首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Turkish hamster (Mesocricetus brandti) is a photoperiodic species. In this investigation, we characterized the photoperiodic requirements for termination of gonadal refractoriness, defined as the inability of the animal to respond to short-day treatment with gonadal regression. Paired testes weights were reduced to less than 20% of their original weight by 10 wk of 12L:12D treatment. This was followed by spontaneous testicular recrudescence (completed by Week 25 of 12L:12D treatment), the overt indication of refractoriness to short photoperiods. Next, the period of long-day exposure sufficient for termination of refractoriness was determined. Refractory males were exposed to 16L:8D for 5 to 20 wk. Ten weeks of 16L:8D treatment was enough for the animals to regain the sensitivity to a second challenge of 12L:12D treatment. Fifteen weeks of 20L:4D or 16L:8D terminated refractoriness in female Turkish hamsters; 20L:4D therefore was not interpreted as a short day by refractory hamsters. This was unexpected because in photosensitive animals this photoperiod acts like a short day, causing gonadal regression. These results suggest that Turkish hamsters are similar to Syrian hamsters in that both species require two or more months of long days in summer to recover sensitivity to the short days of the following fall.  相似文献   

2.
In the cabbage butterfly, Pieris melete, summer and winter diapause are induced principally by long and short daylengths, respectively; the intermediate daylengths (12-13 h) permit pupae to develop without diapause. In this study, photoperiodic control of summer and winter diapause was systematically investigated in this butterfly by examining the photoperiodic response, the number of days required to induce 50% summer and winter diapause and the duration of diapausing pupae induced under different photoperiods. Photoperiodic response curves at 18 and 20 degrees C showed that all pupae entered winter diapause at short daylengths (8-11 h), the incidence of diapause dropped to 82.3-85.5% at 22 degrees C without showing a significant difference between short daylengths, whereas the incidence of summer diapause induced by different long daylengths (14-18 h) was varied and was obviously affected by temperature. By transferring from various short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) to an intermediate daylength (LD 12.5:11.5) at different times after hatching, the number of cycles required to induce 50% winter diapause (7.28 at LD 8:16, 7.16 at LD 9:15, 7.60 at LD 10:14 and 6.94 at LD 11:13) showed no significant difference, whereas by transferring from various long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) to an intermediate daylength (LD 12.5:11.5) at different times, the number of cycles required to induce 50% summer diapause (5.95 at LD 14:10, 8.02 at LD 15:9, 6.80 at LD 16:8, 7.64 at LD 17:7) were significantly different. The intensity of winter diapause induced under different short daylengths (LD 8:16, LD 9:15, LD 10:14 and LD 11:13) was not significantly different with an average diapause duration of 87 days at a constant temperature of 20 degrees C and 92 days at a mean daily temperature of 19.0 degrees C, whereas the intensity of summer diapause induced under different long daylengths (LD 14:10, LD 15:9, LD 16:8 and LD 17:7) was significantly different (the diapause duration ranged from 75 to 86 days at a constant temperature of 20 degrees C and from 76 to 88 days at a mean daily temperature of 19.0 degrees C). All results suggested that photoperiodic control of diapause induction and termination is significantly different between aestivation and hibernation.  相似文献   

3.
Continuous exposure of male hamsters to short day lengths induces testicular regression. This is followed many weeks later by spontaneous recrudescence of the testes with reinitiation of spermatogenesis and function of the accessory sexual glands. Hamsters at this stage of the annual reproductive cycle are refractory to short photoperiods--even continuous darkness will not induce another bout of testicular regression. Animals refractory to short days are also refractory to the pineal hormone melatonin and a number of investigators attribute spontaneous recrudescence and photo and melatonin refractoriness to a developed target cell insensitivity to endogenous melatonin from the pineal. Refractoriness is terminated by exposure to long days for at least 11 weeks. The pineal gland is reported to be essential for this process. We report here the effects of pinealectomy, daily melatonin injections, and constant-release melatonin implants on the ability of male hamsters to recover from the refractory state. In the absence of the pineal gland, refractory male hamsters did not discriminate (count?) 15 weeks of long days to terminate refractoriness. Daily melatonin injections at 1900 h, but not at 1200 h (lights 0600-2000 h) during the 15 weeks of long-day exposure blocked the recovery from refractoriness. Constant-release melatonin implants abolished the animals ability to measure 12 and 15 weeks of long days to terminate refractoriness. These results demonstrate that general target tissue insensitivity to melatonin cannot account for the refractory state in hamsters, that a multiplicity of target tissues may exist for melatonin to account for its varied roles throughout the annual reproductive cycle in hamsters, and that the pineal gland is intimately involved in the animals' ability to measure a prescribed duration of long days to terminate refractoriness.  相似文献   

4.
Adult male wild rabbits were exposed to at least 16 weeks of 16L:8 D before experiments began. Plasma LH and FSH concentrations increased significantly (P less than 0.001) when rabbits were castrated in 16L:8D but declined when rabbits were transferred to 8L:16D. Concentrations had returned to normal for castrated rabbits in 16L:8D by 74 days after the start of the 8L:16D treatment. Treatment of intact male rabbits with an injection of LHRH before and after transfer to short daylengths caused a transient increase in plasma LH which lasted 50-80 min and this produced a concomitant rise in plasma testosterone. The daylength change had no effect on this response even though testicular size declined after the transfer to short daylengths. Rabbits moulted in response to exposure to 8L:16D. This suggests that hypothalamic activity responds to photoperiod and that changes in pituitary responsiveness to LHRH and steroid negative feedback are unimportant.  相似文献   

5.
In brahminy myna a photosensitive species, long days caused full gonadal development followed by rapid regression, whereas short days inhibited these responses. Experiments were performed to investigate the effects of duration of photoperiod and gonadal hormones on the recovery of photosensitivity to long photoperiods in male birds. Groups of photorefractory birds were subjected to 8-, 9- or 11-hr daily photoperiods for 45 (6.5 weeks) or 63 (9 weeks) days and then transferred to 15 h daily photoperiods for 60 days to check for the regaining of photoresponsivity. A control group was held under 15L:9D throughout the period of study. Another experiment included three groups of photorefractory males, which were maintained on 9L:15D for 9 weeks and administered with, birth-1day-1 alternately for first 30 days olive oil or different doses (10 or 100 micrograms) of testosterone propionate (TP)/bird/day alternately for first 30 days, and then transferred to 15L:9D for another 30 days to test the recovery of photosensitivity. The results indicated that (i) a period of exposure to short daylengths is required to dissipate photorefractoriness, (ii) termination of photorefractoriness is dependent on the length and duration of photoperiods and (iii) TP inhibits the recovery of photosensitivity in a dose dependent manner.  相似文献   

6.
The objectives were to determine if relative lengths of photoperiods that induce reproductive cycles in ewes affect the length of the subsequent breeding season, if duration of the refractoriness that terminates breeding is affected by photoperiod length, and if the resulting refractoriness to an inductive photoperiod is absolute. Groups of Welsh Mountain ewes were exposed to either 12L:12D (n = 12) or 8L:16D (n = 6) photoperiods beginning at the summer solstice when daylengths reach a maximum of 17.5 h at Bristol, England. A control group (n = 10) was exposed to natural daylengths. Ovarian cycles in the controls, as judged by monitored plasma progesterone levels, commenced in early October, about 1 mo later (p less than 0.001 in both cases) than in sheep exposed to 12L:12D or 8L:16D. The advancement in cycle onset was similar under 12L:12D and 8L:16D (69 +/- 2 and 77 +/- 4 days after the summer solstice compared with 102 +/- 2 days in the controls). Duration of the breeding season (100 +/- 4 days) in ewes exposed to 12L:12D was significantly shorter (p less than 0.001 in both cases) than in ewes exposed to natural daylengths or 8L:16D (153 +/- 3 and 133 +/- 5 days, respectively). Approximately 70 days after the ending of ovulatory cycles in the 12L:12D group, half of the animals (n = 6) were transferred to 8L:16D. This treatment greatly (p less than 0.001) reduced the duration of anestrus and cycles began again 62 +/- 4 days after transfer to 8L:16D, or about 90 days earlier than in ewes (n = 6) remaining in 12L:12D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The earliest detectable event in the photoperiodic response of quail is a rise in luteinizing hormone (LH) secretion beginning at about hour 20 on the first long day. The timing of this rise was measured in castrated quail after entrainment to short daylengths which cause significant phase angle differences in the circadian system: (1) LD 2:22 and LD 10:14, and (2) LD 3:21 (T = 24 hr) and LD 3:24 (T = 27 hr). The quail were then exposed to 24 hr of light (by delaying lights-off), and the time of the first LH rise was measured; it was similar in all schedules. Quail were also entrained to LD 3:21 or LD 3:24 and then given a single 6-hr nightbreak 6-12, 7-13, or 13-19 hr after dawn. The earlier pulse was marginally more inductive in the 27-hr cycle. Thus the entrainment characteristics of the photoinducible rhythm (phi i) in quail appear very different from those of the locomotor circadian rhythm, and raise doubts as to whether phi i is a primary circadian oscillator.  相似文献   

8.
The present study was carried out on a Palearctic-Indian migratory species, the blackheaded bunting (Emberiza melanocephala), to understand the importance of photoperiodism and circannual rhythms in determining seasonality in changes in body mass and testis size in birds. An initial experiment determined the effects of duration and intensity of light on photoperiodic induction. The birds were exposed to different photoperiods (hours of light:hours of darkness; 11.5L:12.5D, 12L:12D, 12.5L:11.5D and 13L:11D) at the same (approximately 450 lux) light intensity, and to 13L:11D at different light intensities (50-, 100-, 400-, 800- and 1000-lux). The induction and subsequent regression of photoperiodic responses were dependent upon duration and intensity of the light period until these reached threshold. A second experiment investigated if an endogenous seasonal rhythm underlies photoperiodism in buntings. Birds maintained since February on a 8L: 16D photoperiod (a non-inductive short day length invariably used to ensure photosensitivity in photoperiodic species) were subjected periodically to 16L:8D (a long day length), one group every month from mid-March to mid-August. The magnitude of long day response in body mass and testes decreased as the duration of the short days progressed, but testicular response was restored in birds that were exposed to long days in July and August. The birds exposed simultaneously to short, long, and natural day lengths for 32 weeks underwent an induction-regression cycle under long days and natural day lengths, but not under short days in which a decrease in body mass occurred after about 20 weeks. The last experiment examined the importance of latitudinal migration on photoperiodism, by comparing the response to long days of three groups which included birds from populations those were held in the outdoor aviary for 1 or 2 years at 27 degrees N and those immediately arrived from their breeding grounds (approximately 40 degrees N). There was no difference in the photoperiodic induction among the three groups, indicating that neither experience to changing photoperiods during a migratory journey, nor to long photoperiods at breeding grounds, were critical for a subsequent response (initiation-termination-reinitiation) cycle. Taken together, these findings suggest that (1) the blackheaded bunting has its own endogenous timing program, which is regulated by the photoperiod, and (2) the photoperiodic programs of bunting are flexible enough to accommodate variations in the amplitude of environmental cycles. Thus, it appears that photoperiodism has evolved independently of the evolution of migration in this species.  相似文献   

9.
The temporal relationships between plasma concentrations of prolactin, thyroxine (T4) and triiodothyronine (T3) were determined in a group of six wild mallard drakes during the development and maintenance of long-day refractoriness after transfer from 6 h light: 18 h darkness (6L:18D) to 20L:4D for 24 weeks. As shown by changes in the plasma concentrations of luteinizing hormone (LH) and testosterone, the birds came into breeding condition and then became long-day refractory within 5 weeks of photostimulation. Long-day refractoriness was maintained for the remainder of the study. Plasma prolactin began to increase immediately after photostimulation, although not as fast as the increases in plasma LH and testosterone. The concentration of plasma T4 also increased after photostimulation but, as shown by decreased plasma LH and testosterone levels, only after the birds had become long-day refractory. The development of long-day refractoriness was thus directly correlated with an increased plasma prolactin and not with a change in plasma concentration of T4. Plasma T3 decreased after photostimulation but returned to prestimulation values as the birds became long-day refractory and remained stable for the remainder of the study. Concentrations of plasma T4 and prolactin returned to baseline values after about 15 weeks photostimulation showing that the long-term maintenance of long-day refractoriness is not directly related to continuously high plasma concentrations of either hormone.  相似文献   

10.
The annual cycle of reproductive activity in the Syrian hamster, Mesocricetus auratus, is the result of interaction between seasonal changes in daylength (photoperiodism) and seasonal changes in responsiveness to daylength (seasonality). The present experiment was designed to investigate the role of the pineal gland and its hormone, melatonin, in the alternation of seasonality (scotosensitivity and scotorefractoriness). Male hamsters were maintained on short daylengths (10L:14D) to establish scotorefractoriness, and then they were transferred to long daylengths (14L:10D) for conversion to scotosensitivity (sensitive to short daylengths). Before transfer to long daylengths, some of the hamsters were pinealectomized and others were sham-operated or unoperated. Some of the pinealectomized hamsters received single daily melatonin or saline injections while on long daylengths. After 14 wk on long daylengths, the hamsters were transferred to short daylengths for 10 wk to test for conversion to scotosensitivity. Pinealectomized hamsters were given three daily melatonin injections while on short daylengths. Such treatment is known to promote gonadal regression in scotosensitive but not in scotorefractory hamsters. Examination of testes after the short daylength interval revealed that exposure of nonpinealectomized hamsters to long daylengths had reestablished scotosensitivity (regressed testes). Pinealectomized hamsters that received no melatonin replacement while on long daylengths remained scotorefractory (enlarged testes), whereas those that received single daily injections of melatonin during long daylengths were found to be scotosensitive. These results indicate that a daily pulse of melatonin during expsoure to long daylengths has an important role in reestablishing responsiveness (scotosensitivity) to short daylengths.  相似文献   

11.
Eight adult rams were housed in 16L:8D for 16 weeks and then exposed to short days (8L:16D) or 'skeleton' short days (11L:1D:5L:7D) for 16 weeks before being returned to long days. The 'skeleton' treatment promoted testicular development and regression in a way similar to that occurring in 8L:16D, indicating that a change in the total quantity of light is not a prerequisite for the photoperiodic response in the ram.  相似文献   

12.
Development of the reproductive apparatus was delayed in grasshopper mice maintained from birth in short photoperiods (10 h light/day). The inhibitory effects of short photoperiods on sexual maturation eventually waned and mice in 10L:14D became reproductively active. Adult mice transferred from long (14 h light/day) to short photoperiods underwent testicular regression after 10 weeks and complete gonadal redevelopment after 30 weeks. A similar phenomenon was observed in adult female mice; oestrous cycles ceased within 3 weeks and resumed after 13 weeks in the short photoperiod. The regressive effects of short photoperiods on the male reproductive system were mimicked by daily injections of melatonin administered to mice housed in 14L:10D. Responsiveness of the female reproductive system to melatonin was reduced among photorefractory as compared to photosensitive mice. We suggest that the initial rate of sexual maturation and the timing of seasonal breeding in adult mice are regulated by photoperiod; effects of short daylengths on the neuroendocrine-reproductive axis appear to be mediated by the pineal gland.  相似文献   

13.
Summary Pharmacological doses of thyroxine are able to mimic the effects of long photoperiods in Japanese quail. In birds maintained on short daylengths thrice-weekly injections of 100 g thyroxine cause full testicular maturation at rates not greatly different from those seen if quail are exposed to long days. Thyroxine stimulates increases in the secretion of FSH and LH, in pituitary prolactin content and in the hypothalamic content of Gn-RH. The effects are dose-dependent. If female quail kept on short daylengths are given thyroxine their ovaries develop and they lay eggs. In castrated male quail on short days thyroxine causes a ten-fold increase in circulating LH within a week. Thyroxine injections are also capable of maintaining quail in a photorefractory state even when they are transferred to short daylengths. The results suggest that thyroxine mimics long days by acting high in the photoneuroendocrine system and does not simply act to facilitate hormone secretion per se. This is in line with growing evidence in mammals and birds that parts of the photoperiodic machinery are sensitive to thyroid hormones.Abbreviations Gn-RH gonadotropin releasing hormone - FSH follicle stimulating hormone - LH luteinizing hormone - T 4 thyroxine  相似文献   

14.
In Exp. 1, the time course for the photoperiodic response in juvenile male musk shrews was examined by exposing animals to short (10L:14D) or long (14L:10D or 18L:6D) daylengths for 10, 20, 40 or 56 days. When compared with the response of animals maintained in long days, those exposed to short days showed an inhibition of reproductive maturation by 40 days of treatment. In Exp. 2, the combined effects of photoperiod and social cues were investigated in juvenile males that were either housed in short days (with or without a female) or in long days (with or without a female) for 40 days. The short photoperiod was generally inhibitory to sexual maturation, while the presence of an adult female was generally stimulatory, i.e. animals living with a female in long days had the greatest level of sexual maturity, while those living alone in short days had the lowest level of maturity. Animals that received opposing signals, i.e. short days in the presence of a female, had an intermediate response which was equivalent to the response seen in males living alone in long days. These results suggest that the presence of a female can partly reverse inhibitory effects of short days. In Exp. 3, the effects of photoperiod and social cues on the reproductive physiology of the adult male (same design as in Exp. 2) were investigated. The results show that the adult male musk shrew is responsive to both photoperiodic and social cues, in a manner similar to that of juvenile animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
This study analyzed photoperiodic sensitivity of brahminy myna (Sturnus pagodarum), which is a seasonally breeding bird species. During regression phase of the reproductive cycle (in early September), groups of myna were exposed to artificial photoperiods that were either close to or longer than those brahminy myna experiences at this time in wild at 29 degrees N. Following a 14-week exposure to such photoperiods (hours of light: hours of darkness; 13L:11D, 12L:12D, 11.5L:12.5D and 11L:13D), the birds were subjected to a longer day length (16L:8D) for another 9 weeks to test whether pre-treatment with varying photoperiods had an effect on subsequent long day photostimulation. There was a progressive increase in body mass under different pre-treatment photoperiods, with a faster increase in 11L:13D and 11.5L:12.5D than in 12L:12D and 13L:11D. When subjected to 16L: 8D, however, all groups showed decline in body mass. By contrast, the testes were not stimulated under 11L:13D and 11.5L:12.5D, and only one individual of the groups under 12L:12D and 13L: 11D showed a small testis recrudescence. All birds except one individual of the 13L:11D group, however, showed testis recrudescence when subjected to 16L:8D. These results suggest that body mass and testes have a different profile of photoperiodic response and appear to have two different threshold photoperiods for dissipating the post-reproductive refractoriness.  相似文献   

16.
Six red deer stags from age 4 months were kept in a light-proof room under an artificial photoperiod consisting of 5.5 cycles of alternate 2-month periods of 16 h light and 8 h dark (16L:8D) and 8L:16D. At 2 or 3 weekly intervals from 10 months of age through 4 cycles, the stags were anaesthetized with xylazine and challenged i.v. with 10 micrograms GnRH. Blood samples were withdrawn immediately before and 10 and 60 min after injection. LH and testosterone concentrations were measured in all samples by RIA. Antler status was recorded daily. Peak LH values on each sampling day occurred in the sample taken 10 min after GnRH stimulation while peak testosterone occurred in the sample taken at 60 min. There were 4 cycles of LH and testosterone secretion accompanied by 4 antler cycles in the stags. The highest LH responses were detected during short days (8L:16D), and the highest testosterone responses were detected around the time of the change from short to long days. The responses of both hormones were lowest at the end of periods of long days or the beginning of short days. The increased pituitary LH response to GnRH was evident 4 weeks after the change to short days which are stimulatory for gonadal development. Antler casting occurred at the end of long days and cleaning at the end of short days. It is considered that antler cycles were due to the ability of the stags to vary release of LH and testosterone in response to changes in the artificial photoperiod.  相似文献   

17.
The responses of magnocellular neurons of paraventricular nuclei (PVN) and changes to adrenal activity to water deprivation in Japanese quail maintained under gonado-inhibitory and stimulatory photoperiods were examined. Water deprivation of 4 days resulted in a 12% decrease in body weight of sexually regressed short day (SD, 6L:18D) quail, while the decrease was more (18%) in sexually stimulated long day (LD, 16L:8D) quail. The increase in plasma osmolality following water deprivation was also more (47%) in LD than to SD quail (36%). Under the LD condition, quail had increased numbers, sizes and immunostaining of ir-AVT neurons of PVN compared to SD condition. A significant increase in the number of ir-AVT neurons was observed following 4 days of water deprivation in both SD and LD quail compared to their respective fully hydrated controls. However, the degree of response was more under the LD compared to the SD condition suggesting that gonado-stimulatory long days increase the activity/response of the AVT system. Increased adrenal ascorbic acid content (i.e., activity) was also observed to quail of LD when compared to SD treatment. However, osmotic stress led to adrenal hypertrophy and hyperactivity of quail of both of the photoperiodic regimes. Our findings indicate that not only osmotic stress but also photo-gonadal stimulation upregulates the expression of hypothalamic AVT genes and increases the localization of ir-AVT in many neurons of PVN. The above results support the existence of a parallel adrenal-gonad relationship and increase in adrenal function during osmotic stress, which also leads to simultaneous increase in AVT system. We conclude that photo-sexual conditions alter hypothalamic vasotocinergic and adrenal activity in Japanese quail and the degree of stimulation of the two systems following osmotic stress is higher under gonado-stimulatory LD conditions.  相似文献   

18.
In European starlings, as in many other birds inhabiting higher latitudes, gonads develop in response to the increasing daylengths in early spring. Later in the year, however, the hypothalamo-pituitary-gonadal axis becomes refractory to the previously stimulatory long photoperiods and the gonads regress in summer. The present study addresses the question of when during the gonadal growth phase photorefractoriness is determined. A 13-h photoperiod induces testicular development and subsequent testicular regression associated with refractoriness in male starlings. An 11-h photoperiod, in contrast, induces only testicular development, and photorefractoriness never develops. When starlings were transferred to an 11-h photoperiod, either 12 or 25 days following exposure to a 13-h photoperiod, their testes developed to full size, but remained large to the end of the experiment, i.e. refractoriness did not develop. The same was even true of most birds in a third group that were transferred to an 11-h photoperiod after 46 days of the 13-h photoperiod, when gonads had developed to near maximal size. These data show that, in contrast to some other species of passerine birds, the onset of photorefractoriness does not become fixed before the testes have undergone considerable development, and that the photoperiodic conditions experienced at the end of the testicular growth phase are still effective in determining the precise time of onset of photorefractoriness. It is suggested that this peculiarity of the starling is related to the fact that its gonadal development begins rather early in spring and, hence, under much shorter photoperiods than the other species studied.  相似文献   

19.
Two experiments studied the relative effects on body mass and testicular growth of stimulatory photoperiods applied simultaneously to two photosensitive species, the house sparrow (Passer domesticus) and brahminy myna (Sturnus pagodarum). Experiment 1 on the house sparrow consisted of two parts. In experiment 1A, beginning on 24 March 2002, short day pretreated sparrows were exposed for 12 weeks to 13L: 11D (13 h light: 11 h darkness), 20L: 4D and NDL (control). Experiment 1B was similar to 1A except that it used sparrows that were not treated with short days. This experiment was repeated at three different times in the year. Beginning on 29 December 2002 (for 24 weeks), 26 March 2003 (for 12 weeks) and 16 August 2003 (for 8 weeks), sparrows captured from the wild and acclimated to captive condition for 1 week were exposed to 13L: 11D and 20L: 4D. Each time, a group was maintained in NDL and served as the control. Experiment 2 was performed on myna and used an identical protocol. Beginning on 24 March 2002, myna that were captured from the wild and acclimated to captivity conditions were exposed for 16 weeks to 13L: 11D and 20L: 4D; a group was maintained in NDL and served as the control. There was photostimulation and subsequent regression of the testes on all day lengths except in the August group of experiment 1B. The effect on body mass was variable. Interestingly, however, the response to 20L:4D was relatively smaller as compared to 13L:11D. Taken together, these results confirm that the two species use photoperiods in control of their reproductive cycle, and tend to indicate that exposure to unnatural long photoperiods may in fact be unfavorable and could compromise gonadal growth and development.  相似文献   

20.
The presence of a reproductive diapause in the life cycle of the neotropical cassidine beetle, Chelymorpha alternans , was investigated by exposing groups of beetles to conditions differing in photoperiod and humidity. Diapause was characterized by the absence of egg-laying in females up to 70 days after emergence and was induced in response to a short photoperiod of 12:12 h L: D but averted under a longer photoperiod of 13:11 h L:D. High (>90% RH) and low (55–75% RH) humidity conditions did not influence diapause induction. Males appeared to court and attempt to mate with females under all conditions between 16 and 30 days after emergence, but declined after this time in short photoperiods and it is not known if matings in these groups were successful. Adults induced to diapause by exposure to a 12:12 h L:D photoperiod and subsequently exposed to a 13:11 h L: D photoperiod 70 or 72 days after emergence did not show a rapid response by commencing egg-laying. However, all diapausing groups in long and short photoperiod and high and low humidity, in both experiments performed, had commenced egg-laying after 128 days, suggesting an endogenous rhythm for diapause termination. Long photoperiod and high humidity combined may hasten diapause termination since egg-laying began after only 95 days in this group in experiment two. This strategy of induction and termination is discussed with reference to the seasonality of the natural environment of C. alternans in Panama.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号