首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 6 毫秒
1.
《Hormones and behavior》2012,61(5):666-675
Glucocorticoids are thought to mediate the disruption of parental behavior in response to acute and chronic stress. Previous research supports their role in chronic stress; however, no study has experimentally tested the effects of acute glucocorticoid elevation on paternal behavior. We tested the prediction that acute corticosterone (CORT) increases would decrease paternal behavior in California mouse fathers and would lead to longer-term effects on reproductive success, as even short-term increases in CORT have been shown to produce lasting effects on the hypothalamic-pituitary-adrenal axis. First-time fathers were injected with 30 mg/kg CORT, 60 mg/kg CORT or vehicle, or left unmanipulated. Interactions between the male and its pup(s) were recorded 1.5–2 h after injection and scored for paternal and non-paternal behavior. Treatment groups were combined into control (unmanipulated + vehicle, n = 15) and CORT (30 mg/kg + 60 mg/kg, n = 16) for analysis based on resulting plasma CORT concentrations. CORT treatment did not alter paternal or non-paternal behaviors or any long-term measures (male body mass or temperature, pup growth rate, pup survival, interbirth interval, number or mass of pups born in the second litter). Fathers showed a significant rise in body mass at day 30 postpartum, followed by a decrease in body mass after the birth of the second litter; however, this pattern did not differ between the CORT and control groups. In summary, acute elevation of plasma CORT did not alter direct paternal behavior, body mass, or reproductive outcomes, suggesting that acute CORT elevation alone does not overtly disrupt paternal care in this biparental mammal.  相似文献   

2.
In several mammalian species, lactating females show blunted neural, hormonal, and behavioral responses to stressors. It is not known whether new fathers also show stress hyporesponsiveness in species in which males provide infant care. To test this possibility, we determined the effects of male and female reproductive status on stress responsiveness in the biparental, monogamous California mouse (Peromyscus californicus). Breeding (N = 8 females, 8 males), nonbreeding (N = 10 females, 10 males) and virgin mice (N = 12 females, 9 males) were exposed to a 5-min predator-urine stressor at two time points, corresponding to the early postpartum (5-7 days postpartum) and mid/late postpartum (19-21 days postpartum) phases, and blood samples were collected immediately afterwards. Baseline blood samples were obtained 2 days prior to each stress test. Baseline plasma corticosterone (CORT) concentrations did not differ among male or female groups. CORT responses to the stressor did not differ among female reproductive groups, and all three groups showed distinct behavioral responses to predator urine. Virgin males tended to increase their CORT response from the first to the second stress test, while breeding and nonbreeding males did not. Moreover, virgin and nonbreeding males showed significant behavioral changes in response to predator urine, whereas breeding males did not. These results suggest that adrenocortical responses to a repeated stressor in male California mice may be modulated by cohabitation with a female, whereas behavioral responses to stress may be blunted by parental status.  相似文献   

3.
Stress and chronically elevated glucocorticoid levels have been shown to disrupt parental behavior in mothers; however, almost no studies have investigated corresponding effects in fathers. The present experiment tested the hypothesis that chronic variable stress inhibits paternal behavior and consequently alters pup development in the monogamous, biparental California mouse (Peromyscus californicus). First-time fathers were assigned to one of three experimental groups: chronic variable stress (CVS, n = 8), separation control (SC, n = 7), or unmanipulated control (UC, n = 8). The CVS paradigm (3 stressors per day for 7 days) successfully stressed mice, as evidenced by increased baseline plasma corticosterone concentrations, increased adrenal mass, decreased thymus mass, and a decrease in body mass over time. CVS altered paternal and social behavior of fathers, but major differences were observed only on day 6 of the 7-day paradigm. At that time point, CVS fathers spent less time with their pairmate and pups, and more time autogrooming, as compared to UC fathers; SC fathers spent more time behaving paternally and grooming the female mate than CVS and UC fathers. Thus, CVS blocked the separation-induced increase in social behaviors observed in the SC fathers. Nonetheless, chronic stress in fathers did not appear to alter survival or development of their offspring: pups from the three experimental conditions did not differ in body mass gain over time, in the day of eye opening, or in basal or post-stress corticosterone levels. These results demonstrate that chronic stress can transiently disrupt paternal and social behavior in P. californicus fathers, but does not alter pup development or survival under controlled, non-challenging laboratory conditions.  相似文献   

4.
In the laboratory rat and mouse, neonatal handling enhances hippocampal-dependent learning in adulthood, an effect mediated by changes in maternal behavior toward the handled young. In the present study, we examined the interaction between neonatal handling and biparental care during the early postnatal period and its effect on cognitive function in adult California mice (Peromyscus californicus). We characterized the parental behavior of handled and nonhandled father-present and father-absent families over the first 15 days of life. We then assessed cognitive performance of male and female offspring in the Barnes maze and object recognition test after they were 60 days of age. We found that the amount of licking and grooming received by pups was decreased in father-absent families. By postnatal days 12-15, licking and grooming in handled, father-absent families were equivalent to that of nonhandled, father-present families. Handling enhanced novel object recognition in father-present male mice with no effect in females. In the nonhandled group, the presence of the father had no effect on object recognition learning in male or female mice. Handling also enhanced spatial learning in the Barnes maze. In nonhandled families, the presence of the father appeared to have no effect on spatial learning in the male offspring. Interestingly, spatial learning in nonhandled, father-absent, female offspring was similar to that of handled animals. The average amount of licking and grooming received by pups was negatively correlated with the average number of errors made on the first day of reversal training in the Barnes maze. These data support previous findings that neonatal handling facilitates learning and memory in adulthood, suggest that under certain environmental conditions, there is a sex difference in the response of pups to paternal care, and further demonstrate the importance of active parental investment for offspring cognitive development.  相似文献   

5.
Testosterone (T) mediates a trade-off, or negative correlation, between paternal behavior and aggression in several seasonally breeding avian species. However, the presence or absence of a T-mediated trade-off in mammals has received less attention. We examined the relationship between paternal behavior and territorial aggression in the biparental California mouse, Peromyscus californicus. In contrast to seasonally breeding birds, T maintains paternal behavior in this year-round territorial species. Castration reduced paternal behavior, whereas T replacement maintained high levels of paternal behavior. We hypothesize that T is aromatized in the brain to estradiol, which in turn stimulates paternal behavior. In contrast to paternal behavior, aggressive behavior was not reduced by castration. Interestingly, only sham males showed an increase in aggression across three aggression tests, while no change was detected in castrated or T-replacement males. Overall, trade-offs between aggression and paternal behavior do not appear to occur in this species. Measures of paternal behavior and aggression in a correlational experiment were actually positively correlated. Our data suggest that it may be worth reexamining the role that T plays in regulating mammalian paternal behavior.  相似文献   

6.
In a minority of mammalian species, including humans, fathers play a significant role in infant care. Compared to maternal behavior, the neural and hormonal bases of paternal care are poorly understood. We analyzed behavioral, neuronal and neuropeptide responses towards unfamiliar pups in biparental California mice, comparing males housed with another male (“virgin males”) or with a female before (“paired males”) or after (“new fathers”) the birth of their first litter. New fathers approached pups more rapidly and spent more time engaging in paternal behavior than virgin males. In each cage housing two virgin males, one was spontaneously paternal and one was not. New fathers and paired males spent more time sniffing and touching a wire mesh ball containing a newborn pup than virgin males. Only new fathers showed significantly increased Fos-like immunoreactivity in the medial preoptic nucleus (MPO) following exposure to a pup-containing ball, as compared to an empty ball. Moreover, Fos-LIR in the bed nucleus of the stria terminalis (STMV and STMPM) and caudal dorsal raphe nucleus (DRC) was increased in new fathers, independent of test condition. No differences were found among the groups in Fos-LIR in oxytocinergic or vasopressinergic neurons. These results suggest that sexual and paternal experiences facilitate paternal behavior, but other cues play a role as well. Paternal experience increases Fos-LIR induced by distal pup cues in the MPO, but not in oxytocin and vasopressin neurons. Fatherhood also appears to alter neurotransmission in the BNST and DRC, regions implicated in emotionality and stress-responsiveness.  相似文献   

7.
During embryonic development, viviparous offspring are exposed to maternally circulating hormones. Maternal stress increases offspring exposure to corticosterone and this hormonal exposure has the potential to influence developmental, morphological and behavioral traits of the resulting offspring. We treated pregnant female garter snakes (Thamnophis elegans) with low levels of corticosterone after determining both natural corticosterone levels in the field and pre-treatment levels upon arrival in the lab. Additional measurements of plasma corticosterone were taken at days 1, 5, and 10 during the 10-day exposure, which occurred during the last third of gestation (of 4-month gestation). These pregnant snakes were from replicate populations of fast- and slow-growth ecotypes occurring in Northern California, with concomitant short and long lifespans. Field corticosterone levels of pregnant females of the slow-growth ecotype were an order of magnitude higher than fast-growth dams. In the laboratory, corticosterone levels increased over the 10 days of corticosterone manipulation for animals of both ecotypes, and reached similar plateaus for both control and treated dams. Despite similar plasma corticosterone levels in treated and control mothers, corticosterone-treated dams produced more stillborn offspring and exhibited higher total reproductive failure than control dams. At one month of age, offspring from fast-growth females had higher plasma corticosterone levels than offspring from slow-growth females, which is opposite the maternal pattern. Offspring from corticosterone-treated mothers, although unaffected in their slither speed, exhibited changes in escape behaviors and morphology that were dependent upon maternal ecotype. Offspring from corticosterone-treated fast-growth females exhibited less anti-predator reversal behavior; offspring from corticosterone-treated slow-growth females exhibited less anti-predator tail lashing behavior.  相似文献   

8.
We examined the rapid effects of corticosterone (CORT) on N-methyl-D-aspartate (NMDA) receptor-mediated Ca2+ signals in adult mouse hippocampal slices by using Ca2+ imaging technique. Application of NMDA caused a transient elevation of intracellular Ca2+ concentration followed by a decay to a plateau within 150s. The 30min preincubation of CORT induced a significant decrease of the peak amplitude of NMDA-induced Ca2+ elevation in the CA1 region. The rapid effect of CORT was induced at a stress-induced level (0.4-10microM). Because the membrane non-permeable bovine serum albumin-conjugated CORT also induced a similar rapid effect, the rapid effect of CORT might be induced via putative surface CORT receptors. In contrast, CORT induced no significant effects on NMDA-induced Ca2+ elevation in the dentate gyrus. In the CA3 region, CORT effects were not evaluated, because the marked elevation of NMDA-induced Ca2+ signals was not observed there.  相似文献   

9.
Zebra finches are a highly social and monogamous avian species. In the present study, we sought to determine the effect of social isolation (separation from the flock) in a novel environment with and without a conspecific present on the adrenocortical activity of paired and unpaired individuals of this species. With regard to paired birds, we hypothesized that the presence of the mate during isolation from the group would act as a social buffer against the stressful effects of isolation. We observed that 10 but not 30 minutes of social isolation resulted in elevated concentrations of corticosterone in unpaired and paired male zebra finches in comparison to baseline concentrations of corticosterone. Furthermore, the presence of a mate during isolation in a novel environment did not have a buffering effect against increases in corticosterone concentrations. Additionally, to compare concentrations of corticosterone in response to isolation (in a novel environment) to a previously well-established stressor, we subjected groups of birds to restraint. We observed that 10 or 30 minutes of restraint led to significantly higher concentrations of corticosterone as compared to baseline. Finally, to rule out the possibility that merely handling a bird would result in significantly elevated concentrations of corticosterone as compared to baseline samples, we measured corticosterone concentrations 10 or 30 minutes after handling involving capture and release only. Our results suggest that handling alone might have contributed to the elevation of corticosterone in birds exposed to 10 minutes but not 30 minutes of restraint. Handling by itself did not account, however, for the elevated corticosterone in birds socially isolated for 10 minutes.  相似文献   

10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号