首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of G-proteins, interacting with cAMP surface receptors, was investigated in vegetative cells, aggregation-competent cells, and migrating slugs of Dictyostelium discoideum. Our results indicate that G-proteins are present in all stages. In vegetative cells there is a limited number of cAMP receptors but no effect of GTP tau S on cAMP binding could be detected; in addition, no effect of cAMP on GTP tau S binding or GTPase activity was observed. In both aggregation-competent cells and slugs GTP tau S inhibits cAMP binding, while cAMP stimulates GTP tau S binding and high-affinity GTPase. Since the presence of G-proteins coupled to cAMP receptors could be demonstrated in slugs, the involvement of the effector enzymes adenylate cyclase and phospholipase C was investigated. The results show that adenylate cyclase activity is stimulated by GTP tau S in both stages and that in cells from migrating slugs the Ins(1,4,5)P3 production is increased upon stimulation with cAMP. The possible involvement of G-proteins in signal transduction during the slug stage of D. discoideum is discussed.  相似文献   

2.
GTP-binding activity to Dictyostelium discoideum membranes was investigated using various guanine nucleotides. Rank order of binding activities was: GTP gamma S greater than GTP greater than 8-N3-GTP; the binding of GTP gamma S and GTP, but not of 8-N3-GTP, was stimulated by receptor agonists. [3H]GTP binding to D. discoideum membranes has been described previously by a single binding type (Kd = 2.6 microM, Bmax = 85 nM). More detailed studies with [35S]GTP gamma S showed heterogeneous binding composed of two forms of binding sites with respectively high (Kd = 0.2 microM) and low (Kd = 6.3 microM) affinity. cAMP derivatives enhanced GTP gamma S binding by increasing the affinity and the number of the high-affinity sites, while the low-affinity sites were not affected by cAMP. The specificity of cAMP derivatives for stimulation of GTP gamma S binding showed a close correlation with the specificity for binding to the cell surface cAMP receptor. Pretreatment of D. discoideum cells with pertussis toxin did not affect basal GTP and GTP gamma S binding, but eliminated the cAMP stimulation of GTP and GTP gamma S binding. These results indicate that D. discoideum cells have a pertussis toxin-sensitive GTP-binding protein that interacts with the surface cAMP receptor, suggesting the functional interaction of surface receptor with a G-protein in D. discoideum.  相似文献   

3.
In Dictyostelium discoideum cells the enzyme adenylate cyclase is functionally coupled to cell surface receptors for cAMP. Coupling is known to involve one or more G-proteins. Receptor-mediated activation of adenylate cyclase is subject to adaptation. In this study we employ an electropermeabilized cell system to investigate regulation of D. discoideum adenylate cyclase. Conditions for selective permeabilization of the plasma membrane have been described by C.D. Schoen, J. C. Arents, T. Bruin, and R. Van Driel (1989, Exp. Cell Res. 181, 51-62). Only small pores are created in the membrane, allowing exchange of exclusively low molecular weight substances like nucleotides, and preventing the loss of macromolecules. Under these conditions functional protein-protein interactions are likely to remain intact. Adenylate cyclase in permeabilized cells was activated by the cAMP receptor agonist 2'-deoxy cAMP and by the nonhydrolyzable GTP-analogue GTP gamma S, which activates G-proteins. The time course of the adenylate cyclase reaction in permeabilized cells was similar to that of intact cells. Maximal adenylate cyclase activity was observed if cAMP receptor agonist or GTP-analogue was added just before cell permeabilization. If these activators were added after permeabilization adenylate cyclase was stimulated in a suboptimal way. The sensitivity of adenylate cyclase activity for receptor occupation was found to decay more rapidly than that for G-protein activation. Importantly, the adenylate cyclase reaction in permeabilized cells was subject to an adaptation-like process that was characterized by a time course similar to adaptation in vivo. In vitro adaptation was not affected by cAMP receptor agonists or by G-protein activation. Evidently electropermeabilized cells constitute an excellent system for investigating the positive and negative regulation of D. discoideum adenylate cyclase.  相似文献   

4.
GTP and GTP analogs produced significant (up to 17-fold) and persistent activation of adenylate cyclase in lysates of Dictyostelium discoideum amoeba. The activation was enhanced 2- to 4-fold by cAMP (the agonist for receptor-mediated adenylate cyclase activation), was specific for guanine nucleoside triphosphates, and was inhibited by guanosine 5'-(O-2-thio)diphosphate. The order of potency of guanine nucleotides was guanosine 5'-(O-3-thio)triphosphate greater than guanyl-5'-yl imidodiphosphate greater than GTP; half-maximal activation was observed with 1-10 microM guanine nucleotide. Maximal activation occurred when the guanine nucleotide was added within seconds after cell lysis and the lysate was preincubated for 5 min prior to assay. Under these optimal in vitro conditions, the capacity of guanine nucleotides to activate decreased, closely correlating with adaptation or desensitization induced by exposure of intact cells to cAMP during a period of 10 min. These data strongly support that regulation of adenylate cyclase in Dictyostelium occurs via a receptor-linked GTP/GDP exchange protein. Two mutants, designated synag 7 and 49 were isolated in which cAMP and/or guanine nucleotides were not sufficient to activate adenylate cyclase. The wild-type pattern of guanine nucleotide regulation was restored to synag 7 lysates by the addition of a high-speed supernatant from wild-type cells. Characterization of these mutants demonstrates that activation of adenylate cyclase is not required for growth or cell-type specific differentiation but is essential for cellular aggregation and influences morphogenesis and pattern formation. This suggests that Dictyostelium may provide a model suitable for detailed genetic analysis of surface receptor-guanine nucleotide-binding regulatory protein linked adenylate cyclase systems and for determining the role of these systems in development.  相似文献   

5.
Following consumption of the food supply, cells of the cellular slime mould Dictyostelium discoideum aggregate and form a multicellular organism. The mechanism for cell aggregation is chemotaxis. The chemotactic signal in D. discoideum is released periodically from aggregation centers and propagated from cell to cell. cAMP mediates cell aggregation by acting as chemotactic attractant and as propagator of the signal. cAMP signals are measured by cell-surface receptors. Recent evidence indicates a role for cGMP during cAMP-mediated cell aggregation in D. discoideum .
During cell differentiation to aggregation competence, cAMP binding sites appear at the cell surface, and the activity of the enzymes adenylate cyclase and phosphodiesterase increases several-fold. In the present work we investigate the synthesis of cGMP in D. discoideum . Conditions for the assay of guanylate cyclase in cell homogenates are described. Guanylate cyclase activity was followed during cell differentiation to aggregation competence and found to increase fourfold. These results indicate that cGMP is involved in cell differentiation of D. discoideum . In contrast to adenylate cyclase, which is activated by cAMP, guanylate cyclase was under our conditions activated neither by cAMP, nor by folic acid.  相似文献   

6.
Extracellular cAMP induces the activation of adenylate cyclase in Dictyostelium discoideum cells. Conditions for both stimulation and inhibition of adenylate cyclase by guanine nucleotides in membranes are reported. Stimulation and inhibition were induced by GTP and non-hydrolysable guanosine triphosphates. GDP and non-hydrolysable guanosine diphosphates were antagonists. Stimulation was maximally twofold, required a cytosolic factor and was observed only at temperatures below 10 degrees C. An agonist of the cAMP-receptor-activated basal and GTP-stimulated adenylate cyclase 1.3-fold. Adenylate cyclase in mutant N7 could not be activated by cAMP in vivo; in vitro adenylate cyclase was activated by guanine nucleotides in the presence of the cytosolic factor of wild-type but of not mutant cells. Preincubation of membranes under phosphorylation conditions has been shown to alter the interaction between cAMP receptor and G protein [Van Haastert (1986) J. Biol. Chem. in the press]. These phosphorylation conditions converted stimulation to inhibition of adenylate cyclase by guanine nucleotides. Inhibition was maximally 30% and was not affected by the cytosolic factor involved in stimulation. In membranes obtained from cells that were treated with pertussis toxin, adenylate cyclase stimulation by guanine nucleotides was as in control cells, whereas inhibition by guanine nucleotides was lost. When cells were desensitized by exposure to cAMP agonists for 15 min, and adenylate cyclase was measured in isolated membranes, stimulation by guanine nucleotides was lost while inhibition was retained. These results suggest that Dictyostelium discoideum adenylate cyclase may be regulated by Gs-like and Gi-like activities, and that the action of Gs but not Gi is lost during desensitization in vivo and by phosphorylation conditions in vitro.  相似文献   

7.
cAMP induces the activation and subsequent desensitization of adenylate cyclase in Dictyostelium discoideum. cAMP also induces down-regulation of surface cAMP receptors. Desensitization of adenylate cyclase is composed of a rapidly reversible component (adaptation) and a slowly reversible component related to down-regulation of surface cAMP receptors (Van Haastert, P.J.M. (1987) J. Biol. Chem. 262, 7700-7704). The agonistic and antagonistic activities of the cAMP derivative adenosine 3',5'-monophosphorothioate ((Rp)-cAMPS) for these responses were investigated. (Rp)-cAMPS competes with cAMP for binding to different receptor forms with an apparent Ki = 5 microM. (Rp)-cAMPS does not activate adenylate cyclase and antagonizes the cAMP-induced activation with an apparent Ki = 5 microM. (Rp)-cAMPS induces down-regulation of surface cAMP receptors with EC50 = 5 microM. (Rp)-cAMPS induces desensitization of adenylate cyclase, which is not rapidly reversible. These results indicate that desensitization of adenylate cyclase by (Rp)-cAMPS is due to down-regulation of surface cAMP receptors and not to adaptation. We conclude that down-regulation of surface cAMP receptors does not require their activation or modification involved in adaptation.  相似文献   

8.
Putative G-protein alpha-subunits in Dictyostelium discoideum were detected on western blots using the antiserum A-569, raised against a peptide whose sequence is found in alpha-subunits of all known GTP-binding signal transducing proteins. Two bands with a MW of 40 kDa and 52 kDa were specifically recognized by the common peptide antiserum; the staining of both bands was strongly reduced when the antiserum was preincubated with the peptide that was used for antibody production. D.discoideum mutant HC213 (fgd A) lacks staining of the 40 kDa band, while the 52 kDa band is still present. This mutant is severely defective in cAMP receptor-G-protein interaction. We concluded that the primitive eukaryote D.discoideum contains proteins which show functional and physical similarity with the alpha-subunits of vertebrate G-proteins.  相似文献   

9.
Binding of an intrinsic agonist (cAMP) to specific receptors on the cell surface induces transmembrane signals for activation and desensitization (adaptation and down regulation) of adenylate cyclase in the cellular slime mold, Dictyostelium discoideum. It is generally believed that dithiothreitol (DTT) induces the activation through interaction between the receptor and gradually accumulated cAMP, since DTT is known to inhibit cAMP-phosphodiesterase which degrades cAMP. In the present paper, we investigated the mechanism of activation of adenylate cyclase by the thiol-reducing agents, DTT and 2,3-dimercapto-1-propanol (BAL). We found that BAL activated adenylate cyclase transiently even under conditions where the intrinsic agonist supersaturated the cAMP-receptors and competitively inhibited phosphodiesterase. This result is inconsistent with the generally accepted notion. We conclude that BAL has an independent effect from those of the intrinsic agonist (cAMP) and phosphodiesterase in activation of adenylate cyclase. Since BAL could induce activation just after the activation induced by a supersaturating concentration of the intrinsic agonist had ceased, the independent effect of BAL is not a simple enhancement of the cAMP-induced activation. Our result also suggests that the cAMP-induced adaptation (but not down regulation) suppresses the BAL-induced activation while BAL itself does not induce adaptation to cAMP or BAL. We propose that the thiol-reducing reagent induces or modifies the transmembrane activation signal for adenylate cyclase.  相似文献   

10.
In Dictyostelium discoideum amoebae, binding of cyclic AMP (cAMP) to surface receptors elicits numerous responses including chemotaxis, cyclic GMP (cGMP) accumulation, and activation of adenylate cyclase. The specificity of the surface cAMP receptor which mediates activation of adenylate cyclase and cAMP secretion was determined by testing the relative effectiveness of a series of 10 cAMP analogs. Each of the 10 analogs elicited cAMP secretion, chemotaxis, and cGMP accumulation in the same dose range. The order of potency for eliciting these responses (cAMP greater than 2'-H-cAMP greater than N1-O-cAMP greater than cAMPS(Sp) greater than 6-Cl-cAMP greater than cAMPN(CH3)2(Sp) greater than 3'-NH-cAMP greater than 8-Br-cAMP greater than cAMPS(Rp) greater than cAMPN(CH3)2(Rp] matches that for binding to the major cell surface cAMP binding sites and differs from that of the cell surface phosphodiesterase and the major intracellular cAMP binding protein.  相似文献   

11.
beta-Adrenergic receptors and the inhibitory GTP-binding protein, Gi of the adenylate cyclase system were reconstituted into phospholipid vesicles by the method described previously for reconstituting receptors and the stimulatory GTP-binding protein, Gs (Brandt, D. R., Asano, T., Pedersen, S. E., and Ross, E. M. (1983) Biochemistry 22, 4357-4362). In the receptor-Gi vesicles, beta-adrenergic agonists stimulated both the high-affinity binding of guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) to Gi and GTPase activity to an extent similar to that observed in vesicles containing beta-adrenergic receptors and Gs. Stimulation required receptors and displayed appropriate beta-adrenergic specificity. The prior treatment of receptor-Gi vesicles with islet-activating protein (pertussis toxin) plus NAD markedly inhibited both the isoproterenol-stimulated binding of GTP gamma S and the isoproterenol-stimulated GTPase activity. No contamination of Gi by Gs was apparent. These data suggest that receptors that typically stimulate adenylate cyclase activity may also activate the inhibitory system, perhaps as one mechanism of desensitization.  相似文献   

12.
Cells from Dictyostelium discoideum carry chemotactic cAMP receptors on their surface. Kinetic studies have revealed the existence of two slowly dissociating, high affinity receptor forms (SS and S) and one or more fast dissociating, low affinity forms (F) (Van Haastert, P.J.M., and De Wit, R.J.W. (1984) J. Biol. Chem. 259, 13321-13328). We have studied the interaction of these different cAMP-receptor types with a detergent-insoluble membrane residue. Isolated D. discoideum membranes were extracted with the detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS), which was previously shown to be the only detergent in the presence of which cAMP receptor binding is completely preserved (Janssens, P. M. W., and Van Driel, R. (1986) Biochim. Biophys. Acta 885, 91-101). The protein composition of the CHAPS-insoluble membrane residue appeared to be similar to that of the Triton X-100-insoluble membrane skeleton. Cyclic AMP binding studies revealed a specific association of the slowly dissociating cAMP receptors (SS and S forms) with this CHAPS-insoluble residue. All fast dissociating (F type) receptors were solubilized by CHAPS. GTP induced a transition of 75% of the SS and S receptors to faster dissociating forms. This transition was accompanied by the release of an equal number of receptors from the residue. These effects of GTP required that the cAMP receptor was occupied, and were completely reversible. After removal of the guanine nucleotide SS and S type receptors reappeared, bound to the residue, with a t1/2 of 5-10 min at 0 degrees C. We conclude that a detergent-insoluble membrane residue is involved in signal transduction via the chemotactic cAMP receptor. Both receptor occupation and a guanine nucleotide binding protein control receptor-residue interaction.  相似文献   

13.
Neuropeptide Y (NPY) inhibits cardiac adenylate cyclase activity by interacting with specific receptors coupled to a pertussis toxin-sensitive G protein. Structure-activity studies revealed that only C-terminal fragments can exhibit an NPY-like inhibitory effect on 125I-NPY binding and adenylate cyclase activity of rat cardiac ventricular membranes. Although NPY(17-36) inhibited 125I-NPY binding with high potency, it produced a biphasic effect on basal (GTP, 10 and 100 microM or guanosine 5'-gamma-O-(thio)triphosphate (GTP gamma S, 10 microM) adenylate cyclase activity. Low concentrations (less than 1 nM) of NPY(17-36) inhibited the adenylate cyclase activity whereas high concentrations (greater than 1 nM) reversed this action. GTP gamma S (100 microM) reversed the biphasic effect of NPY(17-36). NPY(17-36) exhibited only a stimulatory effect in the membranes from pertussis toxin-treated rats and an inhibitory effect with membranes from cholera toxin-treated rats. Low concentrations (less than 1 nM) of NPY(17-36) inhibited isoproterenol-stimulated adenylate cyclase activity whereas high doses (greater than 1 nM) reversed this activity. The cardiac NPY receptor antagonist, NPY(18-36) (1 microM), completely blocked the biphasic effect of NPY(17-36) on isoproterenol-stimulated activity. The inhibitory dose-response curve of NPY on isoproterenol-stimulated adenylate cyclase activity was shifted parallel to the right by NPY(17-36) (1 microM), suggesting that it is an antagonist of NPY at high concentrations. N-alpha-acetylated and C-terminally deamidated analogs of NPY(17-36) had no effect on the adenylate cyclase activity. [im-DNP-His26] NPY exhibited a more pronounced biphasic effect whereas N-alpha-myristoyl-NPY(17-36) elicited only a stimulatory effect. These investigations suggest that: 1) the inhibitory and stimulatory effects of NPY(17-36) are mediated by high affinity NPY receptors coupled to a pertussis toxin-sensitive G protein and a distinct population of low affinity receptors coupled to a cholera toxin-sensitive G protein, respectively; and 2) the stimulatory effect of NPY(17-36) is dissociable.  相似文献   

14.
S Kassis 《Biochemistry》1985,24(20):5666-5672
Exposure of HeLa cells to 5 mM sodium butyrate, but not 0.6 mM, resulted in a more efficient coupling between their beta-adrenergic receptors and the guanine nucleotide binding stimulatory (Ns) component of adenylate cyclase. Both concentrations of the fatty acid, however, caused an increase in receptor number. beta receptors from control and butyrate-treated cells had the same affinity for isoproterenol. Modulation of this affinity by GTP was greatly enhanced, however, in cells treated with 5 mM butyrate compared to untreated and 0.6 mM butyrate treated cells. The concentration of isoproterenol required to half-maximally stimulate adenylate cyclase (Kact) was reduced in cells treated with 5 mM butyrate. In addition, the Kact for GTP in the presence, but not the absence, of isoproterenol was reduced. The effect of butyrate on the coupling between beta receptors and Ns was analyzed in detail by monitoring the activation of Ns by guanine 5'-O-(3-thiotriphosphate) (GTP gamma S) in a two-step assay. In the absence of isoproterenol, Ns from control and 5 mM butyrate treated cells was activated to the same extent with the same time course and Kact for GTP gamma S. In the presence of isoproterenol, Ns from 5 mM butyrate treated cells was activated more rapidly and extensively than Ns from control cells. The Kact for both GTP gamma S and isoproterenol also was reduced. The rate of agonist-mediated activation of Ns was strongly dependent on temperature, which accentuated the differences between 5 mM butyrate treated and control cells. At 4 degrees C, the difference in rate was 8.8-fold.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Responsiveness of Dictyostelium discoideum amoebae to cAMP, a chemotactic mediator, was investigated in a strain defective in cAMP-phosphodiesterase production. Cells were subjected to a high cAMP signal (10(-6) M) in the presence or absence of exogenous phosphodiesterase, and the changes of intracellular cAMP and cGMP concentrations and of adenylate cyclase activity were measured. In the presence of cAMP hydrolysis, both adenylate and guanylate cyclases are transiently activated. In the absence of hydrolysis, the high and constant extracellular cAMP concentration is sufficient to elicit a re-activation of adenylate cyclase a few minutes after the first transient response. In contrast, levels of cGMP remain basal for at least 20 min after termination of the initial response to the cAMP addition.  相似文献   

16.
A membrane-bound protein cofactor (ARF) is required for the cholera toxin-dependent ADP-ribosylation of the stimulatory regulatory component (Gs) of adenylate cyclase. Improved methods for the purification of ARF from bovine brain are described. ARF has a high-affinity binding site for guanine nucleotides. Binding of GTP or GTP gamma S to ARF is necessary for the activity of the cofactor; GDP X ARF does not support ADP-ribosylation of Gs. Although the protein as purified contains stoichiometric amounts of GDP, GTPase activity of isolated ARF was not detected. Cholera toxin-dependent activation of adenylate cyclase thus requires two guanine nucleotide binding proteins.  相似文献   

17.
Stimulation of P2-purinergic receptors by ATP resulted in activation of phosphorylase, which was associated with marked production of inositol trisphosphate (Ins-P3), in rat hepatocytes. ATP also inhibited forskolin-induced accumulation of cAMP in the presence of a phosphodiesterase inhibitor. On the contrary, adenosine or AMP never inhibited the cAMP accumulation, but increased hepatocyte cAMP; the stimulation was antagonized by a methylxanthine. Thus, P1-purinergic receptors are linked to adenylate cyclase in a stimulatory fashion in hepatocytes. Various kinds of purine nucleotides stimulating P2-receptors can be divided into two groups on the basis of their relative abilities to stimulate Ins-P3 production and to inhibit cAMP accumulation; the first group including adenosine 5'-O-(3-thiotriphosphate) (ATP gamma S), ADP, 5-adenylyl imidodiphosphate, GTP, and guanosine 5'-O-(3-thiotriphosphate) has an efficacy similar to that of ATP, and the second group of nucleotides including alpha, beta-methyleneadenosine 5'-triphosphate, beta, gamma-methyleneadenosine 5'-triphosphate (App(CH)2)p), and GDP exerts considerable inhibitory effects on cAMP accumulation, but only slight effects on inositol lipid metabolism. Treatment of hepatocytes with islet-activating protein, pertussis toxin, blocked the nucleotide-induced inhibition of cAMP accumulation, but exerted only a small effect on Ins-P3 production. In membranes prepared from hepatocytes, forskolin-stimulated adenylate cyclase was inhibited by GTP. This GTP-induced inhibition of the enzyme was susceptible to islet-activating protein and dependent on the concentration of ATP (or its derivatives, ATP gamma S or App(CH2)p). It is concluded that there are two types of P2-purinergic receptors: one is linked to adenylate cyclase via an inhibitory guanine nucleotide regulatory protein (Gi) and the other is linked to phospholipase C.  相似文献   

18.
cyc--Variants of S49 lymphoma cells are defective in the stimulatory guanine nucleotide site of the adenylate cyclase but contain an inhibitory site. Treatment of cyc- cells with islet-activating protein (IAP), which causes ADP-ribosylation of an Mr 40 000 polypeptide in cyc- membranes, abolishes adenylate cyclase inhibition by GTP and the peptide hormone, somatostatin, but not that induced by GTP gamma S. Furthermore, somatostatin-induced stimulation of GTP hydrolysis is lost. Thus, the data indicate that IAP interferes with the adenylate cyclase system by an action at the inhibitory guanine nucleotide site.  相似文献   

19.
cAMP binds to Dictyostelium discoideum surface receptors and induces a transient activation of adenylatecyclase, which is followed by desensitization. cAMP also induces a loss of detectable surface receptors (down-regulation). Cells were incubated with constant cAMP concentrations, washed free of cAMP, and cAMP binding to surface receptors and cAMP-induced activation of adenylate cyclase were measured. cAMP could induce maximally 65% loss of binding activity and complete desensitization of cAMP-stimulated adenylate cyclase activity. Half-maximal effects for down-regulation were observed at 50 nM cAMP and for desensitization at 5 nM cAMP. Down-regulation was rapid with half-times of 4, 2.5, and 1 min at 0.1, 1, and 10 microM cAMP, respectively. Similar kinetic data have been reported for desensitization (Dinauer, M.C., Steck, T.L., and Devreotes, P.N. (1980) J. Cell Biol. 86, 554-561). Down-regulation and desensitization were not reversible at 0 degrees C. Down-regulation reversed slowly at 20 degrees C with a half-time of about 1 h. Resensitization of adenylate cyclase was biphasic showing half-times of 4 min and about 1 h, respectively; the contribution of the rapidly resensitizing component was diminished when down-regulation of receptors was enhanced. These results suggest that cAMP-induced down-regulation of receptors and desensitization of adenylate cyclase stimulation proceed by at least two steps. One step is rapidly reversible, occurs at low cAMP concentrations, and induces desensitization without down-regulation, while the second step is slowly reversible, requires higher cAMP concentrations, and also induces down-regulation.  相似文献   

20.
The effect of amiloride on the hormonal regulation of adenylate cyclase was studied in the rat anterior pituitary. The diuretic did not alter basal adenylate cyclase but augmented the enzyme activity in an irreversible manner in the presence of guanosine 5'-O-(thiotriphosphate) (GTP gamma S) stimulated adenylate cyclase at lower concentrations and inhibited at higher concentrations. Amiloride treatment enhanced the stimulatory and abolished the inhibitory phase of GTP gamma S action. In addition, amiloride also attenuated the inhibitory effects of atrial natriuretic factor (ANF 99-126) and angiotensin II on cAMP levels and adenylate cyclase activity. On the other hand, amiloride showed an additive effect on the stimulation exerted by corticotropin-releasing factor and vasoactive intestinal peptide on adenylate cyclase in anterior pituitary and on isoproterenol-stimulated cAMP levels in cultured vascular smooth muscle cells. Pertussis toxin, in the presence of [alpha-32 P]NAD, catalyzed the ADP-ribosylation of two protein bands of Mr 41,000 and 39,000, referred to as Gi and Go, respectively, in the anterior pituitary, and 40,000-Da protein in the aorta, referred to as Gi. Amiloride treatment inhibited the labeling of all these bands in a concentration- and time-dependent manner. Similarly, the pertussis toxin-catalyzed ADP-ribosylation of purified Gi from bovine brain was also inhibited by amiloride treatment. However, amiloride had no significant effect on the cholera toxin-catalyzed ADP-ribosylation of Gs. These data suggest that amiloride interacts with the guanine nucleotide regulatory proteins Gi and Go. Modification of Gi results in the attenuation of hormone-induced adenylate cyclase and cAMP inhibition. However, the interaction between amiloride and Go and the consequent Ca2+ mobilization and phosphatidylinositol turnover have to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号