首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a sclerophyll open forest (Eucalyptus obliqua L'Herit-E. baxteri Benth. association) near Adelaide total mean annual litter fall over a 5-year period was 233 g/m2 dry weight, comprising 190 g/m2 of leaves, small twigs, fruits and other small plant parts and 43 g/m2 of sticks and logs. Samples of sticks and logs were taken at approximately 12-weekly intervals and of other litter at approximately 6-weekly intervals. Maximum rates of leaf fall were in late summer and minimum rates in winter, and a simple harmonic model representing seasonal fluctuations accounted for 61.8% of the variation. The standing crop of litter was 980 g/m2, representing 4.2 years’ mean litter fall. Samples of sticks and logs and of other litter from each sampling occasion were bulked and their content of N, P, K, Ca, Mg, Zn, Mn, Fe and Cu determined. Seasonal variations were not found in nutrient content of sticks and logs, but for other litter there was a clear harmonic seasonal variation, with rate of litter fall negatively correlated with concentrations of N, P, Zn, Fe and Cu and positively correlated with Ca, Mg and Mn concentrations. Concentrations of K did not correlate with those of other elements. Total annual inputs of nutrients were calculated. Calorific values of the litter showed a mean annual input of approximately 4900 kJ/m2/year. Comparisons were made between litter fall rates and nutrient inputs from litter at the experimental site and previous records from other eucalypt forests.  相似文献   

2.
Distinct O1 and O2 layers, representing annual litter fall, enabled the sequential loss of biomass and nutrients (phosphorus and nitrogen) to be reconstructed in undisturbed litter layers of Banksia ornata in the Dark Island heathland, South Australia. Apart from an initial loss in biomass and nitrogen, the dry weight and nutrient content of the O1 layer, exposed to the desiccating influence of the atmosphere, remained relatively constant until covered by the following year's leaf fall. Under the blanket of newly fallen leaves, biomass decomposition proceeded continuously through autumn, winter, spring, into the dry summer season. Even though the biomass of the decomposing leaf (O2) layer decreased continuously, its nutrient content remained relatively constant until the summer season was reached when total decomposition and nutrient loss occurred. During spring, fine rootlets invaded the decomposing litter layer (O2) and, together with decomposer fungi, bacteria and soil fauna, maintained the total nutrient content of the decomposing leaf at a constant level. By late spring-early summer shoot growth of the dominant heath species was initiated, inducing the mobilization of the nutrients stored in the decomposing litter layer.  相似文献   

3.
天然枫桦红松林凋落量动态及养分归还量   总被引:1,自引:0,他引:1       下载免费PDF全文
三年定位研究表明小兴安岭天然枫桦红松林年均凋落量有5.8t/ha(干重)。凋落量的季节变化格局是随着气候变冷有一明显秋季凋落高峰期(9—10月)。凋落物每年养分的归还量:Ca、N、K、Mg、P,相应为67.0、56.9、14.8、9.5、和6.6kg/ha,总计155.0kg/ha。据测定阔叶树落叶养分含量明显高于所有针叶的含量。尽管阔叶树的年凋落量仅占该混交林的年总凋落量的三分之一,阔叶树落叶仍有相当高的养分比例(43.4%)归还土壤。因此,红松林分的经营管理中,保留适当比重的阔叶树有利于土壤改良和促进林分生长。  相似文献   

4.
Field studies were conducted in 2000 and 2001 to examine yields and nutrient removal by Alamo switchgrass (Panicum virgatum L.) grown at eight locations within five states in the upper southeastern USA. Plots, which had been established for >5 years as part of a larger study, were cut either once (late fall) or twice (midsummer and late fall). Plots cut once received 50 kg N per hectare per year, while twice-cut plots received 100 kg N per hectare per year. Nutrient concentrations of and nutrient removal by harvested biomass were determined. Partitioning of nutrients into leaf and stem fractions was determined at the time of the midsummer harvest in 2000. Biomass production during 2000 and 2001 averaged 15.9 Mg/ha per year across all sites and was as high as 21.7 Mg/ha per year at one site. Two cuttings plus the additional 50 kg N per hectare did not generally increase seasonal yields; and, in one quite productive location, that management caused a yield reduction. Nitrogen removal with two cuts was much higher than with a single cut due largely to the higher N content in the midsummer harvest. Over the 2 years, twice as much N was removed with the two annual cuts as with one cut. Nitrogen removal exceeded the amounts of N applied in both managements, suggesting N was being supplied via mineralization or other processes. Phosphorus removal also increased significantly with the two-cut management. Seasonal K and Ca removals were more similar between the two managements. Nitrogen and P concentrations generally declined basipetally in tillers, with older leaves and internodes having lower concentrations of both nutrients. Potassium was more uniformly distributed than N throughout the tiller components (leaf and stem). Calcium was higher in older leaf blades. Levels of soil P, K, and Ca at most locations appeared not to be limiting biomass production and were adequate for long-term productivity.  相似文献   

5.
大熊猫栖息环境的森林凋落物动态研究   总被引:13,自引:0,他引:13       下载免费PDF全文
本文以王朗自然保护区冷杉、云杉暗针叶林为对象,在定位测定森林凋落量及其动态和枯枝落叶贮量的基础上,研究了凋落物分解速率及其主要营养元素含量的变化,结果表明:(1)地表枯枝落叶总贮量变化在30.0—91.8t/ha,其中未分解层4.9—17.8,半分解层11.5—19.7,腐殖质层13.6—57.3t/ha。(2)森林凋落的枯枝落叶量因林型不同而略有差异,平均为2.8 t/ha·yr,其凋落高峰期分别在生长季开始的5月和生长季末的10月。(3)每年以凋落物形式返回林地的养分,氮为35.5kg/ha、磷为5.7kg/ha、钾为7.0kg/ha、镁为6.8kg/ha、钙为62.9kg/ha。(4)森林各种凋落物的混合物年分解率为0.3041g/g。95%的凋落物被分解需时约10年,在分解一段时间后,凋落物中的氮、钙、镁含量略有上升,钾明显减少,而磷含量变化不大。(5)森林凋落物的混合物腐解过程中,养分释放速率大小的顺序为:K>P>Mg>Ca>N,大熊猫主食竹的凋落叶则为:K>N>Ca>Mg>P。  相似文献   

6.
The Arctic climate is projected to change during the coming century, with expected higher air temperatures and increased winter snowfall. These climatic changes might alter litter decomposition rates, which in turn could affect carbon (C) and nitrogen (N) cycling rates in tundra ecosystems. However, little is known of seasonal climate change effects on plant litter decomposition rates and N dynamics, hampering predictions of future arctic vegetation composition and the tundra C balance. We tested the effects of snow addition (snow fences), warming (open top chambers), and shrub removal (clipping), using a full-factorial experiment, on mass loss and N dynamics of two shrub tissue types with contrasting quality: deciduous shrub leaf litter (Salix glauca) and evergreen shrub shoots (Cassiope tetragona). We performed a 10.5-month decomposition experiment in a low-arctic shrub tundra heath in West-Greenland. Field incubations started in late fall, with harvests made after 249, 273, and 319 days of field incubation during early spring, summer and fall of the next year, respectively. We observed a positive effect of deeper snow on winter mass loss which is considered a result of observed higher soil winter temperatures and corresponding increased winter microbial litter decomposition in deep-snow plots. In contrast, warming reduced litter mass loss during spring, possibly because the dry spring conditions might have dried out the litter layer and thereby limited microbial litter decomposition. Shrub removal had a small positive effect on litter mass loss for C. tetragona during summer, but not for S. glauca. Nitrogen dynamics in decomposing leaves and shoots were not affected by the treatments but did show differences in temporal patterns between tissue types: there was a net immobilization of N by C. tetragona shoots after the winter incubation, while S. glauca leaf N-pools were unaltered over time. Our results support the widely hypothesized positive linkage between winter snow depth and litter decomposition rates in tundra ecosystems, but our results do not reveal changes in N dynamics during initial decomposition stages. Our study also shows contrasting impacts of spring warming and snow addition on shrub decomposition rates that might have important consequences for plant community composition and vegetation-climate feedbacks in rapidly changing tundra ecosystems.  相似文献   

7.
A total dry weight of litter fall of 2423 g was collected beneath a restricted stand of the mangrove, Rhizophora stylosa Griff., 4–6 m tall, on Vaitupu, Tuvalu, over a period of 64 weeks. Leaves comprised 84% of this total, stipules 13% and reproductive parts and twigs 2 and 1%, respectively. The average annual litter fall rate was 777 ± 93 g dry wt./m2/year, which is similar to rates observed in mangroves elsewhere. Litter fall rates were lowest in July and August, but seasonal trends were not pronounced. In terms of litter production, inland mangrove stands of low stature on Pacific Islands can be as productive per unit area as mangrove communities in more diverse and more extensive swamplands.  相似文献   

8.
Paperbark low closed forest, dominated by Melaleuca cuticularis, produced 430 g (dry weight), m?2 of litter over a year, containing some 3.4 g.m?2 of nitrogen and 77 mg.m?2 of phosphorus. Twigs and bark made up more than 50% of the total annual litter fall. The twigs and bark contribute most of the nitrogen (54 %) and phosphorus (56%), compared with leaf fall (37% and 35%) and flower and fruit fall (8% and 9%). The fall of leaves, twigs and bark was primarily related to wind, and flower and fruit fall was greatest after flowering. The litter must make a significant contribution to the accretion of peat. Since the forest covers some 200 ha of the lower Blackwood River estuary, it may contribute some 8001 of litter to the ecosystem each year, containing some 6600 kg of nitrogen and 154 kg of phosphorus.  相似文献   

9.
香溪河流域一条一级支流河岸林凋落物季节动态   总被引:3,自引:0,他引:3  
对神农架南坡的一条一级支流河岸林的凋落物进行了一年的连续收集研究。结果表明:凋落物干重年输入量为438.72g/m^2,其中树叶凋落物是凋落物的主要成分,占整个凋落物年产量的84%。凋落物的输入明显存在季节性的时间格局。凋落物在秋季的产量占全年产量的75%,春季占6.2%,夏季占13.6%,冬季为5.5%。凋落物组成中,树叶和花果的产量显示出季节变化的趋势;枝条的产量并未显示出明显的季节趋势。在秋季,树叶的产量占全年树叶总量的83%;枝条最高值出现于秋季,产量占全年总员的29%;花果在整个凋落物中所占比重分小,最高值出现在夏季,占年产量的63%。着生藻类的密度月际间的变化较大,存在着显著的差异。最大值与最小值的出现月份与凋落物最大、最低值的出现月份相同。通过统计分析表明,着生藻类的密度变化与凋落物和树叶凋落物的动态具有明显的相关性。  相似文献   

10.
This paper reports seasonal data regarding leaf litter for 14 deciduous broad-leaved species and one evergreen coniferous species as well as leaf area index (LAI) data for the 14 deciduous broad-leaved species in a cool-temperate deciduous broad-leaved forest in Japan. The seasonal leaf biomass of various tree species is important for accurately evaluating ecosystem functions such as photosynthesis and evapotranspiration under climate change. However, there is a lack of freely available, long-term data. We collected litterfall every 1 to 4 weeks from September or October to November or December each year from 2005 to 2014 in Takayama, Japan (36°08′46″N, 137°25′23″E, 1420 m a.s.l.). After sorting the litter into leaves (according to species categories), stems + branches, and “other”, we dried and weighed the litter groups. We also collected seasonal leaf data (number of leaves and leaf length and width) for each broad-leaved species, which we recorded every 1 to 4 weeks from April or May to October or November using multiple target shoots. To estimate the LAI in autumn for each deciduous broad-leaved species, we used a semi-empirical model of the vertical integration of leaf dry mass per unit leaf area. To estimate the LAI in spring and summer, we used the relationship between the LAI in autumn and the seasonal leaf data. Our data provide input, calibration, and validation parameters for determining LAI based on satellite remote-sensing observations or radiative transfer models and for use in ecosystem models.  相似文献   

11.
Lalji Singh 《Plant Ecology》1992,98(2):129-140
The present paper elucidates the pattern of leaf and non-leaf fall and quantifies of the total annual input of litter in a dry tropical forest of India. In addition, concentration of selected nutrients in various litter species and their annual return to the forest floor are examined. Total annual input of litter measured in litter traps ranged between 488.0–671.0 g m-2 of which 65–72% was leaf litter fall and 28–35% wood litter fall. 73–81% leaves fall during the winter season. Herbaceous litter fall ranged between 80.0–110.0 g m-2 yr-1. The annual nutrient return through litter fall amounted (kg ha-1): 51.6–69.6 N, 3.1–4.3 P, 31.0–40.0 Ca, 14.0–19.0 K and 3.7–5.0 Na, of which 71–77% and 23–29% were contributed by leaf and wood litter fall, respectively for different nutrients. Input of nutrients through herbaceous litter was: 13.0–16.6 for N, 1.0–1.4 for P, 4.0–5.0 for Ca, 7.9–10.5 for K and 0.8–1.0 kg ha-1 yr-1 for Na.  相似文献   

12.
Dynamics of forest floor biomass, pattern of litter fall and nutrient return in three central Himalayan high elevation forests are described. Fresh and partially decomposed litter layer occur throughout the year. In maple and birch the highest leaf litter value was found in October and in low-rhododendron in August. The relative contribution of partially and more decomposed litter to the total forest floor remains greatest the year round. The total calculated input of litter was 627.7 g m-2 yr-1 for maple, 477.87 g m-2 yr-1 for birch and 345.9 g m-2 yr-1 for low-rhododendron forests. 49–61% of the forest floor was replaced per year with a subsequent turnover time of 1.6–2.0 yr. The annual nutrient return through litter fall amounted to (kg ha-1 yr-1) 25.5–56.1 N, 2.0–5.4 P and 9.9–23.3 K. The tree litter showed an annual replacement of 26–54% for different nutrients and it decreased towards higher elevation. The nutrient use efficiency in terms of litter produced per unit of nutrient was higher in present study compared to certain mid- and high-elevation forests of the central Himalaya.  相似文献   

13.
Litterfall in a mixed conifer-angiosperm temperate forest in northern New Zealand was traced for 5 years to determine the patterns of litter production and turnover for conifer and angiosperm components of the forest. Basal area and above-ground biomass was shared approximately equally between conifer (mostly Agathis australis; New Zealand kauri) and angiosperm species (plus tree ferns). The five-year mean annual litterfall, excluding macro-litter, was 7.76± 0.39(SEM) t ha?1 and ranged from 6.77±0.70 t ha?1 in 1983–4 to 8.79±1.00 t ha?1 in 1987–8. Mean monthly litterfall showed a strong seasonal pattern with low rates in winter and early spring, increasing to a peak in early autumn. There were major differences in the nature and timing of litterfall between the conifer and angiosperm fractions. Angiosperm leaf litter reached a maximum in early summer, while conifer litterfall showed highest rates for leaves, twigs and cone scales in late summer-autumn. Conifer reproductive structures (strobili and cone scales) contributed from 13 to 21% of total litterfall, a value high relative to other temperate forests. However, conifer leaf turnover was low relative to that for the angiosperms. Size of the microlitter store was 16.16±1.97 t ha?1 prior to conifer cone fall, and 18.70±2.02 t ha?1 following it, and conifer litter made up 76–78% of the total litter store. The estimated mean annual decomposition constant, k, was 0.39 overall, 0.33 for conifer leaf litter and 0.71 for angiosperm leaf litter, values which agree well with previously published rates for decomposition in this forest stand. Differences in the costs of biomass production and rates of turnover, as measured by litterfall and decomposition, may help to explain the functional coexistence of conifers and angiosperms in mixed forests.  相似文献   

14.
 通过福建省中亚热带杉木观光木混交林(Cunninghamia lanceolata and Tsoongiodendron odorum mixed forest)和杉木纯林(Pure C. lanceolata forest)凋落物的分解和养分释放动态试验研究表明,凋落物各组分分解过程中干物质损失速率随时间而减小,分解1年时以观光木叶的干重损失最大。各组分分解过程中N、P元素浓度增加而K和C元素浓度下降。混交林中各组分的养分释放速率大小为观光木叶>混合样品(等重量的观光木叶和杉木叶混合)>杉木叶>杉木  相似文献   

15.
The current study presents phenology data for Rhizophora mangle from two equatorial mangrove stands with different salinity regimes in Brazil. Observations based on litter fall and individual shoot development were compared and related to environmental factors. Patterns observed in litter fall were consistent with results of direct monitoring. While both reproductive organs and leaves were produced throughout the year, rates of formation followed seasonal trends. Distinct differences in propagule production between low and high salinity sites and between years of observation were detected; main propagule release was, however, restricted to the wet season which offers enhanced conditions for propagule establishment. Emergence of flowers was linked to leaf production. While there was no obvious single peak in leaf production, it was reduced towards the end of the dry season at both high and low salinity sites. Time series analysis revealed an independent pattern of leaf development superimposed on this annual seasonal trend, indicating slower development of leaf primordia during periods of low light availability in the wet season. No significant difference in age structure was detected between sun and shade leaves; maximum leaf life-time was approximately 1 year.  相似文献   

16.
Annual litter fall, nutrient concentrations in litter components and annual weight of nutrients in litter fall have been estimated for karri forest stands aged 2, 6, 9 and 40 years and in mature forest. The weight of litter falling annually increases with stand age, ranging from 1.13 t/ha in 2-year-otd regeneration to 9.45 t/ha in mature forest. This increase is due mainly to greater amounts of twigs, bark and fruit falling in older stands. Leaf fait is relatively independent of stand age once the canopy of regenerating stands closes and the understorey has developed. Concentrations of N, P, K, S and Mn in karri leaf litter differ significantly between sites and the differences appear to be related to stand age. Highest levels of these elements are found in karri leaf litter from the youngest stand and the concentrations decrease with increasing stand age. The amounts of annual litter fall and of nutrients cycling in litter are among the largest reported for Australian forests. In particular cycling of Ca, K and Mg in mature karri forest is greater than has been reported for any other eucalypt forest. Karri forest understorey plays a key rote in nutrient cycling in these ecosystems, contributing 30–70% of the weight of many of the nutrients in the leaf component of titter. Understorey leaf material is particularly important in the cycling of N, S and the micro-nutrients Cu and Zn.  相似文献   

17.
秋茄红树植物落叶分解的碎屑能量研究   总被引:6,自引:0,他引:6  
测定了红树植物秋茄(Kandelia candel (L.) Druce)落叶在不同季节分解过程中碎屑的热值和富能有机化合物的变化。结果表明,季节间落叶的热值差别不大,平均为19.63 kJ/g干重或21.55 kJ/g 去灰分干重。各季节的落叶在其分解后的碎屑的热值均明显提高,且夏秋季快于冬春季,但它们与分解程度有相应的相关关系:分解初期上升,后期稍降,最大值出现在半分解期(失重50% )附近。碎屑的最大热值平均比落叶的热值提高17.67% (干重热值)或14.35% (失灰分干重热值)。分解中总能量的耗散稍慢于干物质的损失。随分解的进行,碎屑中粗蛋白、粗脂肪、粗纤维的能量增大,而无氮浸出物的能量减少。  相似文献   

18.
The annual total litter fall in six Central Himalayan forestsranged from 2.1 to 3.8 t C ha–1, of which 54 to 82 percent was leaf litter, 9–20 per cent wood litter and 6–14per cent other litter. In all forests the order of relativeabundance of nutrients (kg ha-1 year-1) in litter fall was Ca(50.8–91.6) > N (47.7–72.2) > K (22.8–37.1)> P (4.1–6.4). Leaf litter accounted for 63–95per cent of the total nutrients returned through litter fall. In these forests throughfall ranged from 71.3 to 81.4 per cent,stemflow from 0.50 to 2.16 per cent and canopy interceptionfrom 17.7 to 28.2 per cent of the gross rainfall. In the incidentrainfall the concentration and annual input of Ca was the greatestand of P the least. Canopy precipitation was richer in all nutrientscompared to incident rainfall. Net gain of nutrients from thecanopy ranged from 0.16 kg ha-1 year-1, for P, to 17.77 kg ha-1year-1 for K. Leaching was greatest for K and least for N. Ofthe total quantity of nutrients returned to the soil, 11 to46 per cent was accounted for by precipitation components. Thusprecipitation inputs play a significant role in nutrient cyclingof these forests. Himalaya, forest, litter fall, precipitation components, nutrients  相似文献   

19.
Surface litter from a natural and a sewage-enriched cypress dome in north-central Florida showed a pronounced seasonal pattern of nitrogenase (acetylene reduction) activity associated with seasonal leaf fall from deciduous trees in the domes. Samples of peat from cores indicated negligible nitrogenase activity below the surface layer. Integrating the monthly rates of nitrogen fixation (based on the theoretical molar ratio of 3:2 for C2H4/NH3) yielded 0.39 and 0.12 g of N/m2 per year fixed in the litter of the natural and sewage-enriched domes, respectively. The nitrogen fixed in the first 3 months after leaf fall in the natural dome represented about 14% of the nitrogen increment in the decomposing cypress leaves, but fixation contributed a negligible amount of nitrogen (<1%) to decomposing litter in the sewage-enriched dome.  相似文献   

20.
The monthly deposition of total nitrogen, phosphorus, potassium, calcium and magnesium via canopy throughfall, and various components of the litterfall was measured for 31 months under mature Quercus douglasii and in the bulk precipitation in the surrounding open grassland. Seasonal patterns of nutrient concentration in leaf litter, throughfall, and precipitation were also measured. Total annual subcanopy deposition exceeded open precipitation deposition by approximately 45–60x for nitrogen, 5–15x for phosphorus, 30–35x for potassium, 25–35x for calcium, and 5–10x for magnesium. Total annual subcanopy deposition was low in comparison to other oak woodland sites reported in the literature. Throughfall and leaf litter were the primary sources of nutrients and thus determined the seasonal peaks of nutrient deposition. The first autumn rains and leaf fall were associated with one peak in nutrient deposition, and throughfall during early spring leaf emergence was associated with a second peak in potassium, magnesium and phosphorus. Non-leaf plant litter (excluding acorns) provided approximately 15–35% of most nutrients, with twigs and bark depositing over 12% of the annual calcium flux in 1987–1988, and flower litter depositing over 8% of the annual nitrogen flux in 1986–1987. Acorns had high concentrations of phosphorus and nitrogen and during the mast season of 1987–1988 they contained a large proportion of the total subcanopy annual flux of these elements. With acorns excluded, total annual nutrient deposition was similar between years, but timing of nutrient deposition differed. Late summer leaf fall associated with drought, variation in precipitation, and variation in deposition of non-leaf parts were associated with seasonal differences in nutrient deposition between years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号