首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到12条相似文献,搜索用时 15 毫秒
1.
Abstract. The soil chemistry of a headwater valley fen is influenced by local ground water discharge that supplies base cations and alkalinity to the fen. An irrigation canal just upward of the fen is the source of this alkalinity. The ecological consequences of this artificial system are studied both on the soil and vegetation level. Rich-fen species of the alliance Caricion davallianae are connected to soil water alkalinity and soil base status. They depend directly on the alkaline ground water discharge. In addition, the local input of this water causes a gradient-rich pattern from poor to rich fen, and it is therefore concluded that it is responsible for the presence of intermediate fen vegetation too. High nutrient levels in the irrigation water have not influenced the fen until now. This case study illustrates the possibility for rich fen restoration after acidification. Irrigation with alkaline water is efficient if excess nutrients can be removed.  相似文献   

2.
In the eastern part of the Naardermeer peatlands (the Netherlands) a regional calcium-rich groundwater flow discharges (here often called the seepage area), whereas in the western part infiltration takes place. The ecological consequence of this hydrological pattern is reflected by the pattern in reedland communities. In the seepage area, which is characterized by Thelypteris-reedlands including many rare and endangered species (Caricion davallianae, Calthion palustris), there is a complex gradient of water types. The lime potential in the peat soil is clearly influenced by the hydrological gradient. In the ombrotrophic (poor fen) part of the gradient (containing species of Caricion curto-nigrae) the lime potentials are low and the groundwater contains low amounts of dissolved ions. The rare and endangered species (Caricion davallianae) are restricted to a small area with high lime potentials which is nourished by regional calcium-rich groundwater. High lime potentials were also measured in eutrophic reedlands influenced by brackish groundwater. Several species which generally occur in wet meadows even show a preference for this brackish environment.In a part of the seepage area succession from rich fen to poor fen and Alnus wood has taken place over a period of 40 years. This development has been caused by the diminishing amount of fresh seepage due to a lowering of the water levels in the surrounding area.The characteristics of poikilotrophic zones (contact zones between water flows) are discussed in relation to their significance for the preservation of endangered marsh species.Abbreviations EC25= Electrical conductivity measured at 25 °C  相似文献   

3.
G. Regnéll 《Plant Ecology》1980,43(1-2):123-130
Summary Two sites at Örup, SE skåne, Sweden, have been investigated, viz. a grazed, unimproved, tussocky pasture on a calcareous moraine clay; and an originally similar, adjacent area that was abandoned about 1960. On the grazed site the vegetation is extremely rich in species. This vegetation type was formerly widespread, but nowadays it is rare and therefore it is important to try to conserve examples of it. In total, 80 0.1 m2 quadrates distributed at random within 4 homogeneous plots were investigated. The species composition and the cover, the height of the vegetation, the position on a tussock or in a depression and the amount of litter were recorded. The cover data were ordinated (PCA). The differentiation between tussocks and depressions and the effects of ceasing grazing were clearly separated. The connections between the vegetation and the position of the quadrat, grazing intensity etc. were investigated. The vegetation of the ungrazed parts had become dominated by Filipendula ulmaria and Carex disticha; on an average there were 5.5 species/0.1 m2. The grazed quadrats contained three times as many species and showed much higher spatial variation, important species being Carex panicea, C. flacca, Molinia caerulea, Festuca ovina, Potentilla erecta, Centaurea jacea and Serratula tinctoria.Nomenclature of vascular plants follows Lid (1974), for names of bryophytes see Nyholm (1954–69) and Arnell (1956).This paper is mainly based on a more detailed paper in Swedish (Regnéll 1979).I thank Dr. E. van der Maarel, Prof. Nils Malmer, Fil. lic. Anders Larsson, Fil. Dr. Eva Waldemarsson-Jensén and Fil. kand. Stefan Persson for valuable discussions and encouragement.  相似文献   

4.
5.
For the removal of nutrients from eutrophic stream water polluted by non-point sources, an artificial aquatic food web (AAFW) system comprising processes of phytoplankton growth and Daphnia magna grazing was developed. The AAFW system was a continuous-flow system constructed with one storage basin of 3 m3 capacity, one phytoplankton tank of 3 m3 capacity, and one zooplankton growth chamber of 1.5 m3 capacity. The system was optimized by setting hydraulic retention time of phytoplankton tank as 3 days and D. magna density as 740–1000 individual l−1. When the system was operated on eutrophic stream water that was delivering 471 g of total nitrogen (TN) and 29 g of total phosphorus (TP) loadings for 45 days, 250 g (53%) of TN and 16 g (54%) of TP were removed from the water during its passage through the phytoplankton tank. In addition, 64 g (14%) of TN and 4 g (13%) of TP were removed from the water by harvesting zooplankton biomass in the zooplankton growth chamber, resulting in significant overall removal rates of TN (69%), nitrate (78%), TP (73%), and dissolved inorganic phosphorus (94%). While the removal efficiency of the AAFW system is comparable to those of other ecotechnologies such as constructed wetlands, its operation is less limited by the availability of space or seasonal shift of temperature. Therefore, it was concluded that AAFW system is a highly efficient, flexible system for reducing nutrient levels in tributary streams and hence nutrient loading to large aquatic systems receiving the stream water. Handling editor: J. Padisak  相似文献   

6.
In order to remove nutrients from sewage, ecotechnology with an artificial food web composed of phytoplankton and Daphnia magna was used. To optimise performance of the system, phytoplankton growth, zooplankton growth, and a continuous-flow system were used. For phytoplankton growth, stirring was 6.7 times faster than the settling in growth rate of Scenedesmus. Zooplankton growth was not influenced by phytoplankton succession, and the specific production coefficient of D. magna was 110.4 mg Daphnia dry weight (DW) per mg chlorophyll a (Chl a). Results indicated that removal of nutrients was better in a long hydraulic residence time (HRT) system than in a system with short HRT. The optimum retention time was found to be 3 days for the phytoplankton chamber and 1.5 days for the subsequent D. magna chamber, respectively, with total retention time of the combined chambers being kept at 4.5 days. When a pilot plant was operated under these conditions, the removal rates of total nitrogen (TN) and total phosphorus (TP) were 68 and 56%, respectively. In the material budget of TN, 32% of inputs passed on to effluent, 39% to sludge, 27% to air and 2% to harvested Daphnia. For TP, 44% of inputs passed on to effluent, 51% to sludge and 4% to Daphnia.  相似文献   

7.
One of the major problems in industrial water systems is the generation of biofilm, which is resistant to antimicrobial agents and causes failure of sanitization policy. This work aimed to study the anti-biofilm activity of peracetic acid (PAA) at contact times and temperatures combinations. To this end, a 96-well microtiter-based calorimetric method was applied in in vitro biofilm production using Escherichia coli, isolated from the water supply system of a pharmaceutical plant. The phenotypic and phylogenetic tests confirmed that the isolated bacteria belong to strains of Escherichia coli. The anti-biofilm activity of peracetic acid on formed biofilm was investigated at concentrations of 0·15–0·5% for a contact time of 5–15 min at 20–60°C. The maximum biofilm formation by MTP method using an Escherichia coli isolate was achieved in 96-h incubation in TSB containing wells at 37°C. Biofilm formation rate shown to be high by the environmental isolate compared with that of standard strain. PAA at concentrations above 0·25%, the temperature of 40°C and a minimum of 10 min of contact time was effective in the eradication of biofilm in an MTP-based system.  相似文献   

8.
9.
The objective of the present study was to investigate the ability of water hyacinth (Eichhornia crassipes) to absorb organic compounds (potassium hydrogen phthalate, sodium tartrate, malathion, 2,4-dichlorophenoxy acetic acid (2,4-D), and piroxicam). For the aforementioned purpose, an artificial wetland system (AWS) was constructed and filled with water hyacinth collected from the Valsequillo Reservoir, Puebla, Mexico. Potassium hydrogen phthalate and sodium tartrate were measured in terms of chemical oxygen demand (COD) and biological oxygen demand (BOD). The present study indicated that the water hyacinths absorbed nearly 1.8–16.6 g of COD kg?1 dm (dry mass of water hyacinth), while the absorbance efficiency of BOD was observed to be 45.8%. The results also indicated that the maximum absorbance efficiency of malathion, 2,4-D, and piroxicam was observed to be 67.6%, 58.3%, and 99.1%, respectively. The kinetics of organic compounds fitted different orders as malathion followed a zeroth-order reaction, while 2,4-D and piroxicam followed the first-order reactions. Preliminary assessment of absorption of heavy metals by the water hyacinth in the AWS was observed to be (all values in mg g?1) 7 (Ni), 13.4 (Cd), 16.3 (Pb), and 17.5 (Zn) of dry biomass, thus proving its feasibility to depurate wastewater.  相似文献   

10.
A gas chromatography-mass spectrometry assay method for the analysis of lauric, myristic, and palmitic acids and their omega and omega(-1) hydroxylated metabolites from in vitro incubations of cytochrome P450 CYP4A1, involving solid-phase extraction and trimethysilyl derivatization, was developed. The assay was linear, precise, and accurate over the range 0.5 to 50microM for all the analytes. It has the advantages of a more rapid analysis time, an improved sensitivity, and a wider range of analytes compared with other methods. An artificial membrane system was optimized for application to purified CYP4A1 enzyme by investigating the molar ratios of cytochrome b(5) and cytochrome P450 reductase present in the incubation mixture. Using this method, the kinetics of omega and omega(-1) oxidation of lauric, myristic, and palmitic acids by CYP4A enzymes were measured and compared in rat liver microsomes and an artificial membrane system.  相似文献   

11.
Reversed micelles were used as a cytoplasmic model to study the effect of the multi-ionic equilibria on kinetics of extreme halophilic enzymes. The enzymatic system used was an alkaline p-nitrophenylphosphate phosphatase from the halophilic archaeon Halobacterium salinarum (earlier halobium). This enzyme was solubilised in reversed micelles of hexadecyltrimethylammonium bromide in cyclohexane, with 1-butanol as co-surfactant. The p-nitrophenylphosphate phosphatase is a good system to study the regulation of the enzymatic activity, because it utilises manganese, water and potassium or sodium as cofactors and reacts with p-nitrophenylphosphate. Kinetic behaviour was determined by the ratio between [Mn2+] and [Na+] or [K+]. When the [Mn2+] increased and [Na+] or [K+] decreased, the kinetics showed cooperative behaviour. Rabin's model describes the kinetic behaviour of the p-nitrophenylphosphate phosphatase in reversed micelles.  相似文献   

12.
Cel7A from Rasamsonia emersonii is one of the processive endocellulases classified under family 7 glycoside hydrolase. Molecular dynamics simulations were carried out to obtain the optimized sliding and hydrolyzing conformations, in which the reducing ends of sugar chains are located on different sites. Hydrogen bonds are investigated to clarify the interactions between protein and substrate in either conformation. Nine hydrogen bonding interactions are identified in the sliding conformation, and six similar interactions are also found correspondingly in the hydrolyzing conformation. In addition, four strong hydrophobic interactions are also determined. The domain cross‐correlation map analysis shows movement correlation of protein including autocorrelation between residues. The root mean square fluctuations analysis represents the various flexibilities of different fragment in the two conformations. Comparing the two conformations reveals the water‐supply mechanism of selective hydrolysis of cellulose in Cel7A. The mechanism can be described as follow. When the reducing end of substrate slides from the unhydrolyzing site (sliding conformation) to the hydrolyzing site (hydrolyzing conformation), His225 is pushed down and rotated, the rotation leads to the movement of Glu209 with the interstrand hydrogen bonding in β‐sheet. It further makes Asp211 close to the hydrolysis center and provides a water molecule bounding on its carboxyl in the previous unhydrolyzing site. After the hydrolysis takes place and the product is excluded from the enzyme, the Asp211 comes back to its initial position. In summary, Asp211 acts as an elevator to transport outer water molecules into the hydrolysis site for every other glycosidic bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号