首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Nicotine increases the number of neuronal nicotinic acetylcholine receptors (nAChRs) in brain. This study investigated the effects of chronic nicotine treatment on nAChRs expressed in primary cultured neurons. In particular, we studied the chronic effects of nicotine exposure on the total density, surface expression and turnover rate of heteromeric nAChRs. The receptor density was measured by [12?I]epibatidine ([12?I]EB) binding. Untreated and nicotine-treated neurons were compared from several regions of embryonic (E19) rat brain. Twelve days of treatment with 10 μM nicotine produced a twofold up-regulation of nAChRs. Biotinylation and whole-cell binding studies indicated that up-regulation resulted from an increase in the number of cell surface receptors as well as intracellular receptors. nAChR subunit composition in cortical and hippocampal neurons was assessed by immunoprecipitation with subunit-selective antibodies. These neurons contain predominantly α4, β2 and α5 subunits, but α2, α3, α6 and β4 subunits were also detected. Chronic nicotine exposure yielded a twofold increase in the β2-containing receptors and a smaller up-regulation in the α4-containing nAChRs. To explore the mechanisms of up-regulation we investigated the effects of nicotine on the receptor turnover rate. We found that the turnover rate of surface receptors was > 2 weeks and chronic nicotine exposure had no effect on this rate.  相似文献   

3.
Desensitization of neuronal nicotinic receptors   总被引:23,自引:0,他引:23  
The loss of functional response upon continuous or repeated exposure to agonist, desensitization, is an intriguing phenomenon if not as yet a well-defined physiological mechanism. However, detailed evaluation of the properties of desensitization, especially for the superfamily of ligand-gated ion channels, reveals how the nervous system could make important use of this process that goes far beyond simply curtailing excessive receptor stimulation and the prevention of excitotoxicity. Here we will review the mechanistic basis of desensitization and discuss how the subunit-dependent properties and regulation of nicotinic acetylcholine receptor (nAChR) desensitization contribute to the functional diversity of these channels. These studies provide the essential framework for understanding how the physiological regulation of desensitization could be a major determinant of synaptic efficacy by controlling, in both the short and long term, the number of functional receptors. This type of mechanism can be extended to explain how the continuous occupation of desensitized receptors during chronic nicotine exposure contributes to drug addiction, and highlights the potential significance of prolonged nAChR desensitization that would also occur as a result of extended acetylcholine lifetime during treatment of Alzheimer's disease with cholinesterase inhibitors. Thus, a clearer picture of the importance of nAChR desensitization in both normal information processing and in various diseased states is beginning to emerge.  相似文献   

4.
Rapid neurotransmission is mediated through a superfamily of Cys-loop receptors that includes the nicotinic acetylcholine (nAChR), gamma-aminobutyric acid (GABA(A)), serotonin (5-HT(3)) and glycine receptors. A class of ligands, including galanthamine, local anesthetics and certain toxins, interact with nAChRs non-competitively. Suggested modes of action include blockade of the ion channel, modulation from undefined extracellular sites, stabilization of desensitized states, and association with annular or boundary lipid. Alignment of mammalian Cys-loop receptors shows aromatic residues, found in the acetylcholine or ligand-binding pocket of nAChRs, are conserved in all subunit interfaces of neuronal nAChRs, including those that are not formed by alpha subunits on the principal side of the transmitter binding site. The amino-terminal domain containing the ligand recognition site is homologous to the soluble acetylcholine-binding protein (AChBP) from mollusks, an established structural and functional surrogate. We assess ligand specificity and employ X-ray crystallography with AChBP to demonstrate ligand interactions at subunit interfaces lacking vicinal cysteines (i.e. the non-alpha subunit interfaces in nAChRs). Non-competitive nicotinic ligands bind AChBP with high affinity (K(d) 0.015-6 microM). We mutated the vicinal cysteine residues in loop C of AChBP to mimic the non-alpha subunit interfaces of neuronal nAChRs and other Cys loop receptors. Classical nicotinic agonists show a 10-40-fold reduction in binding affinity, whereas binding of ligands known to be non-competitive are not affected. X-ray structures of cocaine and galanthamine bound to AChBP (1.8 A and 2.9 A resolution, respectively) reveal interactions deep within the subunit interface and the absence of a contact surface with the tip of loop C. Hence, in addition to channel blocking, non-competitive interactions with heteromeric neuronal nAChR appear to occur at the non-alpha subunit interface, a site presumed to be similar to that of modulating benzodiazepines on GABA(A) receptors.  相似文献   

5.
Summary 1. Nicotine stimulated two Ca2+-dependent processes in rat frontal cortex synaptosomes: the phosphorylation of an 80-kDa protein band and the release of endogenous ACh.3 Both effects were mediated by neuronal nAChRs and coincided with depolarization of the synaptosomal plasma membrane induced by the drug. Changes in the state of phosphorylation of the 80-kDa band (presumed to contain synapsin I) were correlated with changes in the release of ACh as follows, from 2 to 4.2. Blockade of predominant, nerve terminal P-type Ca2+ channels with -agatoxin-IVA, did not prevent nicotine from stimulating ACh release. In contrast, exposure to the toxin partially inhibited the release promoted by the depolarizing agent veratridine and attenuated protein phosphorylation induced by either nicotine or veratridine. Taken together, these data suggest that, upon nicotine stimulation, Ca2+ enters nerve terminals through two distinct pathways. The first, via Ca2+ channels, is necessary (but not sufficient) for both nicotine-induced phosphorylation and ACh release. The second, both necessary and sufficient for nicotine-induced phosphorylation and release, is the neuronal nAChR itself.3. Preincubation of the synaptosomes with a subeffective concentration of nicotine inactivated both nicotine-induced ACh liberation and phosphorylation. This shows that diminished release is associated to decreased phosphorylation of the 80-kDa protein band, most likely as a consequence of nicotine-promoted nAChR desensitization.4. Augmented ACh release and phosphorylation of the 80-kDa protein band were achieved by using the protein phosphatase inhibitor okadaic acid. However, okadaic acid did not summate with either nicotine or veratridine to increase ACh release further. This is probably because okadaic acid, as in other neurons, increases intracellular Ca2+ (Cholewinskiet al., 1993), thus promoting desensitization of ACh release.  相似文献   

6.
Desensitization induced by chronic nicotine exposure has been hypothesized to trigger the up-regulation of the alpha4beta2 neuronal nicotinic acetylcholine receptor (nAChR) in the central nervous system. We studied the effect of acute and chronic nicotine exposure on the desensitization and up-regulation of different alpha4beta2 subunit ratios (1alpha:4beta, 2alpha:3beta, and 4alpha:1beta) expressed in Xenopus oocytes. The presence of alpha4 subunit in the oocyte plasmatic membrane increased linearly with the amount of alpha4 mRNA injected. nAChR function and expression were assessed during acute and after chronic nicotine exposure using a two-electrode voltage clamp and whole-mount immunofluorescence assay along with confocal imaging for the detection of the alpha4 subunit. The 2alpha4:3beta2 subunit ratio displayed the highest ACh sensitivity. Nicotine dose-response curves for the 1alpha4:4beta2 and 2alpha4:3beta2 subunit ratios displayed a biphasic behavior at concentrations ranging from 0.1 to 300 microm. A biphasic curve for 4alpha4:1beta2 was obtained at nicotine concentrations higher than 300 microm. The 1alpha4:4beta2 subunit ratio exhibited the lowest ACh- and nicotine-induced macroscopic current, whereas 4alpha4:1beta2 presented the largest currents at all agonist concentrations tested. Desensitization by acute nicotine exposure was more evident as the ratio of beta2:alpha4 subunits increased. All three alpha4beta2 subunit ratios displayed a reduced state of activation after chronic nicotine exposure. Chronic nicotine-induced up-regulation was obvious only for the 2alpha4: 3beta2 subunit ratio. Our data suggest that the subunit ratio of alpha4beta2 determines the functional state of activation, desensitization, and up-regulation of this neuronal nAChR. We propose that independent structural sites regulate alpha4beta2 receptor activation and desensitization.  相似文献   

7.
El-Hajj RA  McKay SB  McKay DB 《Life sciences》2007,81(16):1317-1322
Controversy surrounds the expression of alpha7 nicotinic acetylcholine receptors (nAChRs) in adrenal chromaffin cells. In these studies, alpha7 nAChRs expressed in bovine adrenal chromaffin cells are investigated. Using radiolabeled ligand binding techniques, [(125)I]alpha-bungarotoxin (alphaBGT) binding reaches equilibrium within 4 h and is saturable with a K(d) value of 4.2 nM. Using homologous competition experiments, the K(i) for binding of alphaBGT was 1.9 nM. These data are consistent with the expression of homomeric alpha7 nAChRs. Methyllycaconatine (MLA), which binds alpha7 nAChRs with high affinity, inhibits [(125)I]alphaBGT binding in a concentration-dependent manner with a K(i) of 30.6 nM; this value is approximately 10 fold higher than the reported affinity of MLA for alpha7 nAChRs. We also document the ability of bromoacetylcholine (brACh) to alkylate alpha7 nAChRs, as has been previous demonstrated for bovine adrenal alpha3beta4 nAChRs. When adrenal nAChRs are immunoprecipated with mAb319, an antibody which recognizes alpha7 nAChR protein, and then probed with mAb319 using Western blot analysis, a single band of approximately 53 kDa is identified. When adrenal nAChRs are immunoprecipated with mAb35, an antibody which recognizes alpha3 and alpha5 nAChR proteins, and then probed with mAb319 using Western blot analysis, a single band of approximately 53 kDa is identified. Together, these results support the expression of alpha7 nAChRs in bovine adrenal chromaffin cells. However, these data suggest that the subunit composition of some of these receptors may include heteromeric alpha7 nAChRs.  相似文献   

8.
Effects of substances affecting intracellular secondary messengers on the membrane currents evoked by ionophoretic application of acetylcholine (ACh currents) and on the excitatory postsynaptic currents (EPSC) evoked by single stimuli applied to preganglionic nerve fibres, were studied in neurones of the rat isolated superior cervical ganglion. Forskolin, the protein kinase A activator, and isobutyl-methyxanthine, the phosphodiesterase inhibitor, decreased the ACh currents. Neither forskolin nor isobutyl-methylxanthine affected the EPSC amplitude or the EPSC decay time constant. Phorbol ester, the protein kinase C activator, decreased the ACh current but did not affect either EPSC amplitude or the EPSC decay time constant. Thapsigargin, the intracellular calcium releaser, decreased the ACh current and the EPSC amplitude but did not affect the EPSC decay time constant. The data obtained suggest that nicotinic acetylcholine receptors (nAChRs) of ganglion neurones are not modulated through the pathways involving protein kinase A or protein kinase C. The nAChRs sensitivity to both exogenous and nerve-released acetylcholine is reduced by intracellular calcium without affecting kinetics of their ionic channels.  相似文献   

9.
Summary and Conclusions Work over the past ten years has greatly increased our understanding of both the structure and function of the muscle nicotinic acetylcholine receptor. There is a strongly supported general picture of how the receptor functions: agonist binds rapidly to sites of low affinity and channel opening occurs at a rate comparable to the agonist dissociation rate. Channel closing is slow, so the channel has a high probability of being open if both agonist-binding sites are occupied by ACh. Results of expression studies have shown that each subunit can influence AChR activation and have given a structural basis for the major physiological change known for muscle AChR, the developmental change in AChR activation. These general statements notwithstanding, there are still major areas of uncertainty which limit our understanding. We have emphasized these areas of uncertainty in this review, to indicate what needs to be done.First, the quantitative estimates of rate constants are not as strongly supported as they should be. The major reasons are twofold—uncertainties about the interpretation of components in the kinetic data and difficulties of resolving brief events. As a result, any inferences about the functional consequences of structural alterations must remain tenuous.Second, the functional behavior of individual AChRs is not as well understood as it should be. The kinetic behavior of an individual receptor clearly can be complex (section II). In addition, there is evidence that superimposed on this complexity there may be stable and kinetically distinguishable populations of receptors (section III). Until the basis for the kinetically defined populations is clarified, kinetic parameters for receptors of defined structure cannot be unambiguously obtained.Finally, it is not surprising that the studies of AChR of altered structure have not given definitive results. Two reasons should be apparent from the preceding points: there is not a fully supported approach for kinetic analysis, and the normal population may not be clearly defined. An additional complication is also emerging, in that the available data support the idea that specific residues distributed over all subunits may influence AChR activation. This possibility renders the task of analysis that much more difficult.The muscle nicotinic AChR has served as a prototype for the family of transmitter-gated membrane channels, which includes the muscle and neuronal nicotinic receptors, the GABAA, the glycine and possibly the non-NMDA excitatory amino acid receptor (Stroud et al., 1990). It is interesting to note that the functional properties of the GABAA receptor, probably the best-studied of the other members of the family are rather similar. In particular, opentime and burst durations show multiple components interpreted as reflecting openings of singly and doubly liganded receptors (Mathers & Wang, 1988; Macdonald et al., 1989), the distribution of gaps indicates a relatively complex gating scheme (Twyman et al., 1990; Weiss & Magleby, 1989), and multiple kinetic modes are likely to exist (Newland et al., 1991). The situation with regards to the effects of GABAA receptor subunit stoichiometry is more complex than for muscle AChR (e.g., Luddens & Wisden, 1991), perhaps similar to that found for neuronal nicotinic AChR (Papke et al., 1989; Luetje et al., 1990; Luetje & Patrick, 1991). Overall, it appears that the unresolved questions about the muscle nicotinic AChR are not indications that this is an exceptionally complicated transmitter-gated channel. Rather, it appears to be a relatively straightforward member of the family, and the lessons we learn from studying it are likely to be directly applicable to other receptors.We thank many friends for discussion, including Tony Auerbach, Paul Brehm, Jim Dilger, Meyer Jackson, and Chuck Stevens who told us about data before publication. Research in the authors' laboratories is supported by grants from the NIH (CL and JHS) and the AHA (CL).  相似文献   

10.
Decay kinetics of the postsynaptic excitatory currents (EPSC), distribution of the antibodies specific to different α-subunits of neuronal nicotinic acetylcholine receptors (nAChR), and the effects of these antibodies on ACh-induced membrane currents were studied in neurons of different autonomic ganglia of rats. It was shown that α3-, α5- and α7-subunits were present in all studied cultured neurons of the rat superior cervical ganglion (SCG), while the α4-subunit was present only in about half of the neurons; this α-subunit distribution differed from that in cultured intracardial neurons of rats. Two nAChR populations were found in rat SCG neurons, and a series of nAChR populations were found in murine superior mesenteric ganglion neurons; they differed in kinetics of their ion channel activity, voltage dependence and the rate of their open channel blockade. The possible functional role of neuronal nAChR heterogeneity is discussed.  相似文献   

11.
We propose to use the zebrafish (Danio rerio) as a vertebrate model to study the role of neuronal nicotinic acetylcholine receptors (nAChR) in development. As a first step toward using zebrafish as a model, we cloned three zebrafish cDNAs with a high degree of sequence similarity to nAChR beta3, alpha2 and alpha7 subunits expressed in other species. RT-PCR was used to show that the beta3 and alpha2 subunit RNAs were present in zebrafish embryos only 2-5hours post-fertilization (hpf) while alpha7 subunit RNA was not detected until 8hpf, supporting the differential regulation of nAChRs during development. In situ hybridization was used to localize zebrafish beta3, alpha2, and alpha7 RNA expression. nAChR binding techniques were used to detect the early expression of two high-affinity [3H]-epibatidine binding sites in 2 days post-fertilization (dpf) zebrafish embryos with IC(50) values of 28.6pM and 29.7nM and in 5dpf embryos with IC(50) values of 28.4pM and 8.9nM. These studies are consistent with the involvement of neuronal nAChRs in early zebrafish development.  相似文献   

12.
Various levels of organisation in the central nervous system can be distinguished, ranging from the molecular, the cellular, the multicellular and the neuronal system level. The relationship between receptor function and behaviour is focussed to the dopamine D2 type receptor of the striatal complex in relation to extrapyramidal and limbic systems. In the striatal complex a striosomal and a matrix compartment can be distinguished. The matrix compartment can be considered as a part of the extrapyramidal system and is innervated by the motor cortex and by the dopaminergic neurons of the ventral tegmental, the dorsal substantia nigra and the retrorubral area. This compartment has a relatively high density of D2 receptors. The striosomes are innervated by e.g. the prelimbic cortex and dopamine neurones of the ventral part of the substantia nigra; here the density of D2 receptors are lower. Under normal conditions most of the D2 receptors are occupied by endogenous dopamine, and postsynaptic (e.g. cholinergic) function is therefore sensitive to antagonists; e.g. antipsychotics. Exposure to drugs such as amphetamine produces a substantial overflow of dopamine from nerve terminals leading to the activation of remote dopamine receptors, that may belong to the system that normally is not influenced by these nerve terminals (defined here as extra synaptic receptor activation). A loss of the normal spatial-temporal relationships may also occur during L-DOPA therapy in Parkinson's disease. In this illness, due to degeneration of dopaminergic innervation, several dopamine receptors have become non-synaptic. In these states of intoxication the normal spatial/temporal organization is lost and such a loss may contribute to behavioural impairments.  相似文献   

13.
Role of voltage-sensitive receptors in nicotinic transmission.   总被引:6,自引:0,他引:6       下载免费PDF全文
This paper compares the conductance induced by bath-applied acetyl-choline (ACh) and by the same transmitter released from nerve terminals at Electrophorus electroplaques. For the former case, dose-response relations are characterized by the maximal agonist-induced conductance, rgamma (130 mmho/cm2), and by the concentration which induces half this conductance; this concentration is termed Kapp and equals 50 micron at -85 mV. For the latter case, neurally evoked postsynaptic currents (PSCs) are characterized by the peak conductance during strongly facilitated release, gPSC, and by the rate constant for decay, alpha. Since gPSC roughly equals rgamma, it is concluded that the PSC activates nearly all available receptor channels. These and other data agree with recent estimates that during the growth phase of the quantal response, (a) the ACh concentration is at least several hundred micromolar; and (b) most nearby channels are activated. However both alpha and Kapp increase during depolarization, at a rate of about e-fold per 86 mV. These observations on voltage sensitivity suggest that a suprathreshold synaptic event is rapidly terminated because the action potential abruptly releases ACh molecules from receptors.  相似文献   

14.
Cigarette smoking represents an enormous, global public health threat. Nearly five million premature deaths during a single year are attributable to smoking. Despite the resounding message of risks associated with smoking and numerous public health initiatives, cigarette smoking remains the most common preventable cause of disease in the United States. Fortunately, even in an adult smoker, smoking cessation can reverse many of the potential harmful effects. The symptoms associated with nicotine withdrawal represent the major obstacle to smoking cessation. This minireview examines the roles of various nicotinic receptors in the mechanisms of nicotine dependence, discusses the potential role of the habenula-interpeduncular nucleus axis in nicotine withdrawal, and highlights nicotinic receptors containing the beta4 subunit as a potential pharmacological target for smoking cessation strategies.  相似文献   

15.
The effects of d-sparteine (d-SP) and its two derivatives, N-methylsparteine (IEM-1820) and N-phenylsparteine (IEM-1821), on nicotinic acetylcholine receptors (nAChR) of the rat superior cervical ganglion neurons were studied. Membrane currents evoked by iontophoretically applied acetylcholine were recorded using the patch-clamp recording technique in the whole-cell configuration. All three compounds were found to block nAChR competitively, the blocking activity being increased with an increase in the size of the blocking molecule. The EC50 values for d-SP, IEM-1820, and IEM-1821 were equal to 2.06±0.38 µM (n=3), 1.64±0.41 µM (n=4), and 0.65±0.17 µM (n=3), respectively. It was assumed that the increase in efficiency of blocking is related to the decrease in the rate of dissociation of the blocker and receptor molecules.Neirofiziologiya/Neurophysiology, Vol. 26, No. 4, pp. 266–269, July–August, 1994.  相似文献   

16.
17.
We have studied the voltage-jump relaxation currents for a series of neuronal nicotinic acetylcholine receptors resulting from the coexpression of wild-type and chimeric beta 4/beta 2 subunits with alpha 3 subunits in Xenopus oocytes. With acetylcholine as the agonist, the wild-type alpha 3 beta 4 receptors displayed five- to eightfold slower voltage-jump relaxations than did the wild-type alpha 3 beta 2 receptors. In both cases, the relaxations could best be described by two exponential components of approximately equal amplitudes over a wide range of [ACh]'s. Relaxation rate constants increased with [ACh] and saturated at 20- to 30-fold lower concentrations for the alpha 3 beta 2 receptor than for the alpha 3 beta 4 receptor, as observed previously for the peak steady state conductance. Furthermore, the chimeric beta 4/beta 2 subunits showed a transition in the concentration dependence of the rate constants in the region between residues 94 and 109, analogous to our previous observation with steady state conductances. However, our experiments with a series of beta- subunit chimeras did not localize residues that govern the absolute value of the kinetic parameters. Hill coefficients for the relaxations also differed from those previously measured for steady state responses. The data reinforce previous conclusions that the region between residues 94 and 109 on the beta subunit plays a role in binding agonist but also show that other regions of the receptor control gating kinetics subsequent to the binding step.  相似文献   

18.
alpha-Conotoxins that target the neuronal nicotinic acetylcholine receptor have a range of potential therapeutic applications and are valuable probes for examining receptor subtype selectivity. The three-dimensional structures of about half of the known neuronal specific alpha-conotoxins have now been determined and have a consensus fold containing a helical region braced by two conserved disulfide bonds. These disulfide bonds define the two-loop framework characteristic for alpha-conotoxins, CCX(m)CX(n)C, where loop 1 comprises four residues (m = 4) and loop 2 between three and seven residues (n = 3, 6 or 7). Structural studies, particularly using NMR spectroscopy have provided an insight into the role and spatial location of residues implicated in receptor binding and biological activity.  相似文献   

19.
Tandem constructs are increasingly being used to restrict the composition of recombinant multimeric channels. It is therefore important to assess not only whether such approaches give functional channels, but also whether such channels completely incorporate the subunit tandems. We have addressed this question for neuronal nicotinic acetylcholine receptors, using a channel mutation as a reporter for subunit incorporation. We prepared tandem constructs of nicotinic receptors by linking alpha (alpha2-alpha4, alpha6) and beta (beta2, beta4) subunits by a short linker of eight glutamine residues. Robust functional expression in oocytes was observed for several tandems (beta4_alpha2, beta4_alpha3, beta4_alpha4, and beta2_alpha4) when coexpressed with the corresponding beta monomer subunit. All tandems expressed when injected alone, except for beta4_alpha3, which produced functional channels only together with beta4 monomer and was chosen for further characterization. These channels produced from beta4_alpha3 tandem constructs plus beta4 monomer were identical with receptors expressed from monomer alpha3 and beta4 constructs in acetylcholine sensitivity and in the number of alpha and beta subunits incorporated in the channel gate. However, separately mutating the beta subunit in either the monomer or the tandem revealed that tandem-expressed channels are heterogeneous. Only a proportion of these channels contained as expected two copies of beta subunits from the tandem and one from the beta monomer construct, whereas the rest incorporated two or three beta monomers. Such inaccuracies in concatameric receptor assembly would not have been apparent with a standard functional characterization of the receptor. Extensive validation is needed for tandem-expressed receptors in the nicotinic superfamily.  相似文献   

20.
Chronic exposure to nicotine, as in tobacco smoking, up-regulates nicotinic acetylcholine receptor surface expression in neurons. This up-regulation has been proposed to play a role in nicotine addiction and withdrawal. The regulatory mechanisms behind nicotine-induced up-regulation of surface nicotinic acetylcholine receptors remain to be determined. It has recently been suggested that nicotine stimulation acts through increased assembly and maturation of receptor subunits into functional pentameric receptors. Studies of muscle nicotinic acetylcholine receptors suggest that the availability of unassembled subunits in the endoplasmic reticulum can be regulated by the ubiquitin-proteosome pathway, resulting in altered surface expression. Here, we describe a role for ubiquilin-1, a ubiquitin-like protein with the capacity to interact with both the proteosome and ubiquitin ligases, in regulating nicotine-induced up-regulation of neuronal nicotinic acetylcholine receptors. Ubiquilin-1 interacts with unassembled alpha3 and alpha4 subunits when coexpressed in heterologous cells and interacts with endogenous nicotinic acetylcholine receptors in neurons. Coexpression of ubiquilin-1 and neuronal nicotinic acetylcholine receptors in heterologous cells dramatically reduces the expression of the receptors on the cell surface. In cultured superior cervical ganglion neurons, expression of ubiquilin-1 abolishes nicotine-induced up-regulation of nicotinic acetylcholine receptors but has no effect on the basal level of surface receptors. Coimmunostaining shows that the interaction of ubiquilin-1 with the alpha3 subunit draws the receptor subunit and proteosome into a complex. These data suggest that ubiquilin-1 limits the availability of unassembled nicotinic acetylcholine receptor subunits in neurons by drawing them to the proteosome, thus regulating nicotine-induced up-regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号