首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary We have cloned the seven genes that are responsible for biosynthesis of the antibiotic fortimicin A (FTM A) using a recently developed self-cloning system that employs the plasmid vector pMO116 for Micromonospora olivasterospora. Five chimeric plasmids that restored FTM A production in M. olivasterospora mutants blocked at different biosynthetic steps were isolated by shotgun cloning. Secondary transformation using other non-producing mutants showed that two additional FTM A biosynthetic genes were included on these plasmids, and that at least four of the genes were clustered. Interestingly AN38-1, a non-producing mutant that had a defect in dehydroxylation of a precursor of FTM A, was complemented by the DNA fragment containing a neomycin resistance gene that had been cloned from a neomycin-producing strain (Micromonospora sp. FTM A non-producing strain) in the course of constructing the plasmid vector pM0116. These results clearly show that this novel gene cloning system in Micromonospora is of practical use.  相似文献   

2.
Summary The involvement of GATC sites in directing mismatch correction for the elimination of replication errors in Escherichia coli was investigated in vivo by analyzing mutation rates for a gene carried on a series of related plasmids that contain 2, 1 and 0 such sites. This gene encoding chloramphenicol acetyl transferase (Cat protein) was inactivated by a point mutation. In vivo mutations restoring resistance to chloramphenicol were scored in mismatch repair proficient (mut +) and deficient (mutHLS-) strains. In mut + cells, reduction of GATC sites from 2 to 0 increased mutation rates approximately 10-fold. Removal of the GATC site distal to the cat - mutation increased the rate of mutation less than 2-fold, indicating that mismatch repair can proceed normally with a single site. The mutation rate increased 3-fold after removal of the GATC site proximal to the mutation. In the absence of a GATC site, mutL- and mutS- strains exhibited a 2- to 3-fold increased mutation rate as compared to isogenic mutH- and mut + strains. This indicates that 50%–70% of replication errors can be corrected in a mutLS-dependent way in the absence of any GATC site to target mismatch correction to newly synthesized DNA strands. Other strand targeting signals, possibly single strand discontinuities, might be used in mutLS-dependent repair  相似文献   

3.
Summary R124 and R124/3 are R plasmids that carry the genes for two different restriction and modification systems. The phenotype of strains carrying either of these plasmids along with the F'lac + plasmid, is restriction-deficient (Res-). The Res- phenotype is not due to selection of preexisting mutants but rather to a complex mutational event caused by the F plasmid. Restriction-deficient mutants carry extensive deletions and other DNA rearrangements. Tn7 insertion is used to locate the restriction gene. Many of the Res- mutants are genetically unstable and revert at exceptionally high frequencies. Reversion is accompanied by DNA rearrangements which result in a net gain of 9 kb of DNA. F derivates of F+ which do not cause restriction-deficiency but do cause deletion were used to distinguish between the DNA rearrangements associated with restriction-deficiency and those associated with deletion. From Res+ revertants of strains carrying F'lac + and R124 or R124/3 we have isolated F plasmids that now carry the genes for the R124 or R124/3 restriction and modification systems. It is suggested that interaction between part of the F plasmid and that segment of the R plasmid which controls the switch in Res-Mod specificity which has been observed (Glover et al. 1983) is responsible for the production of restriction-deficiency.  相似文献   

4.
Summary When plasmids carrying leucine genes of Bacillus subtilis 168 were isolated from a restriction and modification deficient (r-m-) strain and used for transformation of a restricting strain B. subtilis 168 leu recE4, the number of transformants was greatly reduced. Transformation of a rec + strain (transformation by integration of the donor DNA into the chromosome) with the plasmids was not affected irrespective of whether the recipient carried the r+ or r- phenotype. These results show that the plasmid-mediated transformation is subject to the host controlled restriction and suggest that r-m- strains should be used for construction of recombinant DNA molecules in B. subtilis 168.  相似文献   

5.
Summary R. meliloti strain 41 (Rm41) was shown to harbour two indigenous plasmids with molecular weights of 140 Mdal (pRmc41a) and more than 300 Mdal (pRme41b), respectively. Using a heat-treatment procedure, derivatives of Rm41 defective in nodulation (Nod-) or nitrogen fixation (Fix-) have been readily obtained. In some Nod- mutants the deletion of a segment of plasmid pRme41b was found.Based on the demonstrated homology between the nitrogen fixation (nif) genes of Klebsiella pneumoniae and of R. meliloti the Rhizobium nif region has been cloned into the cosmid vector pHC79, then recloned into pBR322 and the restriction map of the nif region has been determined. 32P-labelled nick-translated probe prepared from the cloned nif DNA fragment hybridized to pRme41b of Rm41 but for most Nod- mutants this hybridization was not detected. Hybridization of a cosmid containing Rm41 DNA to total DNA digests from the wild-type bacterium and from a series of Nod- mutants revealed that at least a 24 kb DNA fragment including the nif structural genes was missing from most of the Nod- mutants. These results, together with the genetic analyses of these symbiotic mutations suggest that some nod and fix genes are located on pRme41b.  相似文献   

6.
Summary We find that diaminopimelic acid in the recipient membrane is released into the medium during bacterial matings, indicating that membrane damage was inflicted on the recipient by the donor, probably for forming a channel for DNA transfer. When the damage is extensive, as in matings with an excess of Hfr bacteria, the F- bacteria are killed (lethal zygosis). The transfer of a large amount of DNA in Hfr matings appears to enhance the killing. In analogous F+xF- (Nalr) matings, on the other hand, killing of F- bacteria does not occur unless F plasmid transfer is inhibited by a substance like nalidixic acid. The F- bacteria are killed, suggesting that F plasmids contain genes that express immunity to lethal zygosis in the recipient. For example, bacteria containing surface exclusion-deficient mutants of F plasmids, such as traS - and traT -, induce lethal zygosis in F- bacteria and are susceptible to it. Various tra - polar mutants that abolish surface exclusion are also susceptible to lethal zygosis when mated with Hfr bacteria. Kinetic experiments indicate that in F+ (wild type) x F- matings, immunity to lethal zygosis is expressed in the F- recipient within 1/4 division time, whereas a complete expression of surface exclusion requires more than 1 division time. Thus, a complete change in all receptor sites seems to be required for the expression of surface exclusion.  相似文献   

7.
Summary In an attempt to identify proteins involved in the initiation of DNA replication, we have isolated a series of Saccharomyces cerevisiae mutants in which the function of putative replication origins is affected. The phenotype of these Rar- (regulation of autonomous replication) mutants is to increase the mitotic stability of plasmids whose replication is dependent on weak ARS elements. These mutations are generally recessive and complementation analysis shows that mutations in several genes may improve the ability of weak ARS elements to function. One mutation (rar1-1) also confers temperature-sensitive growth, and thus an essential gene is affected. We have determined the DNA sequence of the RAR1 gene, which reveals an open reading frame for a 48.5 kDa protein. The RAR1 gene is linked to rna1 on chromosome XIII.  相似文献   

8.
Summary Insertion of the transposon Tn901 within a region of almost one third of the Clo DF13 genome is compared with the loss of its transfer (indicated as Mob-) by a conjugative plasmid. By use of both insertion and deletion mutants of Clo DF13, this region was located on the Clo DF13 physical map. Studies with transfer mutants of the F plasmid showed that, in contrast with the traG gene product, the gene products of traI, traD and traM do not play an essential role in the transfer process of Clo DF13. Because Clo DF13 can be transferred under conditions in which the coningative plasmid is not transferred at all, it is obvious that normally Clo DF13 is not transferred to recipient cells as a cointegrate of the conjugative plasmid and Clo DF13. Characterization of the Mob- Clo DF13:: Tn901 plasmids showed that the absence or alteration of the Clo DF13 specified polypeptide B (molecular weight 61,000 daltons) is correlated with the transfer deficiency of these plasmids. The existence of transfer deficient Clo DF13:: Tn901 plasmids, which direct the synthesis of polypeptide B, showed that other Clo DF13 genetic information is also involved in the transfer of this plasmid. On basis of the site of the mutation in the genome, the synthesis of polypeptide B in the minicell system and the behaviour of the Mob- mutants in complementation studies, we preliminarily divide the Mob- Clo DF13:: Tn901 plasmids into three different classes. The possible role of Clo DF13 genetic information involved in the transfer process of this plasmid is discussed.  相似文献   

9.
The mismatch repair system is involved in the maintenance of genomic integrity by editing DNA replication and recombination. However, although most mutations are neutral or deleterious, a mutator phenotype due to an inefficient mismatch repair may generate advantageous variants and may therefore be selected for. We review the evidence for inefficient mismatch repair due either to genetic defects in mismatch repair genes or to physiological conditions. Among natural isolates ofEscherichia coli andSalmonella enterica, about 1% are mutator bacteria, mostly deficient in mismatch repair (most of them defective in themutS gene). Characterization of mutators derived from laboratory strains led also to the isolation of mismatch repair mutants in which the most frequently found defects are inmutL andmutS. The correlation of the size of the antimutator genes with the frequency of their defective alleles amongE. coli andSalmonella strains reveals thatmutU mutants are underrepresented. Analysis of the progeny of a defined M13 phage heteroduplex DNA transfected intoE. coli cells shows that mismatch repair efficiency progressively decreases from the end of the exponential growth in K-12 and is variable among natural isolates. Implications of this defective mismatch repair activity for evolution and tumorigenesis will be discussed.  相似文献   

10.
Summary The plasmid ColIb-P9 introduced into Escherichia coli K12 umuC mutant cells suppresses the deficiencies in mutagenesis and repair of mutants after UV-irradiation. These data suggest that ColIb-P9 encodes a product with a function similar to that of the chromosomal gene umuC. Tn5 insertion mutants of ColIb-P9 were isolated with an altered ability to restore UV-mutagenesis in the umuC mutant. The same plasmid mutations were shown to eliminate the effects of ColIb-P9 on UV-mutagenesis, survival after UV and mitomycin C treatment, reactivation of UV-irradiated in unirradiated cells, Weigle-reactivation, induction of colicin E1 synthesis. The ColIb-P9 genes responsible for the enhancement of UV-mutagenesis were cloned within a 14 Md SalI fragment. Their location was established by restriction analysis of the mutant plasmid ColIb 6-13::Tn5.While the action of the plasmids ColIb-P9 and pKM101 is similar, these plasmids were shown to have opposite effects on cell survival and colicin E1 synthesis after mitomycin C treatment. A study of the mutant plasmids ColIb::Tn5 and pGW12 (muc - mutant of pKM101) has shown the difference in the effects of ColIb-P9 and pKM101 to be associated with the plasmid genes responsible for the protective and mutagenesis-enhancing effects of these plasmids in UV-irradiated cells.Abbreviations MC mitomycin C - ICS induction of colicin synthesis  相似文献   

11.
Summary Several chimeric pBR322/328 derivatives containing genes for cytosine-specific DNA methyltransferases (Mtases) can be transformed into the Escherichia coli K12/E. coli B hybrid strains HB101 and RR1 but not into other commonly used E. coli K12 strains. In vitro methylation of cytosine residues in pBR328 and other unrelated plasmids also reduces their potential to transform such methylation sensitive strains, albeit to a lesser degree than observed with plasmids containing Mtase genes. The extent of reduced transformability depends on the target specificity of the enzyme used for in vitro modification. The role of a host function in the discrimination against methylated plasmids was verified by the isolation of K12 mutants which tolerate cytosine methylated DNA. The mutations map in the vicinity of the serB locus. This and other data indicate that the host rglB function is involved in the discrimination against modified DNA.  相似文献   

12.
Summary In Escherichia coli, induction of the SOS functions by UV irradiation or by mutation in the recA gene promotes an SOS mutator activity which generates mutations in undamaged DNA. Activation of RecA protein by the recA730 mutation increases the level of spontaneous mutation in the bacterial DNA. The number of recA730-induced mutations is greatly increased in mismatch repair deficient strains in which replication errors are not corrected. This suggests that the majority of recA730-induced mutations (90%) arise through correctable, i.e. non-targeted, replication errors. This recA730 mutator effect is suppressed by a mutation in the umuC gene. We also found that dam recA730 double mutants are unstable, segregating clones that have lost the dam or the recA mutations or that have acquired a new mutation, probably in one of the genes involved in mismatch repair. We suggest that the genetic instability of the dam recA730 mutants is provoked by the high level of replication errors induced by the recA730 mutation, generating killing by coincident mismatch repair on the two unmethylated DNA strands. The recA730 mutation increases spontaneous mutagenesis of phage poorly. UV irradiation of recA730 host bacteria increases phage untargeted mutagenesis to the level observed in UV-irradiated recA + strains. This UV-induced mutator effect in recA730 mutants is not suppressed by a umuC mutation. Therefore UV and the recA730 mutation seem to induce different SOS mutator activities, both generating untargeted mutations.  相似文献   

13.
Summary Resistance transfer factors are natural conjugative plasmids encoding antibiotic resistance. Some also encode mutagenic DNA repair genes giving resistance to DNA damage and induced mutagenesis. It has been shown that antibiotic resistance has been acquired by recent transposition events; however, we show here that mutagenic repair genes existed much earlier on these types of plasmids. Conjugative plasmids from eight incompatibility groups from the Murray collection of pre-antibiotic era enterobacteria were tested for complementation of mutagenic repair-deficient Escherichia coli umuC36. Although none of these plasmids carry transposon-encoded drug resistance genes, IncI1 and IncB plasmids were identified which restored ultraviolet resistance and induced mutability to umuC36 mutants. Furthermore they increased the UV resistance and induced mutability of wild-type E. coli, Klebsiella aerogenes and Citrobacter intermedius, thus showing that they could confer a general selective advantage to a variety of hosts. Like know mutagenic repair genes, complementation by these plasmid genes required the SOS response of the host cell. Nucleotide hybridisation showed that these plasmids harboured sequences similar to the impCAB locus, the mutagenic repair operon of modern-day IncI1 plasmids. The evolution of mutagenic repair genes is discussed.  相似文献   

14.
Summary Symbiotic and auxotrophic mutants of Rhizobium japonicum strain USDA191 were isolated using Tn5 mutagenesis and techniques that cause plasmid deletions and plasmid curing. Characterization of several mutants that are unable to nodulate (Nod-) or unable to fix nitrogen (Fix_) showed that nod and nif genes are located within one regions of a 200 MD plasmid (pSym191). Blot hybridization analysis of plasmids in other fast-growing R. japonicum strains showed that nod as well as nif sequences are located on plasmids in eight strains but are apparently carried in the chromosome in two strains.  相似文献   

15.
Genomic rearrangements have been associated with the acquisition of adaptive phenotypes, allowing organisms to efficiently generate new favorable genetic combinations. The diploid genome of Candida albicans is highly plastic, displaying numerous genomic rearrangements that are often the by-product of the repair of DNA breaks. For example, DNA double-strand breaks (DSB) repair using homologous-recombination pathways are a major source of loss-of-heterozygosity (LOH), observed ubiquitously in both clinical and laboratory strains of C. albicans. Mechanisms such as break-induced replication (BIR) or mitotic crossover (MCO) can result in long tracts of LOH, spanning hundreds of kilobases until the telomere. Analysis of I-SceI-induced BIR/MCO tracts in C. albicans revealed that the homozygosis tracts can ascend several kilobases toward the centromere, displaying homozygosis from the break site toward the centromere. We sought to investigate the molecular mechanisms that could contribute to this phenotype by characterizing a series of C. albicans DNA repair mutants, including pol32-/-, msh2-/-, mph1-/-, and mus81-/-. The impact of deleting these genes on genome stability revealed functional differences between Saccharomyces cerevisiae (a model DNA repair organism) and C. albicans. In addition, we demonstrated that ascending LOH tracts toward the centromere are associated with intrinsic features of BIR and potentially involve the mismatch repair pathway which acts upon natural heterozygous positions. Overall, this mechanistic approach to study LOH deepens our limited characterization of DNA repair pathways in C. albicans and brings forth the notion that centromere proximal alleles from DNA break sites are not guarded from undergoing LOH.  相似文献   

16.
Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral introduction of UV damage can potentially compromise genetic interpretations.  相似文献   

17.
Summary We report the successful mutagenesis of Azospirillum brasilense 29710 Rif Sm with transposon Tn5. The narrow host-range plasmid pGS9 (p15A replicon), which possesses broad host-range N-type transfer genes, was used as the suicide vehicle to deliver Tn5 in Azospirillum. Out of 900 colonies tested, 0.8% proved to be auxotrophic. One mutant altered in indoleacetic acid (auxin) biosynthesis was isolated and, in addition, three mutants completely defective in nitrogen fixation (nif) were obtained. All the mutants tested contained a single copy of Tn5 integrated randomly in the genome. The Tn5-mutagenized EcoRI fragments were cloned from the three Nif- mutants. Physical analysis of cloned DNA showed that Tn5 was present on a different EcoRI fragment in each case, ranging in size from 15–17 kb. The nitrogenase structural genes (nifHDK) in A. brasilense 29710 Rif Sm were localized on a 6.7 kb EcoRI fragment. We found that Tn5 is not inserted in the nifHDK genes in the Nif- mutants reported here. Site-directed mutagenesis using the cloned, Tn5-containing DNA from mutant Nif27(pMS188), produced a large number of Nif- transconjugants of the A. brasilense 29710 Rif wild-type strain, showing the linkage between Tn5 insertion and the Nif- phenotype. This is the first time that transposon-mutagenized auxotrophic, Nif- and other mutants have been available for genetic analysis in Azospirillum. This should greatly facilitate the cloning and mapping of genes involved in nitrogen fixation as well as in many other phenotypic characteristics of Azospirillum.  相似文献   

18.
Summary Mutants of Escherichia coli completely deficient in RNase H activity were isolated by inserting transposon Tn3 into the structural gene for RNase H, rnh, and its promoter. These rnh - mutants exhibited the following phenotypes; (1) the mutants grew fairly normally, (2) rnh - cells could be transformed with ColE1 derivative plasmids, pBR322 and pML21, though the plasmids were relatively unstable, under non selective conditions, (3) rnh - mutations partially suppressed the temperature-sensitive phenotype of plasmid pSC301, a DNA replication initiation mutant derived from pSC101, (4) rnh - mutations suppressed the temperature-sensitive growth character of dnaA ts mutant, (5) rnh - cells showed continued DNA synthesis in the presence of chloramphenicol (stable DNA replication). Based on these findings we propose a model for a role of RNase H in the initiation of chromosomal DNA replication. We suggest that two types of RNA primers for initiation of DNA replication are synthesized in a dnaA/oriC-dependent and-independent manner and that only the dnaA/oriC-dependent primer is involved in the normal DNA replication since the dnaA/oriC independent primer is selectively degraded by RNase H.Abbreviations APr ampicillin-resistant - kb kilobase pair(s) - NEM N-ethyl maleimide - Ts temperature-sensitive  相似文献   

19.
Summary R-prime plasmids were constructed from a derivative of Rhizobium strain NGR234 (ANU280) and were shown to contain overlapping genomic DNA segments involved in biosynthesis of exopolysaccharides (EPS). The R-primes originally constructed carried the mutant allele from Tn5-induced EPS-deficient (Exo) mutant ANU2811. This plasmid-located mutant allele was dominant to the corresponding wild-type allele as merodiploid strains were Exo. Exo+ revertants occurred at a low rate (1×10-7) and these were shown to result from double reciprocal recombination events, which led to the isolation of R-prime plasmids carrying functional wild-type exo alleles. R-prime plasmids that carry overlapping segments of DNA from parental strain ANU280 complemented 28 of the 30 group 2 Exo mutants of strain ANU280. Complementation of these Exo mutants also restored their symbiotic abilities of effective nodulation. Subsequent in vivo recombination between the wild-type alleles located on the R-prime and the corresponding mutated allele on the genome, was used to generate a new family of R-primes, which carried mutations in the exo genes. The 30 group 2 Exo mutants were classified into 7 distinct genetic groups based upon complementation and physical mapping data. Five of the seven exo loci were gentically linked and located on a 15-kb region of DNA. Mutations at two loci were dominant only when the mutations were R-prime plasmid-located while a mutation at a second locus was cis-dominant to two other exo loci. At least five genes involved in the synthesis of acidic exopolysaccharide synthesis have been identified.  相似文献   

20.
Summary The effects of eight different polA -alleles on the replication of six different non-transferring enterobacterial plasmids have been tested. Using phage P1CM transduction, different allelic polA - mutations were introduced into E. coli K12 strains carrying one of several antibiotic resistance plasmids. Plasmid stability in the transductants was examined by testing clones for drug resistance after growth under various conditions. From the results, the R factors may be divided into three different classes. One plasmid is only affected by PolA- conditions which inhibit host cell growth, three plasmids (from the same compatibility group) are unstable under conditions in which the cells are severely deficient in DNA polymerase I and two other plasmids (compatible with each other and with the other four) are immediately lost from such transductants and are unstable in a number of others. Furthermore, the plasmids which are most dependent on DNA polymerase I have been shown to replicate in the presence of chloramphenicol and therefore typify a class of plasmids which includes bacteriocinogenic factors such as ColE1 and CloDF13, resistance determinant RSF1030 and the E. coli 15 minicircular plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号