首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dissemination of the bacterial transposon Tn10 is limited by target site channeling, a process wherein the transposon ends are forced to interact with and insert into a target site located within the transposon. Integration host factor (IHF) promotes this self-destructive event by binding to the transpososome and forming a DNA loop close to one or both transposon ends; this loop imposes geometric and topological constraints that are responsible for channeling. We demonstrate that a second ‘host’ protein, histone-like nucleoid structuring protein (H-NS), acts as an anti-channeling factor to limit self-destructive intramolecular transposition events in vitro. Evidence that H-NS competes with IHF for binding to the Tn10 transpososome to block channeling and that this event is relatively insensitive to the level of DNA supercoiling present in the Tn10-containing substrate plasmid are presented. This latter observation is atypical for H-NS, as H-NS binding to other DNA sequences, such as promoters, is generally affected by subtle changes in DNA structure.  相似文献   

2.
Tn10 is a bacterial transposon that transposes through a non-replicative mechanism. This mode of DNA transposition is widely used in bacteria and is also used by "DNA-based" transposons in eukaryotes. Tn10 has served as a paradigm for this mode of transposition and continues to provide novel insights into how steps in transposition reactions occur and how these steps are regulated. A common feature of transposition reactions is that they require the formation of a higher order protein-DNA complex called a transpososome. A major objective in the last few years has been to better understand the dynamics of transpososome assembly and progression through the course of transposition reactions. This problem is particularly interesting in the Tn10 system because two important host proteins, IHF and H-NS, have been implicated in regulating transpososome assembly and/or function. Interestingly, H-NS is an integral part of stress response pathways in bacteria, and its function is known to be sensitive to changes in environmental conditions. Consequently, H-NS may provide a means of allowing Tn10 to responed to changing environmental conditions. The current review focuses on the roles of both IHF and H-NS on Tn10 transposition.  相似文献   

3.
H-NS is a bacterial DNA-binding protein that regulates gene expression and DNA transposition. In the case of Tn10, H-NS binds directly to the transposition machinery (i.e. the transpososome) to influence the outcome of the reaction. In the current work we evaluated the binding affinity of H-NS for two forms of the Tn10 transpososome, including the initial folded form and a pre-unfolded form. These two forms differ in that IHF is bound to the former but not the latter. IHF binding induces a bend (or fold) in the transposon end that facilitates transpososome formation. However, the continued presence of IHF in the transpososome inhibits intermolecular transposition events. We show that H-NS binds particularly strongly to the pre-unfolded transpososome with an apparent Kd of ∼0.3 nM. This represents the highest affinity interaction between H-NS and a binding partner documented to date. We also show that binding of H-NS to the transpososome stabilizes this structure and propose that both high-affinity binding and stabilization result from the combined interaction between H-NS and DNA and H-NS and transposase within the transpososome. Mechanistic implications for tight binding of H-NS to the transpososome and transpososome stabilization are considered.  相似文献   

4.
ABSTRACT

Tn10 is a bacterial transposon that transposes through a non-replicative mechanism. This mode of DNA transposition is widely used in bacteria and is also used by “DNA-based” transposons in eukaryotes. Tn10 has served as a paradigm for this mode of transposition and continues to provide novel insights into how steps in transposition reactions occur and how these steps are regulated. A common feature of transposition reactions is that they require the formation of a higher order protein-DNA complex called a transpososome. A major objective in the last few years has been to better understand the dynamics of transpososome assembly and progression through the course of transposition reactions. This problem is particularly interesting in the Tn10 system because two important host proteins, IHF and H-NS, have been implicated in regulating transpososome assembly and/or function. Interestingly, H-NS is an integral part of stress response pathways in bacteria, and its function is known to be sensitive to changes in environmental conditions. Consequently, H-NS may provide a means of allowing Tn10 to responed to changing environmental conditions. The current review focuses on the roles of both IHF and H-NS on Tn10 transposition.  相似文献   

5.
6.
The Tn10 transpososome is a DNA processing machine in which two transposon ends, a transposase dimer and the host protein integration host factor (IHF), are united in an asymmetrical complex. The transitions that occur during one transposition cycle are not limited to chemical cleavage events at the transposon ends, but also involve a reorganization of the protein and DNA components. Here, we demonstrate multiple pathways for Tn10 transposition. We show that one series of events is favored over all others and involves cyclic changes in the affinity of IHF for its binding site. During transpososome assembly, IHF is bound with high affinity. However, the affinity for IHF drops dramatically after cleavage of the first transposon end, leading to IHF ejection and unfolding of the complex. The ejection of IHF promotes cleavage of the second end, which is followed by restoration of the high affinity state which in turn regulates target interactions.  相似文献   

7.
P Crellin  R Chalmers 《The EMBO journal》2001,20(14):3882-3891
IHF or supercoiling is required early in Tn10 transposition, but at later stages they inhibit the reaction in a classic homeostatic loop. We investigated the mechanism of transpososome assembly and regulation using hydroxyl radical DNA protection and interference. We present a three-dimensional molecular model for the IHF-bent end of Tn10 wrapped around a transposase core. Contacts span some 80 bp at the transposon end, but after assembly of an active complex containing metal ion, most contacts become dispensable. These include transposase contacts beyond the IHF site that chaperone assembly of the complex and are needed for efficient cleavage. Single and double-end breaks do not affect the complex but divalent metal ions promote large conformational changes at bp +1 and the flanking DNA.  相似文献   

8.
Tn10 transposition, like all transposition reactions examined thus far, involves assembly of a stable protein-DNA transpososome, containing a pair of transposon ends, within which all chemical events occur. We report here that stable Tn10 pre-cleavage transpososomes occur in two conformations: a folded form which contains the DNA-bending factor IHF and an unfolded form which lacks IHF. Functional analysis shows that both forms undergo double strand cleavage at the transposon ends but that only the unfolded form is competent for target capture (and thus for strand transfer to target DNA). Additional studies reveal that formation of any type of stable transpososome, folded or unfolded, requires not only IHF but also non-specific transposase-DNA contacts immediately internal to the IHF-binding site, implying the occurrence of a topo- logically closed loop at the transposon end. Overall, transpososome assembly must proceed via a folded intermediate which, however, must be unfolded in order for intermolecular transposition to occur. These and other results support key features of a recently proposed model for transpososome assembly and morphogenesis.  相似文献   

9.
DNA loops and bends are common features of DNA processing machines. The bacterial transposon Tn10 has recruited integration host factor (IHF), a site-specific DNA-bending protein, as an architectural component for assembly of the higher-order nucleoprotein complex within which the transposition reaction takes place. Here, we demonstrate additional roles for the IHF loop during the catalytic steps of the reaction. We show that metal ion-dependent unfolding of the IHF-bent transposon arm is communicated to the catalytic center, inducing a substantial conformational change in the DNA. Partial disruption of the IHF loop shows that this step promotes resolution of the hairpin intermediate on one transposon end and initiation of catalysis at the other. Further evidence suggests that the molecular mechanism responsible may be mechanical stress in the IHF loop, related to a change in the relative position of the transposase contacts that anchor the loop on either side.  相似文献   

10.
Transposition reactions take place in the context of higher-order protein-DNA complexes called transpososomes. In the Tn10 transpososome, IHF binding to an "outside end" creates a bend in the DNA that allows the transposase protein to contact the end at two different sites, the terminal and subterminal binding sites. Presumably this helps to stabilize the transposase-end interaction. However, the DNA loop that is formed must be unfolded at a later stage in order for the transposon to integrate into other DNA molecules. It has been proposed that transpososome unfolding also plays a role in transposon excision. To investigate this possibility further, we have isolated and characterized transposase mutants with altered transpososome unfolding properties. Two such mutants were identified, R182A and R184A. Both mutants fail to carry out hairpin formation, an intermediate step in transposon excision, specifically with outside end-containing substrates. These results support the idea that transpososome unfolding and excision are linked. Also, based on the importance of residues R182 and R184 in transpososome unfolding, we propose a new model for the Tn10 transpososome, wherein both DNA ends of the transpososome make subterminal contacts with transposase.  相似文献   

11.
The frequency of DNA transposition in transposition systems that employ a strand transfer step may be significantly affected by the occurrence of a disintegration reaction, a reaction that reverses the strand transfer event. We have asked whether disintegration occurs in the Tn10 transposition system. We show that disintegration substrates (substrates constituting one half of the strand transfer product) are assembled into a transpososome that mimics the strand transfer intermediate. This strand transfer transpososome (STT) does appear to support an intermolecular disintegration reaction, but only at a very low level. Strikingly, assembly of the STT is not dependent on IHF, a host protein that is required for de novo assembly of all previously characterized Tn10 transpososomes. We suggest that disintegration substrates are able to form both transposon end and target type contacts with transposase because of their enhanced conformational flexibility. This probably allows the conformation of DNA within the complex that prevents the destructive disintegration reaction, and is responsible for relaxing the DNA sequence requirements for STT formation relative to other Tn10 transpososomes.  相似文献   

12.
Intramolecular transposition by Tn10   总被引:24,自引:0,他引:24  
H W Benjamin  N Kleckner 《Cell》1989,59(2):373-383
Transposon Tn10 promotes the formation of a circular product containing only transposon sequences. We show that these circles result from an intramolecular transposition reaction in which all of the strand cleavage and ligation events have occurred but newly created transposon/target junctions have not undergone repair. The unligated strand termini at these junctions are those expected according to a simple model in which the target DNA is cleaved by a pair of staggered nicks 9 bp apart, transposon sequences are separated from flanking donor DNA by cleavage at the terminal nucleotides on both strands (at both ends) of the element, and 3' transposon strand ends are ligated to 5' target strand ends. The stability of the unligated junctions suggests that they are protected from cellular processing by transposase and/or host proteins. We propose that the nonreplicative nature of Tn10 transposition is determined by the efficiency with which the nontransferred transposon strand is separated from flanking donor DNA and by the nature of the protein-DNA complexes present at the strand transfer junctions.  相似文献   

13.
The Tn10 transpososome has symmetrical components on either side: there are two transposon ends each of which has binding sites for a monomer of transposase and an IHF heterodimer. The DNA bending activity of IHF stimulates assembly of an intermediate with tightly folded transposon ends in which transposase has additional ‘subterminal’ DNA contacts, located distal to the IHF site. These subterminal contacts are required to activate later steps in the reaction. Quantitative hydroxyl radical footprinting and gel retardation unfolding experiments show that the transpososome is fundamentally asymmetric, despite having identical components on either side. Major differences between the transposon ends define α and β sides of the complex. IHF can dissociate from the transposon arm on the β side of the complex in the absence of metal ion. However, IHF is locked onto the α side of the complex, probably by the subterminal transposase contacts, until released by a metal ion-dependent conformational change. Later in the reaction, IHF inhibits target interactions. Using a very short transposon arm, target interactions are demonstrated at a saturating IHF concentration. This suggests that inhibition of target interactions is due to steric hindrance of the target binding site by a single IHF-folded transposon arm.  相似文献   

14.
Tn10/IS10 transposition involves assembly of a synaptic complex (or transpososome) in which two transposon ends are paired, followed by four distinct chemical steps at each transposon end. The chemical steps are dependent on the presence of a suitable divalent metal cation (Me(2+)). Transpososome assembly and structure are also affected by Me(2+). To gain further insight into the mechanisms of Me(2+) action in Tn10/IS10 transposition we have investigated the effects of substituting Mn(2+) for Mg(2+), the physiologic Me(2+), in transposition. We have also investigated the significance of an Me(2+)-assisted conformational change in transpososome structure. We show that Mn(2+) has two previously unrecognized effects on the Tn10 donor cleavage reaction. It accelerates the rates of hairpin formation and hairpin resolution without significantly affecting the rate of the first chemical step, first strand nicking. Mn(2+) also relaxes the specificity of first strand nicking. We also show that Me(2+)-assisted transpososome unfolding coincides with a structural transition in the transposon-donor junction that may be necessary for hairpin formation. Possible mechanisms for these observations are considered.  相似文献   

15.
The histone-like nucleoid structuring protein (H-NS) is an important regulator of stress response and virulence genes in gram-negative bacteria. In addition to binding regulatory regions of genes in a structure-specific manner, H-NS also binds in a structure-specific manner to sites in the Tn10 transpososome, allowing it to act as a positive regulator of Tn10 transposition. This is the only example to date of H-NS regulating a transposition system by interacting directly with the transposition machinery. In general, transposition complexes tend to include segments of deformed DNA and given the capacity of H-NS to bind such structures, and the results from the Tn10 system, we asked if H-NS might regulate another transposition system (Tn5) by directly binding the transposition machinery. We show in the current work that H-NS does bind Tn5 transposition complexes and use hydroxyl radical footprinting to characterize the H-NS interaction with the Tn5 transpososome. We also show that H-NS can promote Tn5 transpososome formation in vitro, which correlates with the Tn5 system showing a dependence on H-NS for transposition in vivo. Taken together the results suggest that H-NS might play an important role in the regulation of many different bacterial transposition systems and thereby contribute directly to lateral gene transfer.  相似文献   

16.
17.
DNA processing reactions often involve multiple components acting in concert to achieve the desired outcome. However, it is usually difficult to know how the components communicate and cooperate to orchestrate an ordered series of events. We address this question in the context of the Tn 10 transposition reaction, in which the DNA cleavage and joining events occur within a higher-order complex containing a transposase dimer, two transposon ends and the DNA-bending host-factor IHF (Integration Host Factor). Previously it was shown that the complex is asymmetric. The a side consists of an IHF protomer initially immobilized by a DNA-loop, but subsequently used to promote conformational changes required for the cleavage steps. The beta side of the complex was considered to fulfil a more passive role. Here we show that the a side of the complex promotes coupled conformational changes at both transposon ends, while the a and beta sides communicate and cooperate to dominate different phases of the transposition reaction. Together, these effects provide for a robust response to critical changes in the transposon end. These findings also explain the intriguing genetic phenotypes of a series of previously reported Tn10 mutants and have consequences for the evolution of new elements.  相似文献   

18.
gamma delta, a prokaryotic transposon, encodes a transposase that is essential for its transposition. We show here, by DNase I protection experiments, that purified gamma delta transposase binds at the transposon's inverted repeats (IRs). Immediately adjacent to each transposase binding site (and within gamma delta DNA) we have identified a binding site for an additional protein factor, the Escherichia coli-encoded integration host factor (IHF). The binding of transposase and IHF to these adjacent sites is mutually cooperative. An IHF binding-site was also found in the original target DNA, just outside one of the ends of gamma delta. The affinity of IHF for this flanking site is reduced by transposase. These results demonstrate that gamma delta transposase binds at the IRs of gamma delta, and suggest that IHF may be involved in forming a transposase-DNA complex and/or influencing the target site selection during the transposition of gamma delta.  相似文献   

19.
Nucleoid proteins are small, abundant, DNA-binding proteins that profoundly affect the local and global structure of the chromosome, and play a major role in gene regulation. Although several of these proteins have been shown to enhance assembly of transpososomes before initiating transposition, no systematic survey has been carried out examining the in vivo role(s) of these proteins in transposition. We have examined the requirement of the six most abundant nucleoid proteins in transposition for three different transposons, IS903, Tn10 and Tn552. Most notably, H-NS was required for efficient transposition of all three elements in a papillation assay, suggesting a general role for H-NS in bacterial transposition. Further studies indicated that H-NS was exerting its effect on target capture. Targeting preferences for IS903 into the Escherichia coli chromosome were dramatically altered in the absence of H-NS. In addition, the alterations observed in the IS903 target profile emphasized the important role that H-NS plays in chromosome organization. A defect in target capture was also inferred for Tn10, as an excised transposon fragment, a precursor to target capture, accumulated in in vivo induction assays. Furthermore, a transposase mutant that is known to increase target DNA bending and to relax target specificity eliminated this block to target capture. Together, these results imply a role for H-NS in target capture, either by providing regions of DNA more accessible to transposition or by stabilizing transpososome binding to captured targets immediately before strand transfer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号