首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
MOTIVATION: A major problem for current peak detection algorithms is that noise in mass spectrometry (MS) spectra gives rise to a high rate of false positives. The false positive rate is especially problematic in detecting peaks with low amplitudes. Usually, various baseline correction algorithms and smoothing methods are applied before attempting peak detection. This approach is very sensitive to the amount of smoothing and aggressiveness of the baseline correction, which contribute to making peak detection results inconsistent between runs, instrumentation and analysis methods. RESULTS: Most peak detection algorithms simply identify peaks based on amplitude, ignoring the additional information present in the shape of the peaks in a spectrum. In our experience, 'true' peaks have characteristic shapes, and providing a shape-matching function that provides a 'goodness of fit' coefficient should provide a more robust peak identification method. Based on these observations, a continuous wavelet transform (CWT)-based peak detection algorithm has been devised that identifies peaks with different scales and amplitudes. By transforming the spectrum into wavelet space, the pattern-matching problem is simplified and in addition provides a powerful technique for identifying and separating the signal from the spike noise and colored noise. This transformation, with the additional information provided by the 2D CWT coefficients can greatly enhance the effective signal-to-noise ratio. Furthermore, with this technique no baseline removal or peak smoothing preprocessing steps are required before peak detection, and this improves the robustness of peak detection under a variety of conditions. The algorithm was evaluated with SELDI-TOF spectra with known polypeptide positions. Comparisons with two other popular algorithms were performed. The results show the CWT-based algorithm can identify both strong and weak peaks while keeping false positive rate low. AVAILABILITY: The algorithm is implemented in R and will be included as an open source module in the Bioconductor project.  相似文献   

2.
Mass spectrometry (MS) has shown great potential in detecting disease-related biomarkers for early diagnosis of stroke. To discover potential biomarkers from large volume of noisy MS data, peak detection must be performed first. This article proposes a novel automatic peak detection method for the stroke MS data. In this method, a mixture model is proposed to model the spectrum. Bayesian approach is used to estimate parameters of the mixture model, and Markov chain Monte Carlo method is employed to perform Bayesian inference. By introducing a reversible jump method, we can automatically estimate the number of peaks in the model. Instead of separating peak detection into substeps, the proposed peak detection method can do baseline correction, denoising and peak identification simultaneously. Therefore, it minimizes the risk of introducing irrecoverable bias and errors from each substep. In addition, this peak detection method does not require a manually selected denoising threshold. Experimental results on both simulated dataset and stroke MS dataset show that the proposed peak detection method not only has the ability to detect small signal-to-noise ratio peaks, but also greatly reduces false detection rate while maintaining the same sensitivity.  相似文献   

3.
Mass spectrometry data are often corrupted by noise. It is very difficult to simultaneously detect low-abundance peaks and reduce false-positive peak detection caused by noise. In this paper, we propose to improve peak detection using an additional constraint: the consistent appearance of similar true peaks across multiple spectra. We observe that false -positive peaks in general do not repeat themselves well across multiple spectra. When we align all the identified peaks (including false-positive ones) from multiple spectra together, those false-positive peaks are not as consistent as true peaks. Thus, we propose to use information from other spectra in order to reduce false-positive peaks. The new method improves the detection of peaks over the traditional single spectrum based peak detection methods. Consequently, the discovery of cancer biomarkers also benefits from this improvement. Source code and additional data are available at: http://www.ece.ust.hk/ approximately eeyu/mspeak.htm.  相似文献   

4.
Scherl A  Tsai YS  Shaffer SA  Goodlett DR 《Proteomics》2008,8(14):2791-2797
Although mass spectrometers are capable of providing high mass accuracy data, assignment of true monoisotopic precursor ion mass is complicated during data-dependent ion selection for LC-MS/MS analysis of complex mixtures. The complication arises when chromatographic peak widths for a given analyte exceed the time required to acquire a precursor ion mass spectrum. The result is that many measured monoisotopic masses are misassigned due to calculation from a single mass spectrum with poor ion statistics based on only a fraction of the total available ions for a given analyte. Such data in turn produces errors in automated database searches, where precursor m/z value is one search parameter. We propose here a postacquisition approach to correct misassigned monoisotopic m/z values that involves peak detection over the entire elution profile and correction of the precursor ion monoisotopic mass. As a result of using this approach to reprocess shotgun proteomic data we increased peptide sequence assignments by 10% while reducing the estimated false positive ratio from 1 to 0.2%. We also show that 4% of the salvaged identifications may be accounted for by correction of mixed tandem mass spectra resulting from fragmentation of multiple peptides simultaneously, a situation which we refer to as accidental CID.  相似文献   

5.
The identification of peptides that result from post-translational modifications is critical for understanding normal pathways of cellular regulation as well as identifying damage from, or exposures to xenobiotics, i.e. the exposome. However, because of their low abundance in proteomes, effective detection of modified peptides by mass spectrometry (MS) typically requires enrichment to eliminate false identifications. We present a new method for confidently identifying peptides with mercury (Hg)-containing adducts that is based on the influence of mercury's seven stable isotopes on peptide isotope distributions detected by high-resolution MS. Using a pure protein and E. coli cultures exposed to phenyl mercuric acetate, we show the pattern of peak heights in isotope distributions from primary MS single scans efficiently identified Hg adducts in data from chromatographic separation coupled with tandem mass spectrometry with sensitivity and specificity greater than 90%. Isotope distributions are independent of peptide identifications based on peptide fragmentation (e.g. by SEQUEST), so both methods can be combined to eliminate false positives. Summing peptide isotope distributions across multiple scans improved specificity to 99.4% and sensitivity above 95%, affording identification of an unexpected Hg modification. We also illustrate the theoretical applicability of the method for detection of several less common elements including the essential element, selenium, as selenocysteine in peptides.  相似文献   

6.
Ahrné E  Ohta Y  Nikitin F  Scherl A  Lisacek F  Müller M 《Proteomics》2011,11(20):4085-4095
The relevance of libraries of annotated MS/MS spectra is growing with the amount of proteomic data generated in high-throughput experiments. These reference libraries provide a fast and accurate way to identify newly acquired MS/MS spectra. In the context of multiple hypotheses testing, the control of the number of false-positive identifications expected in the final result list by means of the calculation of the false discovery rate (FDR). In a classical sequence search where experimental MS/MS spectra are compared with the theoretical peptide spectra calculated from a sequence database, the FDR is estimated by searching randomized or decoy sequence databases. Despite on-going discussion on how exactly the FDR has to be calculated, this method is widely accepted in the proteomic community. Recently, similar approaches to control the FDR of spectrum library searches were discussed. We present in this paper a detailed analysis of the similarity between spectra of distinct peptides to set the basis of our own solution for decoy library creation (DeLiberator). It differs from the previously published results in some key points, mainly in implementing new methods that prevent decoy spectra from being too similar to the original library spectra while keeping important features of real MS/MS spectra. Using different proteomic data sets and library creation methods, we evaluate our approach and compare it with alternative methods.  相似文献   

7.
Our goal in this paper is to show an analytical workflow for selecting protein biomarker candidates from SELDI-MS data. The clinical question at issue is to enable prediction of the complete remission (CR) duration for acute myeloid leukemia (AML) patients. This would facilitate disease prognosis and make individual therapy possible. SELDI-mass spectrometry proteomics analyses were performed on blast cell samples collected from AML patients pre-chemotherapy. Although the biobank available included approximately 200 samples, only 58 were available for analysis. The presented workflow includes sample selection, experimental optimization, repeatability estimation, data preprocessing, data fusion, and feature selection. Specific difficulties have been the small number of samples and the skew distribution of the CR duration among the patients. Further, we had to deal with both noisy SELDI-MS data and a diverse patient cohort. This has been handled by sample selection and several methods for data preprocessing and feature detection in the analysis workflow. Four conceptually different methods for peak detection and alignment were considered, as well as two diverse methods for feature selection. The peak detection and alignment methods included the recently developed annotated regions of significance (ARS) method, the SELDI-MS software Ciphergen Express which was regarded as the standard method, segment-wise spectral alignment by a genetic algorithm (PAGA) followed by binning, and, finally, binning of raw data. In the feature selection, the "standard" Mann-Whitney t test was compared with a hierarchical orthogonal partial least-squares (O-PLS) analysis approach. The combined information from all these analyses gave a collection of 21 protein peaks. These were regarded as the most potential and robust biomarker candidates since they were picked out as significant features in several of the models. The chosen peaks will now be our first choice for the continuing work on protein identification and biological validation. The identification will be performed by chromatographic purification and MALDI MS/MS. Thus, we have shown that the use of several data handling methods can improve a protein profiling workflow from experimental optimization to a predictive model. The framework of this methodology should be seen as general and could be used with other one-dimensional spectral omics data than SELDI MS including an adequate number of samples.  相似文献   

8.

Background  

In mass spectrometry (MS) based proteomic data analysis, peak detection is an essential step for subsequent analysis. Recently, there has been significant progress in the development of various peak detection algorithms. However, neither a comprehensive survey nor an experimental comparison of these algorithms is yet available. The main objective of this paper is to provide such a survey and to compare the performance of single spectrum based peak detection methods.  相似文献   

9.
Multiplexing samples in sequencing experiments is a common approach to maximize information yield while minimizing cost. In most cases the number of samples that are multiplexed is determined by financial consideration or experimental convenience, with limited understanding on the effects on the experimental results. Here we set to examine the impact of multiplexing ChIP-seq experiments on the ability to identify a specific epigenetic modification. We performed peak detection analyses to determine the effects of multiplexing. These include false discovery rates, size, position and statistical significance of peak detection, and changes in gene annotation. We found that, for histone marker H3K4me3, one can multiplex up to 8 samples (7 IP + 1 input) at ~21 million single-end reads each and still detect over 90% of all peaks found when using a full lane for sample (~181 million reads). Furthermore, there are no variations introduced by indexing or lane batch effects and importantly there is no significant reduction in the number of genes with neighboring H3K4me3 peaks. We conclude that, for a well characterized antibody and, therefore, model IP condition, multiplexing 8 samples per lane is sufficient to capture most of the biological signal.  相似文献   

10.
In the field of phylogenetics and comparative genomics, it is important to establish orthologous relationships when comparing homologous sequences. Due to the slight sequence dissimilarity between orthologs and paralogs, it is prone to regarding paralogs as orthologs. For this reason, several methods based on evolutionary distance, phylogeny and BLAST have tried to detect orthologs with more precision. Depending on their algorithmic implementations, each of these methods sometimes has increased false negative or false positive rates. Here, we developed a novel algorithm for orthology detection that uses a distance method based on the phylogenetic criterion of minimum evolution. Our algorithm assumes that sets of sequences exhibiting orthologous relationships are evolutionarily less costly than sets that include one or more paralogous relationships. Calculation of evolutionary cost requires the reconstruction of a neighbor-joining (NJ) tree, but calculations are unaffected by the topology of any given NJ tree. Unlike tree reconciliation, our algorithm appears free from the problem of incorrect topologies of species and gene trees. The reliability of the algorithm was tested in a comparative analysis with two other orthology detection methods using 95 manually curated KOG datasets and 21 experimentally verified EXProt datasets. Sensitivity and specificity estimates indicate that the concept of minimum evolution could be valuable for the detection of orthologs.  相似文献   

11.
Recombination can negatively impact methods designed to detect divergent gene function that rely on explicit knowledge of a gene tree. However, we know little about how recombination detection methods perform under evolutionary scenarios encountered in studies of functional molecular divergence. We use simulation to evaluate false positive rates for six recombination detection methods (GENECONV, MaxChi, Chimera, RDP, GARD-SBP, GARD-MBP) under evolutionary scenarios that might increase false positives. Broadly, these scenarios address: (i) asymmetric tree topology and sequence divergence, (ii) non-stationary codon bias and selection pressure, and (iii) positive selection. We also evaluate power to detect recombination under truly recombinant history. As with previous studies, we find that power increases with sequence divergence. However, we also find that accuracy to correctly infer the number of breakpoints is extremely low. When recombination is absent, increased sequence divergence leads to increased false positives. Furthermore, one method (GARD-SBP) is sensitive to tree shape, with higher false positive rates under an asymmetric tree topology. Somewhat surprisingly, all methods are robust to the simulated heterogeneity in codon bias, shifts in selection pressure and presence of positive selection. Based on these findings, we recommend that studies of functional divergence in systems where recombination is plausible can, and should, include a pre-test for recombination. Application of all methods to the core genome of Prochlorococcus reveals a substantial lack of concordance among results. Based on analysis of both real and simulated datasets we present some guidelines for the investigation of recombination in genes that may have experienced functional divergence.  相似文献   

12.
We present a new approach capable of assigning charge states to peptides based on both their intact mass spectrum and their fragmentation mass spectrum. More specifically, our approach aims at fully exploiting available information to improve correct charge assignment rate. This is achieved by using information provided by the fragmentation spectrum extensively. For low-resolution spectra, charge assignment based on fragmentation mass spectrum is better than charge assignment based on intact peptide signal only. We introduce two methods that allow to integrate information contributing to successful peptide charge state assignment. We demonstrate the performance of our algorithms on large ion trap data sets. The application of these algorithms to large-scale proteomics projects can save significant computation time and have a positive impact on identification false positive rates.  相似文献   

13.
The identification of peptides and proteins from fragmentation mass spectra is a very common approach in the field of proteomics. Contemporary high-throughput peptide identification pipelines can quickly produce large quantities of MS/MS data that contain valuable knowledge about the actual physicochemical processes involved in the peptide fragmentation process, which can be extracted through extensive data mining studies. As these studies attempt to exploit the intensity information contained in the MS/MS spectra, a critical step required for a meaningful comparison of this information between MS/MS spectra is peak intensity normalization. We here describe a procedure for quantifying the efficiency of different published normalization methods in terms of the quartile coefficient of dispersion (qcod) statistic. The quartile coefficient of dispersion is applied to measure the dispersion of the peak intensities between redundant MS/MS spectra, allowing the quantification of the differences in computed peak intensity reproducibility between the different normalization methods. We demonstrate that our results are independent of the data set used in the evaluation procedure, allowing us to provide generic guidance on the choice of normalization method to apply in a certain MS/MS pipeline application.  相似文献   

14.
15.
Array-based comparative genomics hybridization (aCGH) has gained prevalence as an effective technique for measuring structural variations in the genome. Copy-number variations (CNVs) form a large source of genomic structural variation, but it is not known whether phenotypic differences between intra-species groups, such as divergent human populations, or breeds of a domestic animal, can be attributed to CNVs. Several computational methods have been proposed to improve the detection of CNVs from array CGH data, but few population studies have used CGH data for identification of intra-species differences. In this paper we propose a novel method of genome-wide comparison and classification using CGH data that condenses whole genome information, aimed at quantification of intra-species variations and discovery of shared ancestry. Our strategy included smoothing CGH data using an appropriate denoising algorithm, extracting features via wavelets, quantifying the information via wavelet power spectrum and hierarchical clustering of the resultant profile. To evaluate the classification efficiency of our method, we used simulated data sets. We applied it to aCGH data from human and bovine individuals and showed that it successfully detects existing intra-specific variations with additional evolutionary implications.  相似文献   

16.
Using currently available MS-based methods, accurate mass measurements are essential for the characterization of DNA oligomers. However, there is a lack of specificity in mass peaks when the characterization of individual DNA species in a mass spectrum is dependent solely upon the mass-to-charge ratio (m/z). Here, we utilize nucleotide-specific tagging with stable isotopes to provide internal signatures that quantitatively display the nucleotide content of oligomer peaks in MS spectra. The characteristic mass-split patterns induced by the partially 13C/15N-enriched dNTPs in DNA oligomers indicate the number of labeled precursors and in turn the base substitution in each mass peak, and provide for efficient SNP detection. Signals in mass spectra not only reflect the masses of particular DNA oligomers, but also their specific composition of particular nucleotides. The measurements of mass tags are relative in the mass-split pattern and, hence, the accuracy of the determination of nucleotide substitution is indirectly increased. For high sample throughput, 13C/15N-labeled sequences of interest have been generated, excised in solution and purified for MS analysis in a single-tube format. This method can substantially improve the specificity, accuracy and efficiency of mass spectrometry in the characterization of DNA oligomers and genetic variations.  相似文献   

17.
The accurate detection and classification of diseased pine trees with different levels of severity is important in terms of monitoring the growth of these trees and for preventing and controlling disease within pine forests. Our method combines a DDYOLOv5 with a ResNet50 network for detecting and classifying levels of pine tree disease from remote sensing UAV images. In this approach, images are preprocessed to increase the background diversity of the training samples, and efficient channel attention (ECA) and hybrid dilated convolution (HDC) modules are introduced to DDYOLOv5 to improve the detection accuracy. The ECA modules enable the network to focus on the characteristics of diseased pine trees, and solve the problem of low detection accuracy caused by the similarities in color and texture between diseased pine trees and the complex backgrounds. The HDC modules capture the contextual information of targets at different scales; they increase the receptive field to focus on targets of different sizes, and address the difficulty of detection caused by large variations in the shapes and sizes of diseased pine trees. In addition, a low confidence threshold is adopted to reduce missed detections and a ResNet50 classification network is applied to classify the detection results into different levels of severity, in order to reduce the number of false detections and improve the classification accuracy. Our experimental results show that the proposed method improves the precision by 13.55%, the recall by 5.06% and the F1-score by 9.71% on 8 test images compared with YOLOv5. Moreover, the detection and classification results from our approach show that it outperforms classical deep learning object detection methods such as Faster R-CNN and RetinaNet.  相似文献   

18.
Phylogenetic mixtures model the inhomogeneous molecular evolution commonly observed in data. The performance of phylogenetic reconstruction methods where the underlying data are generated by a mixture model has stimulated considerable recent debate. Much of the controversy stems from simulations of mixture model data on a given tree topology for which reconstruction algorithms output a tree of a different topology; these findings were held up to show the shortcomings of particular tree reconstruction methods. In so doing, the underlying assumption was that mixture model data on one topology can be distinguished from data evolved on an unmixed tree of another topology given enough data and the "correct" method. Here we show that this assumption can be false. For biologists, our results imply that, for example, the combined data from two genes whose phylogenetic trees differ only in terms of branch lengths can perfectly fit a tree of a different topology.  相似文献   

19.
Electron capture dissociation (ECD) and infrared multiphoton dissociation (IRMPD) present complementary techniques for the fragmentation of peptides and proteins in Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) in addition to the commonly used collisionally activated dissociation (CAD). Both IRMPD and ECD have been shown to be applicable for an efficient sequencing of peptides and proteins, whereas ECD has proven especially valuable for mapping labile posttranslational modifications (PTMs), such as phosphorylations. In this work, we compare the different fragmentation techniques and MS detection in a linear ion trap and the ICR cell with respect to their abilities to efficiently identify and characterize phosphorylated peptides. For optimizing fragmentation parameters, sets of synthetic peptides with molecular weights ranging from approximately 1 to 4 kDa and different levels of phosphorylation were analyzed. The influence of spectrum averaging for obtaining high-quality spectra was investigated. Our results show that the fragmentation methods CAD and ECD allow for a facilitated analysis of phosphopeptides; however, their general applicability for analyzing phosphopeptides has to be evaluated in each specific case with respect to the given analytical task. The major advantage of complementary peptide cleavages by combining different fragmentation methods is the increased amount of information that is obtained during MS/MS analysis of modified peptides. On the basis of the obtained results, we are planning to design LC time-scale compatible, data-dependent MS/MS methods using the different fragmentation techniques in order to improve the identification and characterization of phosphopeptides.  相似文献   

20.
Searching tandem mass spectra against a protein database has been a mainstream method for peptide identification. Improving peptide identification results by ranking true Peptide-Spectrum Matches (PSMs) over their false counterparts leads to the development of various reranking algorithms. In peptide reranking, discriminative information is essential to distinguish true PSMs from false PSMs. Generally, most peptide reranking methods obtain discriminative information directly from database search scores or by training machine learning models. Information in the protein database and MS1 spectra (i.e., single stage MS spectra) is ignored. In this paper, we propose to use information in the protein database and MS1 spectra to rerank peptide identification results. To quantitatively analyze their effects to peptide reranking results, three peptide reranking methods are proposed: PPMRanker, PPIRanker, and MIRanker. PPMRanker only uses Protein-Peptide Map (PPM) information from the protein database, PPIRanker only uses Precursor Peak Intensity (PPI) information, and MIRanker employs both PPM information and PPI information. According to our experiments on a standard protein mixture data set, a human data set and a mouse data set, PPMRanker and MIRanker achieve better peptide reranking results than PetideProphet, PeptideProphet+NSP (number of sibling peptides) and a score regularization method SRPI. The source codes of PPMRanker, PPIRanker, and MIRanker, and all supplementary documents are available at our website: http://bioinformatics.ust.hk/pepreranking/. Alternatively, these documents can also be downloaded from: http://sourceforge.net/projects/pepreranking/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号