetani relative to the mean forceincreased during exercise at 30 and 45% MVC but remained unalteredduring the 60% MVC exercise. This altered force-fusion was closelyassociated with the changes inRT1/2. The faster relaxation mayat least partly explain the increased energy cost of contractionreported previously for the same type of exercise.

  相似文献   

7.
8.
Many algorithms have been described in the literature for estimating amplitude, frequency variables and conduction velocity of the surface EMG signal detected during voluntary contractions. They have been used in different application areas for the non invasive assessment of muscle functions. Although many studies have focused on the comparison of different methods for information extraction from surface EMG signals, they have been carried out under different conditions and a complete comparison is not available. It is the purpose of this paper to briefly review the most frequently used algorithms for EMG variable estimation, compare them using computer generated as well as real signals and outline the advantages and drawbacks of each. In particular the paper focuses on the issue of EMG amplitude estimation with and without pre-whitening of the signal, mean and median frequency estimation with periodogram and autoregressive based algorithms both in stationary and non-stationary conditions, delay estimation for the calculation of muscle fiber conduction velocity.  相似文献   

9.
Firing rates of motor units and surface EMG were measured from the triceps brachii muscles of able-bodied subjects during brief submaximal and maximal isometric voluntary contractions made at 5 elbow joint angles that covered the entire physiological range of muscle lengths. Muscle activation at the longest, midlength, and shortest muscle lengths, measured by twitch occlusion, averaged 98%, 97%, and 93% respectively, with each subject able to achieve complete activation during some contractions. As expected, the strongest contractions were recorded at 90 degrees of elbow flexion. Mean motor unit firing rates and surface EMG increased with contraction intensity at each muscle length. For any given absolute contraction intensity, motor unit firing rates varied when muscle length was changed. However, mean motor unit firing rates were independent of muscle length when contractions were compared with the intensity of the maximal voluntary contraction (MVC) achieved at each joint angle.  相似文献   

10.
Muscle fibre conduction velocity (MFCV) is a basic physiological parameter biophysically related to the diameter of muscle fibres and properties of the sarcolemma. The aim of this study was to assess the intersession reproducibility of the relation between voluntary force and estimates of average muscle fibre conduction velocity (MFCV) from multichannel high-density surface electromyographic recordings (HDsEMG). Ten healthy men performed six linearly increasing isometric ankle dorsiflexions on two separate experimental sessions, 4 weeks apart. Each session involved the recordings of voluntary force during maximal isometric (MViF) and submaximal ramp contractions at 35–50–70% of MViF. Concurrently, the HDsEMG activity was detected from the tibialis anterior muscle and MFCV estimates were derived in 250-ms epochs. Absolute and relative reproducibility of MFCV initial value (intercept) and rate of change (regression slope) as a function of force were assessed by within-subject coefficient of correlation (CVw) and with intraclass correlation coefficient (ICC). MFCV was positively correlated with voluntary force (R2 = 0.75 ± 0.12) in all individuals and test conditions (P < 0.001). Average CVw for MFCV intercept and slope were of 2.6 ± 2.0% and 11.9 ± 3.2% and ICC values of 0.96 and 0.94, respectively.Overall, MFCV regression coefficients showed a high degree of intersession reproducibility in both absolute and relative terms. These results may have important practical implications in the tracking of training-induced neuromuscular changes and/or in the monitoring of the progress of neuromuscular disorders when a full sEMG signal decomposition is problematic or not possible.  相似文献   

11.
This investigation was designed to determine if vibration during fatiguing resistance exercise would alter associated patterns of muscle activity. A cross-over design was employed with 8 subjects completing a resistance exercise bout once with a vibrating dumbbell (V) (44 Hz, 3 mm displacement) and once without vibration (NV). For both exercise bouts, 10 sets were performed with a load that induced concentric muscle failure during the 10th repetition. The appropriate load for each set was determined during a pretest. Each testing session was separated by 1 week. Electromyography (EMG) was obtained from the biceps brachii muscle at 12 different time points during a maximum voluntary contraction (MVC) at a 170 degrees elbow angle after each set of the dumbbell exercise. The time points were as follows: pre (5 minutes before the resistance exercise bout), T1-T10 (immediately following each set of resistance exercise), and post (15 minutes after the resistance exercise bout). EMG was analyzed for median power frequency (MPF) and maximum (mEMG). NV resulted in a significant decrease in MPF at T1-T4 (p < or 0.05) and a significant increase in mEMG at T2 during the MVC. V had an overall trend of lower mEMG in comparison to NV. The mEMG and MPF values associated with NV were similar to previously reported investigations. The lower mEMG values and the higher MPF of V in comparison to NV are undocumented. The EMG patterns observed with vibration may indicate a more efficient and effective recruitment of high threshold motor units during fatiguing contractions. This may indicate the usage of vibration with resistance exercise as an effective tool for strength training athletes.  相似文献   

12.
The repeatability of initial value and rate of change of mean spectral frequency (MNF), average rectified values (ARV) and muscle fiber conduction velocity (CV) was investigated in the dominant biceps brachii of ten normal subjects during sustained isometric voluntary contractions. Four levels of contraction were studied: 10%, 30%, 50% and 70% of the maximal voluntary contraction level (MVC). Each contraction was repeated three times in each of three different days for a total of nine contractions/level/subject and 90 contractions per level across the ten subjects. Repeatability was investigated using the Intraclass Correlation Coefficient (ICC) and the standard error of the mean (SEM) of the estimates for each subject. Contrary to observations in other muscles, CV estimates appeared to be very repeatable both within and between subjects. CV showed a small but significant increase when contraction force increased from 10% to 50% MVC but no change for further increase of force. As force increased, MNF showed a slight decrease possibly related to a wider spreading of the CV values. The rate of time decrement of MNF and CV increased with the level of contraction. The normalized decrement (% of initial value per second) was in general higher for MNF than for CV and was more repeatable between subjects at 10% MVC than at 70% MVC. A final observation is that a resting time of 5 minutes may not be sufficient after a contraction at 50% or 70% MVC.  相似文献   

13.
Increasingly complex models of the neck neuromusculature need detailed muscle and kinematic data for proper validation. The goal of this study was to measure the electromyographic activity of superficial and deep neck muscles during tasks involving isometric, voluntary, and reflexively evoked contractions of the neck muscles. Three male subjects (28-41 years) had electromyographic (EMG) fine wires inserted into the left sternocleidomastoid, levator scapulae, trapezius, splenius capitis, semispinalis capitis, semispinalis cervicis, and multifidus muscles. Surface electrodes were placed over the left sternohyoid muscle. Subjects then performed: (i) maximal voluntary contractions (MVCs) in the eight directions (45 deg intervals) from the neutral posture; (ii) 50 N isometric contractions with a slow sweep of the force direction through 720 deg; (iii) voluntary oscillatory head movements in flexion and extension; and (iv) initially relaxed reflex muscle activations to a forward acceleration while seated on a sled. Isometric contractions were performed against an overhead load cell and movement dynamics were measured using six-axis accelerometry on the head and torso. In all three subjects, the two anterior neck muscles had similar preferred activation directions and acted synergistically in both dynamic tasks. With the exception of splenius capitis, the posterior and posterolateral neck muscles also showed consistent activation directions and acted synergistically during the voluntary motions, but not during the sled perturbations. These findings suggest that the common numerical-modeling assumption that all anterior muscles act synergistically as flexors is reasonable, but that the related assumption that all posterior muscles act synergistically as extensors is not. Despite the small number of subjects, the data presented here can be used to inform and validate a neck model at three levels of increasing neuromuscular-kinematic complexity: muscles generating forces with no movement, muscles generating forces and causing movement, and muscles generating forces in response to induced movement. These increasingly complex data sets will allow researchers to incrementally tune their neck models' muscle geometry, physiology, and feedforward/feedback neuromechanics.  相似文献   

14.
15.
Fascicle length, pennation angle, and tendonelongation of the human tibialis anterior were measured in vivo byultrasonography. Subjects (n = 9) wererequested to develop isometric dorsiflexion torque gradually up tomaximal at the ankle joint angle of 20° plantarflexion from theanatomic position. Fascicle length shortened from 90 ± 7 to 76 ± 7 (SE) mm, pennation angle increased from 10 ± 1 to 12 ± 1°, and tendon elongation increased up to 15 ± 2 mm with gradedforce development up to maximum. The tendon stiffness increased withincreasing tendon force from 10 N/mm at 0-20 N to 32 N/mm at240-260 N. Young's modulus increased from 157 MPa at 0-20 Nto 530 MPa at 240-260 N. It can be concluded that, in isometriccontractions of a human muscle, mechanical work, some of which isabsorbed by the tendinous tissue, is generated by the shortening ofmuscle fibers and that ultrasonography can be used to determine thestiffness and Young's modulus for human tendons.

  相似文献   

16.
Surface electromyography during sustained isometric contractions   总被引:3,自引:0,他引:3  
  相似文献   

17.
18.
The purpose of this study was to determine whether the phenomenon of bilateral deficit in muscular force production observed in healthy subjects and mildly impaired stroke patients also exists in patients with more chronic and greater levels of stroke impairment. Ten patients with chronic hemiparesis resulting from stroke performed unilateral and bilateral maximal voluntary isometric contractions of the elbow flexors. When the total force produced by both arms was compared, 12% less force was produced in the bilateral compared with unilateral condition (p=0.01). However, studying the effect of task conditions on each arm separately revealed a significant decline in nonparetic (p=0.01) but not paretic elbow flexor force in the bilateral compared with unilateral condition. Results suggest that a significant bilateral force deficit exists in the nonparetic but not the paretic arm in individuals with chronic stroke. Bilateral task conditions do not seem to benefit or impair paretic arm maximal isometric force production in individuals with moderate-severity chronic stroke.  相似文献   

19.
This paper provides an overview of techniques suitable for the estimation, interpretation and understanding of time variations that affect the surface electromyographic (EMG) signal during sustained voluntary or electrically elicited contractions. These variations concern amplitude variables, spectral variables and muscle fiber conduction velocity, are interdependent and are referred to as the ‘fatigue plot'. The fatigue plot provides information suitable for the classification of muscle behavior. In addition, the information obtainable by means of linear electrode arrays is discussed, and applications of mathematical models for the interpretation of array signals are presented. The model approach provides additional ways for the classification of muscle behavior.  相似文献   

20.
Motor unit recruitment patterns were studied during prolonged isometric contraction using fine wire electrodes. Single motor unit potentials were recorded from the brachial biceps muscle of eight male subjects, during isometric endurance experiments conducted at relative workloads corresponding to 10% and 40% of maximal voluntary contraction (MVC), respectively. The recordings from the 10% MVC experiment demonstrated a characteristic time-dependent recruitment. As the contraction progressed both the mean number of motor unit spikes counted and the mean amplitude of the spikes increased significantly (P<0.01). This progressive increase in spike activity was the result of a discontinuous process with periods of increasing and decreasing activity. The phenomenon in which newly recruited motor units replace previously active units is termed motor unit rotation and appeared to be an important characteristic of motor control during a prolonged low level contraction. In contrast to the 10% MVC experiment, there was no indication of de novo recruitment in the 40% MVC experiment. Near the point of exhaustion a marked change in action potential shape and duration dominated the recordings. These findings demonstrate a conspicuous difference in the patterns of motor unit recruitment during a 10% and a 40% MVC sustained contraction. It is suggested that there is a close relationship between intrinsic muscle properties and central nervous system recruitment strategies which is entirely different in fatiguing high and low level isometric contractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号