首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
钾通道在培养大鼠海马神经元凋亡性容积减少中的作用   总被引:1,自引:0,他引:1  
为探讨钾通道参与神经元凋亡的可能机制,在星形孢菌素(STS)诱导的培养海马神经元凋亡模型上,研究了凋亡时神经细胞容积的动态变化及钾通道在其中的作用.实验结果显示,钾通道阻断剂四乙铵或升高细胞外K+均能够明显抑制STS诱导的神经元凋亡,并且大电导钙激活钾通道(BK)选择性阻断剂iberiotoxin和paxilline具有同样程度的抗细胞凋亡作用,表明钾通道(可能主要是BK通道)参与了STS诱导的培养海马神经元凋亡.在STS诱导神经元凋亡的早期就出现了细胞容积的显著减少,而钾通道阻断剂或升高细胞外K+均可阻断该细胞容积减少.研究结果提示细胞内钾离子的外流可能参与了凋亡性细胞容积减少,这也可能是钾通道介导细胞凋亡的重要机制之一.  相似文献   

2.
Potassium withdrawal is commonly used to induce caspase-mediated apoptosis in cerebellar granule neurons in vitro. However, the underlying and cell death-initiating mechanisms are unknown. We firstly investigated potassium efflux through the outward delayed rectifier K+ current (Ik) as a potential mediator. However, tetraethylammoniumchloride, an inhibitor of Ik, was ineffective to block apoptosis after potassium withdrawal. Since potassium withdrawal reduced intracellular pH (pHi) from 7.4 to 7.2, we secondly investigated the effects of intracellular acidosis. To study intracellular acidosis in cerebellar granule neurons, we inhibited the Na+/H+ exchanger (NHE) with 4-isopropyl-3-methylsulfonylbenzoyl-guanidine methanesulfonate (HOE 642) and 5-(N-ethyl-N-isopropyl)-amiloride. Both inhibitors concentration-dependently induced cell death and potentiated cell death after potassium withdrawal. Although inhibition of the NHE induced cell death with morphological criteria of apoptosis in light and electron microscopy including chromatin condensation, positive TUNEL staining and cell shrinkage, no internucleosomal DNA cleavage or activation of caspases was detected. In contrast to potassium withdrawal-induced apoptosis, cell death induced by intracellular acidification was not prevented by insulin-like growth factor-1, cyclo-adenosine-monophosphate, caspase inhibitors and transfection with an adenovirus expressing Bcl-XL. However, cycloheximide protected cerebellar granule neurons from death induced by potassium withdrawal as well as from death after treatment with HOE 642. Therefore, the molecular mechanisms leading to cell death after acidification appear to be different from the mechanisms after potassium withdrawal and resemble the biochemical but not the morphological characteristics of paraptosis.  相似文献   

3.
The loss of intracellular potassium is a pivotal step in the induction of apoptosis but the mechanisms underlying this response are poorly understood. Here we report caspase-dependent stimulation of potassium channels by the Fas receptor in a human Jurkat T cell line. Receptor activation with Fas ligand for 30 min increased the amplitude of voltage-activated potassium currents 2-fold on average. This produces a sustained outward current, approximately 10 pA, at physiological membrane potentials during Fas ligand-induced apoptosis. Both basal and Fas ligand-induced currents were blocked completely by toxins that selectively inhibit Kv1.3 potassium channels. Kv1.3 stimulation required the expression of Fas-associated death domain protein and activation of caspase 8, but did not require activation of caspase 3 or protein synthesis. Furthermore, Kv1.3 stimulation by Fas ligand was prevented by chronic stimulation of protein kinase C with 20 nm phorbol 12-myristate 13-acetate during Fas ligand treatment, which also blocks apoptosis. Thus, Fas ligand increases Kv1.3 channel activity through the same canonical apoptotic signaling cascade that is required for potassium efflux, cell shrinkage, and apoptosis.  相似文献   

4.
Cell shrinkage is an incipienthallmark of apoptosis and is accompanied by potassium releasethat decreases the concentration of intracellular potassium andregulates apoptotic progression. The plasma membrane K+channel recruited during apoptosis has not been characterized despite its importance as a potential therapeutic target. Here weprovide evidence that two-pore domain K+ (K2P)channels underlie K+ efflux during apoptotic volumedecreases (AVD) in mouse embryos. These K2P channels areinhibited by quinine but are not blocked by an array of pharmacologicalagents that antagonize other K+ channels. TheK2P channels are uniquely suited to participate in theearly phases of apoptosis because they are not modulated bycommon intracellular messengers such as calcium, ATP, and arachidonic acid, transmembrane voltage, or the cytoskeleton. A K+channel with similar biophysical properties coordinates regulatory volume decreases (RVD) triggered by changing osmotic conditions. Wepropose that K2P channels are the pathway by whichK+ effluxes during AVD and RVD and that apoptosisco-opts mechanisms more routinely employed for homeostatic cell volume regulation.

  相似文献   

5.
BackgroundChlorogenic acid (CRA) is an abundant phenolic compound in the human diet. CRA has a potent antifungal effect, inducing cell death in Candida albicans. However, there are no further studies to investigate the antifungal mechanism of CRA, associated with ion channels.MethodsTo evaluate the inhibitory effects on CRA-induced cell death, C. albicans cells were pretreated with potassium and chloride channel blockers, separately. Flow cytometry was carried out to detect several hallmarks of apoptosis, such as cell cycle arrest, caspase activation, and DNA fragmentation, after staining of the cells with SYTOX green, FITC-VAD-FMK, and TUNEL.ResultsCRA caused excessive potassium efflux, and an apoptotic volume decrease (AVD) was observed. This change, in turn, induced cytosolic calcium uptake and cell cycle arrest in C. albicans. Moreover, CRA induced caspase activation and DNA fragmentation, which are considered apoptotic markers. In contrast, the potassium efflux and proapoptotic changes were inhibited when potassium channels were blocked, whereas there was no inhibitory effect when chloride channels were blocked.ConclusionsCRA induces potassium efflux, leading to AVD and G2/M cell cycle arrest in C. albicans. Therefore, potassium efflux via potassium channels regulates the CRA-induced apoptosis, stimulating several apoptotic processes.General significanceThis study improves the understanding of the antifungal mechanism of CRA and its association with ion homeostasis, thereby pointing to a role of potassium channels in CRA-induced apoptosis.  相似文献   

6.
The machinery leading to apoptosis includes altered activity of ion channels. The channels contribute to apoptotic cell shrinkage and modify intracellular ion composition. Cl(-) channels allow the exit of Cl(-), osmolytes and HCO(3)(-) leading to cell shrinkage and cytosolic acidification. K(+) exit through K(+) channels contributes to cell shrinkage and decreases intracellular K(+) concentration, which in turn favours apoptotic cell death. K(+) channel activity further determines the cell membrane potential, a driving force for Ca(2+) entry through Ca(2+) channels. Ca(2+) may enter through unselective cation channels. An increase of cytosolic Ca(2+) may stimulate several enzymes executing apoptosis. Specific ion channel blockers may either promote or counteract suicidal cell death. The present brief review addresses the role of ion channels in the regulation of suicidal cell death with special emphasis on the role of channels in CD95 induced apoptosis of lymphocytes and suicidal death of erythrocytes or eryptosis.  相似文献   

7.
Overexpression of human KCNA5 increases IK V and enhances apoptosis   总被引:1,自引:0,他引:1  
Apoptotic cell shrinkage, an early hallmark of apoptosis, is regulated by K+ efflux and K+ channel activity. Inhibited apoptosis and downregulated K+ channels in pulmonary artery smooth muscle cells (PASMC) have been implicated in development of pulmonary vascular medial hypertrophy and pulmonary hypertension. The objective of this study was to test the hypothesis that overexpression of KCNA5, which encodes a delayed-rectifier voltage-gated K+ (Kv) channel, increases K+ currents and enhances apoptosis. Transient transfection of KCNA5 caused 25- to 34-fold increase in KCNA5 channel protein level and 24- to 29-fold increase in Kv channel current (IK(V)) at +60 mV in COS-7 and rat PASMC, respectively. In KCNA5-transfected COS-7 cells, staurosporine (ST)-mediated increases in caspase-3 activity and the percentage of cells undergoing apoptosis were both enhanced, whereas basal apoptosis (without ST stimulation) was unchanged compared with cells transfected with an empty vector. In rat PASMC, however, transfection of KCNA5 alone caused marked increase in basal apoptosis, in addition to enhancing ST-mediated apoptosis. Furthermore, ST-induced apoptotic cell shrinkage was significantly accelerated in COS-7 cells and rat PASMC transfected with KCNA5, and blockade of KCNA5 channels with 4-aminopyridine (4-AP) reduced K+ currents through KCNA5 channels and inhibited ST-induced apoptosis in KCNA5-transfected COS-7 cells. Overexpression of the human KCNA5 gene increases K+ currents (i.e., K+ efflux or loss), accelerates apoptotic volume decrease (AVD), increases caspase-3 activity, and induces apoptosis. Induction of apoptosis in PASMC by KCNA5 gene transfer may serve as an important strategy for preventing the progression of pulmonary vascular wall thickening and for treating patients with idiopathic pulmonary arterial hypertension (IPAH). potassium ion channel; pulmonary hypertension  相似文献   

8.
Cell volume regulation in immune cell apoptosis   总被引:5,自引:0,他引:5  
The loss of cell volume is an early and fundamental feature of programmed cell death or apoptosis; however, the mechanisms responsible for cell shrinkage during apoptosis are poorly understood. The loss of cell volume is not a passive component of the apoptotic process, and a number of experimental findings from different laboratories highlight the importance of this process as an early and necessary regulatory event in the signaling of the death cascade. Additionally, the loss of intracellular ions, particularly potassium, has been shown to play a primary role in cell shrinkage, caspase activation, and nuclease activity during apoptosis. Thus, an understanding of the role that ion channels and plasma membrane transporters play in cellular signaling during apoptosis may have important physiological implications for immune cells, especially lymphocyte function. Furthermore, this knowledge may also have an impact on the design of therapeutic strategies for a variety of diseases of the immune system in which apoptosis plays a central role, such as oncogenic processes or immune system disorders. The present review summarizes our appreciation of the mechanisms underlying the early loss of cell volume during apoptosis and their association with downstream events in lymphocyte apoptosis.  相似文献   

9.
Patterns of change in cell volume and plasma membrane phospholipid distribution during cell death are regarded as diagnostic means of distinguishing apoptosis from necrosis, the former being associated with cell shrinkage and early phosphatidylserine (PS) exposure, whereas necrosis is associated with cell swelling and consequent lysis. We demonstrate that cell volume regulation during lymphocyte death stimulated via the purinergic receptor P2X7 is distinct from both. Within seconds of stimulation, murine lymphocytes undergo rapid shrinkage concomitant with, but also required for, PS exposure. However, within 2 min shrinkage is reversed and swelling ensues ending in cell rupture. P2X7-induced shrinkage and PS translocation depend upon K+ efflux via KCa3.1, but use a pathway of Cl- efflux distinct from that previously implicated in apoptosis. Thus, P2X7 stimulation activates a novel pathway of cell death that does not conform to those conventionally associated with apoptosis and necrosis. The mixed apoptotic/necrotic phenotype of P2X7-stimulated cells is consistent with a potential role for this death pathway in lupus disease.  相似文献   

10.
持续性细胞皱缩在人上皮细胞凋亡过程中的必要性   总被引:2,自引:0,他引:2  
Shimizu T  Maeno E  Okada Y 《生理学报》2007,59(4):512-516
持续性细胞皱缩是凋亡发生的一个主要标志。近期研究发现细胞皱缩在细胞凋亡过程中并不是一个被动的次要事件。在各种细胞中,包括人上皮细胞,凋亡因子(apoptogen)刺激后马上发生全细胞皱缩,又称为凋亡性容积减小(apoptotic volumede crease,AVD),继而发生caspase激活、DNA片段化、细胞破裂死亡。K^+和Cl^-通道的激活导致KCl外流,诱导AVD发生。抑制AVD发生可以抑制细胞凋亡。AVD与调节性容积增加(regulatory volume increase,RVI)异常相伴发生时,人上皮性HeLa细胞发生持续性细胞皱缩。RVI功能受损时,高渗本身就能诱导HeLa细胞持续性细胞皱缩,继而凋亡。即使在正常渗透压、无凋亡因子刺激的情况下,将HeLa细胞置于缺乏Na^+或Cl。的溶液也会导致细胞持续性皱缩,继而凋亡。因此,AVD诱导和RVI异常所导致的持续性细胞皱缩是人上皮细胞发生凋亡的首要条件。  相似文献   

11.
Prostaglandin-E2 (PGE2) is known to trigger suicidal death of nucleated cells (apoptosis) and enucleated erythrocytes (eryptosis). In erythrocytes PGE2 induced suicidal cell death involves activation of nonselective cation channels leading to Ca2+ entry followed by cell shrinkage and triggering of Ca2+ sensitive cell membrane scrambling with phosphatidylserine (PS) exposure at the cell surface. The present study was performed to explore whether PGE2 induces apoptosis of nucleated cells similarly through cation channel activation and to possibly disclose the molecular identity of the cation channels involved. To this end, Ca2+ activity was estimated from Fluo3 fluorescence, mitochondrial potential from DePsipher fluorescence, phosphatidylserine exposure from annexin binding, caspase activation from caspAce fluorescence, cell volume from FACS forward scatter, and DNA fragmentation utilizing a photometric enzyme immunoassay. Stimulation of K562 human leukaemia cells with PGE2 (50 microM) increased cytosolic Ca2+ activity, decreased forward scatter, depolarized the mitochondrial potential, increased annexin binding, led to caspase activation and resulted in DNA fragmentation. Gene silencing of the Ca2+-permeable transient receptor potential cation channel TRPC7 significantly blunted PGE2-induced triggering of PS exposure and DNA fragmentation. In conclusion, K562 cells express Ca2+-permeable TRPC7 channels, which are activated by PGE2 and participate in the triggering of apoptosis.  相似文献   

12.
Cell apoptosis and proliferation are two counterparts in sharing the responsibility for maintaining normal tissue homeostasis. In recent years, the process of the programmed cell death has gained much interest because of its influence on malignant cell growth and other pathological states. Apoptosis is characterized by a distinct series of morphological and biochemical changes that result in cell shrinkage, DNA breakdown, and, ultimately, phagocytic death. Diverse external and internal stimuli trigger apoptosis, and enhanced K+ efflux has been shown to be an essential mediator of not only early apoptotic cell shrinkage, but also of downstream caspase activation and DNA fragmentation. The goal of this review is to discuss the role(s) played by K+ transport or flux across the plasma membrane in the regulation of the apoptotic volume decrease and apoptosis. Attention has also been paid to the role of inner mitochondrial membrane ion transport in the regulation of mitochondrial permeability and apoptosis. We provide specific examples of how deregulation of the apoptotic process contributes to pulmonary arterial medial hypertrophy, a major pathological feature in patients with pulmonary arterial hypertension. Finally, we discuss the targeting of K+ channels as a potential therapeutic tool in modulating apoptosis to maintain the balance between cell proliferation and cell death that is essential to the normal development and function of an organism.  相似文献   

13.
Apoptosis in cortical neurons requires efflux of cytoplasmic potassium mediated by a surge in Kv2.1 channel activity. Pharmacological blockade or molecular disruption of these channels in neurons prevents apoptotic cell death, while ectopic expression of Kv2.1 channels promotes apoptosis in non-neuronal cells. Here, we use a cysteine-containing mutant of Kv2.1 and a thiol-reactive covalent inhibitor to demonstrate that the increase in K+ current during apoptosis is due to de novo insertion of functional channels into the plasma membrane. Biotinylation experiments confirmed the delivery of additional Kv2.1 protein to the cell surface following an apoptotic stimulus. Finally, expression of botulinum neurotoxins that cleave syntaxin and synaptosome-associated protein of 25 kDa (SNAP-25) blocked upregulation of surface Kv2.1 channels in cortical neurons, suggesting that target soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins support proapoptotic delivery of K+ channels. These data indicate that trafficking of Kv2.1 channels to the plasma membrane causes the apoptotic surge in K+ current.  相似文献   

14.
Exposure of GH-3 cells to epidermal growth factor for 4 consecutive days induced the expression of both D-2(415) and D-2(444) dopamine-receptor isoforms. Epidermal growth factor also promoted a remarkable increase in the content of Gi3 protein, which is responsible for receptor-induced activation of potassium channels in GH-3 cells. D-2 receptors in this model apparently activate a specific transducing pathway, leading to opening of potassium channels and inhibition of prolactin release by cAMP-independent mechanisms. This is shown by: 1) the selective D-2 agonist quinpirole, while inactive on vasoactive intestinal peptide-induced prolactin release, strongly inhibited the hormone secretion induced by neurotensin; 2) quinpirole, up to 100 microM, did not inhibit cAMP production evoked by vasoactive intestinal peptide both in intact cells and in broken cell membrane preparations; and 3) quinpirole and other D-2 agonists strongly potentiated Rb+ efflux when measured in a nominally calcium-free reaction solution containing 100 mM potassium (voltage-dependent component), but did not modify Rb+ efflux if measured in a reaction solution containing 1 mM calcium and 5 mM potassium (calcium-activated, cAMP-dependent component).  相似文献   

15.
Cell shrinkage, or the loss of cell volume, is a ubiquitous characteristic of programmed cell death that is observed in all examples of apoptosis, independent of the death stimulus. This decrease in cell volume occurs in synchrony with other classical features of apoptosis. The molecular basis for cell shrinkage during apoptosis involves fluxes of intracellular ions including K+, Na+, and Cl-. Here we show for the first time that these ion fluxes, but not cell shrinkage, are necessary for apoptosis. Using sodium-substituted medium during anti-Fas treatment of Jurkat cells, we observed cellular swelling, a property normally associated with necrosis, in contrast to the typical cell shrinkage. Surprisingly, these swollen cells displayed all of the other classical features of apoptosis, including chromatin condensation, externalization of phosphatidylserine, caspase activity, poly(ADP)-ribose polymerase cleavage, and internucleosomal DNA degradation. These swollen cells had a marked decrease in intracellular potassium, and subsequent inhibition of this potassium loss completely blocked apoptosis. Reintroduction of sodium ions in cell cultures reversed this cellular swelling, resulting in a dramatic loss of cell volume and the characteristic apoptotic morphology. Additionally, inhibition of sodium influx using a sodium channel blocker saxitoxin completely prevented the onset of anti-Fas-induced apoptosis in Jurkat cells. These findings suggest that sodium influx can control not only changes in cell size but also the activation of apoptosis, whereas potassium ion loss controls the progression of the cell death process. Therefore cell shrinkage can be separated from other features of apoptosis.  相似文献   

16.
The effects of arginine-vasopressin (AVP) (0.01-1 microM) on membrane potential, [Ca2+]i and ATP-sensitive potassium channels have been studied in the insulin-secreting cell line RINm5F. In whole cells, with an average spontaneous cellular transmembrane potential of -64 +/- 3 mV (n = 33) and an average basal [Ca2+]i of 102 +/- 6 nM (n = 40), AVP evoked: (i) membrane depolarization, (ii) voltage-dependent Ca2+ spike-potentials and (iii) a sharp rise in [Ca2+]i. Single-channel current events recorded from excised outside-out membrane patches show that AVP closes potassium channels that are also closed by tolbutamide (100 microM) and opened by diazoxide (100 microM). AVP acts on KATP channels specifically from the outside of the membrane and a soluble cytosolic messenger appears not to be involved, since there is no channel activation in cell-attached membrane patches when the peptide is added to the bath solution.  相似文献   

17.
Background information. A major hallmark of apoptosis is cell shrinkage, termed apoptotic volume decrease, due to the cellular outflow of potassium and chloride ions, followed by osmotically obliged water. In many cells, the ionic pathways triggered during the apoptotic volume decrease may be similar to that observed during a regulatory volume decrease response under hypotonic conditions. However, the pathways involved in water loss during apoptosis have been largely ignored. It was recently reported that in some systems this water movement is mediated via specific water channels (aquaporins). Nevertheless, it is important to identify whether this is a ubiquitous aspect of apoptosis as well as to define the mechanisms involved. The aim of the present work was to investigate the role of aquaporin‐2 during apoptosis in renal‐collecting duct cells. We evaluated the putative relationship between aquaporin‐2 expression and the activation of the ionic pathways involved in the regulatory volume response. Results. Apoptosis was induced by incubating cells with a hypertonic solution or with cycloheximide in two cortical collecting duct cell lines: one not expressing aquaporins and the other stably transfected with aquaporin‐2. Typical features of apoptosis were evaluated with different approaches and the water permeability was measured by fluorescence videomicroscopy. Our results show that the rate of apoptosis is significantly increased in aquaporin‐2 cells and it is linked to the rapid activation of volume‐regulatory potassium and chloride channels. Furthermore, the water permeability of cells expressing aquaporin‐2 was strongly reduced during the apoptotic process and it occurs before DNA degradation. Conclusions. These results let us propose that under apoptotic stimulation aquaporin‐2 would act as a sensor leading to a co‐ordinated activation of specific ionic channels for potassium and chloride efflux, resulting in both more rapid cell shrinkage and more rapid achievement of adequate levels of ions necessary to activate the enzymatic apoptotic cascade.  相似文献   

18.
Cell shrinkage is a hallmark of apoptosis. Potassium efflux, which is involved in cell shrinkage, has been previously described as an essential event of apoptosis. This study was designed to address the importance of potassium efflux in hypertonicity (450 mOsm and 600 mOsm) induced apoptosis. We initiated apoptosis in HL-60 cells in hypertonic medium consisting of either high concentrations of NaCl, mannitol or KCl. Apoptotic activity was evaluated based on the DNA content of the cells, annexin-V staining and calcium content. Apoptosis was initiated in hypertonic conditions consisting of high intracellular K+. We demonstrate that apoptosis can occur in the presence of high intracellular potassium contrary to previous predictions.  相似文献   

19.
The loss of cell volume is a fundamental feature of apoptosis. We have previously shown that DNA degradation and caspase activity occur only in cells which have shrunken as a result of potassium and sodium efflux (Bortner, C. D., Hughes, F. M., Jr., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 32436-32442). Furthermore, maintaining a normal intracellular potassium concentration represses the cell death process by inhibiting the activity of apoptotic nucleases and suppressing the activation of effector caspases (Hughes, F. M., Jr., Bortner, C. D. Purdy, G. D., and Cidlowski, J. A. (1997) J. Biol. Chem. 272, 30567-30576). We have now investigated the relationship between cell shrinkage, ion efflux, and changes in the mitochondrial membrane potential, in addition to the role of caspases in these apoptotic events. Treatment of Jurkat cells with a series of inducers which act via distinct signal transduction pathways, resulted in all of the cell death characteristics including loss of cell viability, cell shrinkage, K(+) efflux, altered mitochondrial membrane potential, and DNA fragmentation. Interestingly, only cells which shrunk had a loss of mitochondrial membrane potential and the other apoptotic characteristics. Treatment of Jurkat cells with an anti-Fas antibody in the presence of the general caspase inhibitor z-VAD, abrogated these features. In contrast, when Jurkat cells were treated with either the calcium ionophore A23187 or thapsigargin, z-VAD failed to prevent cell shrinkage, K(+) efflux, or changes in the mitochondrial membrane potential, while effectively inhibiting DNA degradation. Treatment of Jurkat cells with various apoptotic agents in the presence of either the caspase-3 inhibitor DEVD, or the caspase-8 inhibitor IETD also blocked DNA degradation, but failed to prevent other characteristics of apoptosis. Together these data suggest that the cell shrinkage, K(+) efflux, and changes in the mitochondrial membrane potential are tightly coupled, but occur independent of DNA degradation, and can be largely caspase independent depending on the particular signal transduction pathway.  相似文献   

20.
The self-referencing electrode technique was employed to noninvasively measure gradients of dissolved oxygen in the medium immediately surrounding developing mouse embryos and, thereby, characterized changes in oxygen consumption and utilization during development. A gradient of depleted oxygen surrounded each embryo and could be detected >50 microm from the embryo. Blastocysts depleted the surrounding medium of 0.6+/-0.1 microM of oxygen, whereas early cleavage stage embryos depleted the medium of only 0.3+/-0.1 microM of oxygen, suggesting a twofold increase in oxygen consumption at the blastocyst stage. Mitochondrial oxidative phosphorylation (OXPHOS) accounted for 60-70% of the oxygen consumed by blastocysts, while it accounted for only 30% of the total oxygen consumed by cleavage-stage embryos. The amount of oxygen consumed by non-OXPHOS mechanisms remained relatively constant throughout preimplantation development. By contrast, the amount of oxygen consumed by OXPHOS in blastocysts is greater than that consumed by OXPHOS in cleavage-stage embryos. The amount of oxygen consumed by one-cell embryos was modulated by the absence of pyruvate from the culture medium. Treatment of one-cell embryos and blastocysts with diamide, an agent known to induce cell death in embryos, resulted in a decline in oxygen consumption, such that the medium surrounding dying embryos was not as depleted of oxygen as that surrounding untreated control embryos. Together these results validate the self-referencing electrode technique for analyzing oxygen consumption and utilization by preimplantation embryos and demonstrate that changes in oxygen consumption accompany important physiological events, such as development, response to medium metabolites, or cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号