首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The centralspindlin complex, which is composed of MKLP1 and MgcRacGAP, is one of the crucial factors involved in cytokinesis initiation. Centralspindlin is localized at the middle of the central spindle during anaphase and then concentrates at the midbody to control abscission. A number of proteins that associate with centralspindlin have been identified. These associating factors regulate furrowing and abscission in coordination with centralspindlin. A recent study identified a novel centralspindlin partner, called Nessun Dorma, which is essential for germ cell cytokinesis in Drosophila melanogaster. SHCBP1 is a human ortholog of Nessun Dorma that associates with human centralspindlin. In this report, we analyzed the interaction of SHCBP1 with centralspindlin in detail and determined the regions that are required for the interaction. In addition, we demonstrate that the central region is necessary for the SHCBP1 dimerization. Both MgcRacGAP and MKLP1 are degraded once cells exit mitosis. Similarly, endogenous and exogenous SHCBP1 were degraded with mitosis progression. Interestingly, SHCBP1 expression was significantly reduced in the absence of centralspindlin, whereas centralspindlin expression was not affected by SHCBP1 knockdown. Finally, we demonstrate that SHCBP1 depletion promotes midbody structure disruption and inhibits abscission, a final stage of cytokinesis. Our study gives novel insight into the role of SHCBP in cytokinesis completion.  相似文献   

2.
Different models for animal cell cytokinesis posit that the stiffness of the equatorial cortex is either increased or decreased relative to the stiffness of the polar cortex. A recent work has suggested that the critical cytokinesis signaling complex centralspindlin may reduce the stiffness of the equatorial cortex by inactivating the small GTPase Rac. To determine if such a reduction occurs and if it depends on centralspindlin, we devised a method to estimate cortical bending stiffness with high spatio-temporal resolution from in vivo cell shapes. Using the early Caenorhabditis elegans embryo as a model, we show that the stiffness of the equatorial cell surface is reduced during cytokinesis, whereas the stiffness of the polar cell surface remains stiff. The equatorial reduction of stiffness was compromised in cells with a mutation in the gene encoding the ZEN-4/kinesin-6 subunit of centralspindlin. Theoretical modeling showed that the absence of the equatorial reduction of stiffness could explain the arrest of furrow ingression in the mutant. By contrast, the equatorial reduction of stiffness was sufficient to generate a cleavage furrow even without the constriction force of the contractile ring. In this regime, the contractile ring had a supportive contribution to furrow ingression. We conclude that stiffness is reduced around the equator in a centralspindlin-dependent manner. In addition, computational modeling suggests that proper regulation of stiffness could be sufficient for cleavage furrow ingression.  相似文献   

3.
We report here an efficient functional genomic analysis by combining information on the gene expression profiling, cellular localization, and loss-of-function studies. Through this analysis, we identified Cep55 as a regulator required for the completion of cytokinesis. We found that Cep55 localizes to the mitotic spindle during prometaphase and metaphase and to the spindle midzone and the midbody during anaphase and cytokinesis. At the terminal stage of cytokinesis, Cep55 is required for the midbody structure and for the completion of cytokinesis. In Cep55-knockdown cells, the Flemming body is absent, and the structural and regulatory components of the midbody are either absent or mislocalized. Cep55 also facilitates the membrane fusion at the terminal stage of cytokinesis by controlling the localization of endobrevin, a v-SNARE required for cell abscission. Biochemically, Cep55 is a microtubule-associated protein that efficiently bundles microtubules. Cep55 directly binds to MKLP1 in vitro and associates with the MKLP1-MgcRacGAP centralspindlin complex in vivo. Cep55 is under the control of centralspindlin, as knockdown of centralspindlin abolished the localization of Cep55 to the spindle midzone. Our study defines a cellular mechanism that links centralspindlin to Cep55, which, in turn, controls the midbody structure and membrane fusion at the terminal stage of cytokinesis.  相似文献   

4.
The chromosomal passenger complex (CPC) and centralspindlin are conserved cytokinesis regulators that localize to the spindle midzone, which forms between the separating chromosomes. Previous work placed the CPC and centralspindlin in a linear pathway that governs midzone formation. Using Caenorhabditis elegans embryos, we test whether there is a similar linear relationship between centralspindlin and the CPC in contractile ring constriction during cytokinesis. We show that simultaneous inhibition of the CPC kinase Aurora B(AIR-2) and the centralspindlin component MKLP1(ZEN-4) causes an additive constriction defect. Consistent with distinct roles for the proteins, inhibition of filamentous septin guanosine triphosphatases alleviates constriction defects in Aurora B(AIR-2)-inhibited embryos, whereas inhibition of Rac does so in MKLP1(ZEN-4)-inhibited embryos. Centralspindlin and the CPC are not required to enrich ring proteins at the cell equator but instead regulate formation of a compact mature ring. Therefore, in contrast to the linear midzone assembly pathway, centralspindlin and the CPC make independent contributions to control transformation of the sheet-like equatorial band into a ribbon-like contractile ring at the furrow tip.  相似文献   

5.
The central spindle regulates the formation and positioning of the contractile ring and is essential for completion of cytokinesis [1]. Central spindle assembly begins in early anaphase with the bundling of overlapping, antiparallel, nonkinetochore microtubules [2, 3], and these bundles become compacted and mature into the midbody. Prominent components of the central spindle include aurora B kinase and centralspindlin, a complex containing a Kinesin-6 protein (ZEN-4/MKLP1) and a Rho family GAP (CYK-4/MgcRacGAP) that is essential for central spindle assembly [4]. Centralspindlin localization depends on aurora B kinase [5]. Aurora B concentrates in the midbody and persists between daughter cells. Here, we show that in C. elegans embryos and in cultured human cells, respectively, ZEN-4 and MKLP1 are phosphorylated by aurora B in vitro and in vivo on conserved C-terminal serine residues. In C. elegans embryos, a nonphosphorylatable mutant of ZEN-4 localizes properly but does not efficiently support completion of cytokinesis. In mammalian cells, an inhibitor of aurora kinase acutely attenuates phosphorylation of MKLP1. Inhibition of aurora B in late anaphase causes cytokinesis defects without disrupting the central spindle. These data indicate a conserved role for aurora-B-mediated phosphorylation of ZEN-4/MKLP1 in the completion of cytokinesis.  相似文献   

6.
Cytokinesis, the final stage of eukaryotic cell division, ensures the production of two daughter cells. It requires fine coordination between the plasma membrane and cytoskeletal networks, and it is known to be regulated by several intracellular proteins, including the small GTPase Rho and its effectors. In this study we provide evidence that the protein Nir2 is essential for cytokinesis. Microinjection of anti-Nir2 antibodies into interphase cells blocks cytokinesis, as it results in the production of multinucleate cells. Immunolocalization studies revealed that Nir2 is mainly localized in the Golgi apparatus in interphase cells, but it is recruited to the cleavage furrow and the midbody during cytokinesis. Nir2 colocalizes with the small GTPase RhoA in the cleavage furrow and the midbody, and it associates with RhoA in mitotic cells. Its N-terminal region, which contains a phosphatidylinositol transfer domain and a novel Rho-inhibitory domain (Rid), is required for normal cytokinesis, as overexpression of an N-terminal-truncated mutant blocks cytokinesis completion. Time-lapse videomicroscopy revealed that this mutant normally initiates cytokinesis but fails to complete it, due to cleavage furrow regression, while Rid markedly affects cytokinesis due to abnormal contractility. Rid-expressing cells exhibit aberrant ingression and ectopic cleavage sites; the cells fail to segregate into daughter cells and they form a long unseparated bridge-like cytoplasmic structure. These results provide new insight into the cellular functions of Nir2 and introduce it as a novel regulator of cytokinesis.  相似文献   

7.
Whereas somatic cell cytokinesis resolves with abscission of the midbody, resulting in independent daughter cells, germ cell cytokinesis concludes with the formation of a stable intercellular bridge interconnecting daughter cells in a syncytium. While many proteins essential for abscission have been discovered, until recently, no proteins essential for mammalian germ cell intercellular bridge formation have been identified. Using TEX14 as a marker for the germ cell intercellular bridge, we show that TEX14 co-localizes with the centralspindlin complex, mitotic kinesin-like protein 1 (MKLP1) and male germ cell Rac GTPase-activating protein (MgcRacGAP) and converts these midbody matrix proteins into stable intercellular bridge components. In contrast, septins (SEPT) 2, 7 and 9 are transitional proteins in the newly forming bridge. In cultured somatic cells, TEX14 can localize to the midbody in the absence of other germ cell-specific factors, suggesting that TEX14 serves to bridge the somatic cytokinesis machinery to other germ cell proteins to form a stable intercellular bridge essential for male reproduction.  相似文献   

8.
The ultimate goal of cell division is to give rise to two viable independent daughter cells. A tight spatial and temporal regulation between chromosome segregation and cytokinesis ensures the viability of the daughter cells. Schizosaccharomyces pombe, commonly known as fission yeast, has become a leading model organism for studying essential and conserved mechanisms of the eukaryotic cell division process. Like many other eukaryotic cells it divides by binary fission and the cleavage furrow undergoes ingression due to the contraction of an actomyosin ring. In contrast to mammalian cells, yeasts as cell-walled organisms, also need to form a division septum made of cell wall material to complete the process of cytokinesis. The division septum is deposited behind the constricting ring and it will constitute the new ends of the daughter cells. Cell separation also involves cell wall degradation and this process should be precisely regulated to avoid cell lysis. In this review, we will give a brief overview of the whole cytokinesis process in fission yeast, from the positioning and assembly of the contractile ring to the final step of cell separation, and the problems generated when these processes are not precise.  相似文献   

9.
The assembly and constriction of an actomyosin contractile ring in cytokinesis is dependent on the activation of Rho at the equatorial cortex by a complex, here termed the cytokinesis initiation complex, between a microtubule-associated kinesin-like protein (KLP), a member of the RacGAP family, and the RhoGEF Pebble. Recently, the activity of the mammalian Polo kinase ortholog Plk1 has been implicated in the formation of this complex. We show here that Polo kinase interacts directly with the cytokinesis initiation complex by binding RacGAP50C. We find that a new domain of Polo kinase, termed the intermediate domain, interacts directly with RacGAP50C and that Polo kinase is essential for localization of the KLP-RacGAP centralspindlin complex to the cell equator and spindle midzone. In the absence of Polo kinase, RacGAP50C and Pav-KLP fail to localize normally, instead decorating microtubules along their length. Our results indicate that Polo kinase directly binds the conserved cytokinesis initiation complex and is required to trigger centralspindlin localization as a first step in cytokinesis.  相似文献   

10.
Cytokinesis in eukaryotic cells is mediated by the contractile ring, an actomyosin-based structure which provides the force required to separate daughter cells. Isoforms of the actin-binding protein tropomyosin are also localised to the contractile ring in both fission yeast and human astrocytes. Although tropomyosin is required for cytokinesis in yeast, its precise role in the contractile ring is unknown. In this study we find that increased expression of a single tropomyosin isoform, tropomyosin 1, in U373MG astrocytoma cells leads to multinucleated cells and mitotic spindle defects. Furthermore, cells expressing increased levels of tropomyosin 1 usually fail to complete cytokinesis and this is accompanied by reduced accumulation of actin depolymerising factor/cofilin in the contractile ring. Adenovirus mediated expression of cofilin is able to relieve the tropomyosin 1 induced effects on cytokinesis. We conclude that tropomyosin 1 and cofilin play antagonistic roles within the contractile ring and that the balance between tropomyosin 1 and cofilin expression is important for cytokinesis.  相似文献   

11.
Dictyostelium DdINCENP is a chromosomal passenger protein associated with centromeres, the spindle midzone, and poles during mitosis and the cleavage furrow during cytokinesis. Disruption of the single DdINCENP gene revealed important roles for this protein in mitosis and cytokinesis. DdINCENP null cells lack a robust spindle midzone and are hypersensitive to microtubule-depolymerizing drugs, suggesting that their spindles may not be stable. Furthermore DdCP224, a protein homologous to the microtubule-stabilizing protein TOGp/XMAP215, was absent from the spindle midzone of DdINCENP null cells. Overexpression of DdCP224 rescued the weak spindle midzone defect of DdINCENP null cells. Although not required for the localization of the myosin II contractile ring and subsequent formation of a cleavage furrow, DdINCENP is important for the abscission of daughter cells at the end of cytokinesis. Finally, we show that the localization of DdINCENP at the cleavage furrow is modulated by myosin II but it occurs by a mechanism different from that controlling the formation of the contractile ring.  相似文献   

12.
Cytokinesis is a temporally and spatially regulated process through which the cellular constituents of the mother cell are partitioned into two daughter cells, permitting an increase in cell number. When cytokinesis occurs in a polarized cell it can create daughters with distinct fates. In eukaryotes, cytokinesis is carried out by the coordinated action of a cortical actomyosin contractile ring and targeted membrane deposition. Recent use of model organisms with facile genetics and improved light-microscopy methods has led to the identification and functional characterization of many proteins involved in cytokinesis. To date, this analysis indicates that some of the basic components involved in cytokinesis are conserved from yeast to humans, although their organization into functional machinery that drives cytokinesis and the associated regulatory mechanisms bear species-specific features. Here, we briefly review the current status of knowledge of cytokinesis in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and animal cells, in an attempt to highlight both the common and the unique features. Although these organisms diverged from a common ancestor about a billion years ago, there are eukaryotes that are far more divergent. To evaluate the overall evolutionary conservation of cytokinesis, it will be necessary to include representatives of these divergent branches. Nevertheless, the three species discussed here provide substantial mechanistic diversity.  相似文献   

13.
In cytokinesis, there is a lengthy interval between cleavage furrow ingression and abscission, during which the midbody microtubule bundle provides both structural support for a narrow intercellular bridge and a platform that orchestrates the biochemical preparations for abscission. It is currently unclear how the midbody structure is stably maintained during this period. Here, we report a novel role for the ADP-ribosylation factor 6 (ARF6) GTPase in the post-mitotic stabilisation of midbody. Centralspindlin kinesin-6/RhoGAP complex, a midbody component critical for both the formation and function of the midbody, assembles in a sharp band at the centre of the structure in a manner antagonised by 14-3-3 protein. We show that ARF6 competes with 14-3-3 for binding to centralspindlin such that midbodies formed by centralspindlin mutants that can bind 14-3-3 but not ARF6 frequently collapse before abscission. These data indicate a novel mechanism for the regulation of midbody dynamics in which ARF6 protects the compacted centralspindlin assembly from dissipation by 14-3-3.  相似文献   

14.
The highly conserved Golgi phosphoprotein 3 (GOLPH3) protein has been described as a Phosphatidylinositol 4-phosphate [PI(4)P] effector at the Golgi. GOLPH3 is also known as a potent oncogene, commonly amplified in several human tumors. However, the molecular pathways through which the oncoprotein GOLPH3 acts in malignant transformation are largely unknown. GOLPH3 has never been involved in cytokinesis. Here, we characterize the Drosophila melanogaster homologue of human GOLPH3 during cell division. We show that GOLPH3 accumulates at the cleavage furrow and is required for successful cytokinesis in Drosophila spermatocytes and larval neuroblasts. In premeiotic spermatocytes GOLPH3 protein is required for maintaining the organization of Golgi stacks. In dividing spermatocytes GOLPH3 is essential for both contractile ring and central spindle formation during cytokinesis. Wild type function of GOLPH3 enables maintenance of centralspindlin and Rho1 at cell equator and stabilization of Myosin II and Septin rings. We demonstrate that the molecular mechanism underlying GOLPH3 function in cytokinesis is strictly dependent on the ability of this protein to interact with PI(4)P. Mutations that abolish PI(4)P binding impair recruitment of GOLPH3 to both the Golgi and the cleavage furrow. Moreover telophase cells from mutants with defective GOLPH3-PI(4)P interaction fail to accumulate PI(4)P-and Rab11-associated secretory organelles at the cleavage site. Finally, we show that GOLPH3 protein interacts with components of both cytokinesis and membrane trafficking machineries in Drosophila cells. Based on these results we propose that GOLPH3 acts as a key molecule to coordinate phosphoinositide signaling with actomyosin dynamics and vesicle trafficking during cytokinesis. Because cytokinesis failures have been associated with premalignant disease and cancer, our studies suggest novel insight into molecular circuits involving the oncogene GOLPH3 in cytokinesis.  相似文献   

15.
Krapp A  Simanis V 《Current biology : CB》2005,15(15):R605-R607
A novel mutant screen in fission yeast has identified the 'ethanol dependent' protein etd1p as a potential link between the septation initiation network (SIN), which initiates cytokinesis, and the actomyosin contractile ring that drives separation of the two daughter cells at the end of mitosis.  相似文献   

16.
Animal cells divide into two daughter cells by the formation of an actomyosin-based contractile ring through a process called cytokinesis. Although many of the structural elements of cytokinesis have been identified, little is known about the signaling pathways and molecular mechanisms underlying this process. Here we show that the human ECT2 is involved in the regulation of cytokinesis. ECT2 catalyzes guanine nucleotide exchange on the small GTPases, RhoA, Rac1, and Cdc42. ECT2 is phosphorylated during G2 and M phases, and phosphorylation is required for its exchange activity. Unlike other known guanine nucleotide exchange factors for Rho GTPases, ECT2 exhibits nuclear localization in interphase, spreads throughout the cytoplasm in prometaphase, and is condensed in the midbody during cytokinesis. Expression of an ECT2 derivative, containing the NH(2)-terminal domain required for the midbody localization but lacking the COOH-terminal catalytic domain, strongly inhibits cytokinesis. Moreover, microinjection of affinity-purified anti-ECT2 antibody into interphase cells also inhibits cytokinesis. These results suggest that ECT2 is an important link between the cell cycle machinery and Rho signaling pathways involved in the regulation of cell division.  相似文献   

17.
《Autophagy》2013,9(12):1955-1964
Upon completion of cytokinesis, the midbody ring is transported asymmetrically into one of the two daughter cells where it becomes a midbody ring derivative that is degraded by autophagy. In this study we showed that the ubiquitin-binding autophagy receptor SQSTM1/p62 and the interacting adaptor protein WDFY3/ALFY form a complex with the ubiquitin E3 ligase TRAF6 and that these proteins, as well as NBR1, are important for efficient clearance of midbody ring derivatives by autophagy. The number of ubiquitinated midbody ring derivatives decreases in TRAF6-depleted cells and we showed that TRAF6 mediates ubiquitination of the midbody ring localized protein KIF23/MKLP1. We conclude that TRAF6-mediated ubiquitination of the midbody ring is important for its subsequent recognition by ubiquitin-binding autophagy receptors and degradation by selective autophagy.  相似文献   

18.
Abscission completes cytokinesis to form the two daughter cells. Although abscission could be organized from the inside out by the microtubule-based midbody or from the outside in by the contractile ring–derived midbody ring, it is assumed that midbody microtubules scaffold the abscission machinery. In this paper, we assess the contribution of midbody microtubules versus the midbody ring in the Caenorhabditis elegans embryo. We show that abscission occurs in two stages. First, the cytoplasm in the daughter cells becomes isolated, coincident with formation of the intercellular bridge; proper progression through this stage required the septins (a midbody ring component) but not the membrane-remodeling endosomal sorting complex required for transport (ESCRT) machinery. Second, the midbody and midbody ring are released into a specific daughter cell during the subsequent cell division; this stage required the septins and the ESCRT machinery. Surprisingly, midbody microtubules were dispensable for both stages. These results delineate distinct steps during abscission and highlight the central role of the midbody ring, rather than midbody microtubules, in their execution.  相似文献   

19.
Cell cycle ends with cytokinesis that is the physical separation of a cell into two daughter cells. For faithful cytokinesis, cells integrate multiple processes, such as actomyosin ring formation, contraction and plasma membrane closure, into coherent responses. Linear actin assembly by formins is essential for formation and maintenance of actomyosin ring. Although budding yeast’s two formins, Bni1 and Bnr1, are known to switch their subcellular localization at the division site prior to cytokinesis, the underlying mechanisms were not completely understood. Here, we provide evidence showing that Bnr1 is dephosphorylated concomitant with its release from the division site. Impaired PP1/Glc7 activity delayed Bnr1 release and dephosphorylation, Bni1 recruitment and actomyosin ring formation at the division site. These results suggest the involvement of Glc7 in this regulation. Further, we identified Ref2 as the PP1 regulatory subunit responsible for this regulation. Taken together, Glc7 and Ref2 may have a role in actomyosin ring formation by modulating the localization of formins during cytokinesis.  相似文献   

20.
Much of our understanding of animal cell cytokinesis centers on the regulation of the equatorial acto-myosin contractile ring that drives the rapid ingression of a deep cleavage furrow. However, the central part of the mitotic spindle collapses to a dense structure that impedes the furrow and keeps the daughter cells connected via an intercellular bridge. Factors involved in the formation, maintenance, and resolution of this bridge are largely unknown. Using a library of 7,216 double-stranded RNAs (dsRNAs) representing the conserved genes of Drosophila, we performed an RNA interference (RNAi) screen for cytokinesis genes in Schneider's S2 cells. We identified both familiar and novel genes whose inactivation induced a multi-nucleate phenotype. Using live video microscopy, we show that three genes: anillin, citron-kinase (CG10522), and soluble N-ethylmaleimide sensitive factor (NSF) attachment protein (alpha-SNAP), are essential for the terminal (post-furrowing) events of cytokinesis. anillin RNAi caused gradual disruption of the intercellular bridge after furrowing; citron-kinase RNAi destabilized the bridge at a later stage; alpha-SNAP RNAi caused sister cells to fuse many hours later and by a different mechanism. We have shown that the stability of the intercellular bridge is essential for successful cytokinesis and have defined genes contributing to this stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号