首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
How to survive in the host: the Yersinia lesson   总被引:2,自引:0,他引:2  
The Yop virulon allows Yersinia spp. to resist the immune response of the host by injecting harmful proteins into host cells. It is composed of four elements: (i) type III secretion machinery called Ysc; (ii) a set of proteins required to translocate the effector proteins inside the eukaryotic cells; (iii) a control system, and (iv) six Yop effector proteins.  相似文献   

3.
4.
5.
Yersiniae are equipped with the Yop virulon, an apparatus that allows extracellular bacteria to deliver toxic Yop proteins inside the host cell cytosol in order to sabotage the communication networks of the host cell or even to cause cell death. LcrG is a component of the Yop virulon involved in the regulation of secretion of the Yops. In this paper, we show that LcrG can bind HeLa cells, and we analyse the role of proteoglycans in this phenomenon. Treatment of the HeLa cells with heparinase I, but not chondroitinase ABC, led to inhibition of binding. Competition assays indicated that heparin and dextran sulphate strongly inhibited binding, but that other glycosaminoglycans did not. This demonstrated that binding of HeLa cells to purified LcrG is caused by heparan sulphate proteoglycans. LcrG could bind directly to heparin-agarose beads and, in agreement with these results, analysis of the protein sequence of Yersinia enterocolitica LcrG revealed heparin-binding motifs. In vitro production and secretion by Y . enterocolitica of the Yops was unaffected by the addition of heparin. However, the addition of exogenous heparin decreased the level of YopE–Cya translocation into HeLa cells. A similar decrease was seen with dextran sulphate, whereas the other glycosaminoglycans tested had no significant effect. Translocation was also decreased by treatment of HeLa cells with heparinitase, but not with chondroitinase. Thus, heparan sulphate proteoglycans have an important role to play in translocation. The interaction between LcrG and heparan sulphate anchored at the surface of HeLa cells could be a signal triggering deployment of the Yop translocation machinery. This is the first report of a eukaryotic receptor interacting with the type III secretion and associated translocation machinery of Yersinia or of other bacteria.  相似文献   

6.
7.
Yersinia pseudotuberculosis forms biofilms on Caenorhabditis elegans which block nematode feeding. This genetically amenable host-pathogen model has important implications for biofilm development on living, motile surfaces. Here we show that Y. pseudotuberculosis biofilm development on C. elegans is governed by N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) since (i) AHLs are produced in nematode associated biofilms and (ii) Y. pseudotuberculosis strains expressing an AHL-degrading enzyme or in which the AHL synthase (ypsI and ytbI) or response regulator (ypsR and ytbR) genes have been mutated, are attenuated. Although biofilm formation is also attenuated in Y. pseudotuberculosis strains carrying mutations in the QS-controlled motility regulator genes, flhDC and fliA, and the flagellin export gene, flhA, flagella are not required since fliC mutants form normal biofilms. However, in contrast to the parent and fliC mutant, Yop virulon proteins are up-regulated in flhDC, fliA and flhA mutants in a temperature and calcium independent manner. Similar observations were found for the Y. pseudotuberculosis QS mutants, indicating that the Yop virulon is repressed by QS via the master motility regulator, flhDC. By curing the pYV virulence plasmid from the ypsI/ytbI mutant, by growing YpIII under conditions permissive for type III needle formation but not Yop secretion and by mutating the type III secretion apparatus gene, yscJ, we show that biofilm formation can be restored in flhDC and ypsI/ytbI mutants. These data demonstrate that type III secretion blocks biofilm formation and is reciprocally regulated with motility via QS.  相似文献   

8.
Extracellular Yersinia disarm the immune system of their host by injecting effector Yop proteins into the cytosol of target cells. Five effectors have been described: YopE, YopH, YpkA/YopO, YopP and YopM. Delivery of these effectors by Yersinia adhering at the cell surface requires other Yops (translocators) including YopB. Effector and translocator Yops are secreted by the type III Ysc secretion apparatus, and some Yops also need a specific cytosolic chaperone, called Syc. In this paper, we describe a new Yop, which we have called YopT (35.5 kDa). Its secretion required an intact Ysc apparatus and SycT (15.0 kDa, pI 4.4), a new chaperone resembling SycE. Infection of macrophages with a Yersinia , producing a hybrid YopT–adenylate cyclase, led to the accumulation of intracellular cAMP, indicating that YopT is delivered into the cytosol of eukaryotic cells. Infection of HeLa cells with a mutant strain devoid of the five known Yop effectors (ΔHOPEM strain) but producing YopT resulted in the alteration of the cell cytoskeleton and the disruption of the actin filament structure. This cytotoxic effect was caused by YopT and dependent on YopB. YopT is thus a new effector Yop and a new bacterial toxin affecting the cytoskeleton of eukaryotic cells.  相似文献   

9.
10.
Several Gram negative bacteria use a complex system called "type III secretion system" (TTSS) to engage their host. The archetype of TTSS is the plasmid-encoded "Yop virulon" shared by the three species of pathogenic Yersinia (Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica). A second TTSS, called Ysa (for Yersinia secretion apparatus) was recently described in Y. enterocolitica 8081, a strain from serotype O:8. In this study, we describe the ysa locus from A127/90, another strain of serotype O:8, and we extend the sequence to several new genes encoding Ysp proteins which are the substrates of this secretion system, and a putative chaperone SycB. According to the deduced protein sequences, the ysa system from A127/90 is identical to that of 8081. It is different from the chromosome-encoded TTSS of Y. pestis but is instead closely related to the Mxi-Spa TTSS of Shigella and to the SPI-1 encoded TTSS of Salmonella enterica. We further demonstrated that the ysa locus is only present in biotype IB strains of Y. enterocolitica. Including this new Ysa system, a phylogenetic analysis of the 26 known TTSSs was carried out, based on the sequence analysis of three conserved proteins. All the TTSSs fall into five different clusters. The phylogenetic tree of these TTSSs is completely different from the evolutionary tree based on 16S RNA, indicating that TTSSs have been distributed by horizontal transfer.  相似文献   

11.
The Yersinia Yop virulon is an anti-host system made up of four elements: (i) a type III secretion system called Ysc; (ii) a system designed to deliver bacterial proteins into eukaryotic target cells (YopB, YopD); (iii) a control element (YopN); and (iv) a set of intracellularly delivered proteins designed to disarm these cells or disrupt their communications (YopE, YopH and possibly others). YopM, another Yop protein, binds thrombin and is thus presumed to act as an extracellular effector. Here, we analyzed YopM from Y.enterocolitica and we wondered whether it could also be delivered inside eukaryotic cells. To answer this question we applied the Yop-Cya reporter strategy. Hybrids made of 141 or 100 N-terminal residues of YopM fused to Cya were delivered inside PU5-1.8 macrophages by recombinant Y.enterocolitica strains. YopB and YopD were required as translocators. Leakage of the reporters into the macrophage culture supernatant during the bacterial infection increased strongly when YopN was missing, showing that YopN is involved in the control of delivery of YopM inside eukaryotic cells. YopN itself was not delivered into the macrophages. In conclusion, YopM is translocated inside the eukaryotic cells and its physiopathological role should be revised or completed.  相似文献   

12.
YscB of Yersinia pestis Functions as a Specific Chaperone for YopN   总被引:5,自引:0,他引:5       下载免费PDF全文
Following contact with a eucaryotic cell, Yersinia species pathogenic for humans (Y. pestis, Y. pseudotuberculosis, and Y. enterocolitica) export and translocate a distinct set of virulence proteins (YopE, YopH, YopJ, YopM, and YpkA) from the bacterium into the eucaryotic cell. During in vitro growth at 37°C in the presence of calcium, Yop secretion is blocked; however, in the absence of calcium, Yop secretion is triggered. Yop secretion occurs via a plasmid-encoded type III, or “contact-dependent,” secretion system. The secreted YopN (also known as LcrE), TyeA, and LcrG proteins are necessary to prevent Yop secretion in the presence of calcium and prior to contact with a eucaryotic cell. In this paper we characterize the role of the yscB gene product in the regulation of Yop secretion in Y. pestis. A yscB deletion mutant secreted YopM and V antigen both in the presence and in the absence of calcium; however, the export of YopN was specifically reduced in this strain. Complementation with a functional copy of yscB in trans completely restored the wild-type secretion phenotype for YopM, YopN, and V antigen. The YscB amino acid sequence showed significant similarities to those of SycE and SycH, the specific Yop chaperones for YopE and YopH, respectively. Protein cross-linking and immunoprecipitation studies demonstrated a specific interaction between YscB and YopN. In-frame deletions in yopN eliminating the coding region for amino acids 51 to 85 or 6 to 100 prevented the interaction of YopN with YscB. Taken together, these results indicate that YscB functions as a specific chaperone for YopN in Y. pestis.  相似文献   

13.
Type III secretion-dependent translocation of Yop (Yersinia outer proteins) effector proteins into host cells is an essential virulence mechanism common to the pathogenic Yersinia species. One unique feature of this mechanism is the polarized secretion of Yops, i.e. Yops are only secreted at the site of contact with the host cell and not to the surrounding medium. In vitro, secretion occurs in Ca2+-depleted media, a condition believed to somehow mimic cell contact. Three proteins, YopN, LcrG and TyeA have been suggested to control secretion and mutating any of these genes results in constitutive secretion. In addition, in Y. enterocolitica TyeA has been implied to be specifically required for delivery of a subset of Yop effectors into infected cells. In this work we have investigated the role of TyeA in secretion and translocation of Yop effectors by Y. pseudotuberculosis. An in frame deletion mutant of tyeA was found to be temperature-sensitive for growth and this phenotype correlated to a lowered expression of the negative regulatory element LcrQ. In medium containing Ca2+, Yop expression was somewhat elevated compared to the wild-type strain and low levels of Yop secretion was also seen. Somewhat surprisingly, expression and secretion of Yops was lower than for the wild-type strain when the tyeA mutant was grown in Ca2+-depleted medium. Translocation of YopE, YopH, YopJ and YopM into infected HeLa cells was significantly lower in comparison with the isogenic wild-type strain and Yop proteins could also be recovered in the tissue culture medium. This indicated that the tyeA mutant had lost the ability to translocate Yop proteins by a polarized mechanism. In order to exclude that the defect in translocation seen in the tyeA mutant was a result of lowered expression/secretion of Yops, a double lcrQ/tyeA mutant was constructed. This strain was de-repressed for Yop expression and secretion but was still impaired for translocation of both YopE and YopM. In addition, the low level of YopE translocation in the tyeA mutant was independent of the YopE chaperone YerA/SycE. TyeA was found to localize to the cytoplasm of the bacterium and we were unable to find any evidence that TyeA was secreted or surface located. From our studies in Y. pseudotuberculosis we conclude that TyeA is involved in regulation of Yop expression and required for polarized delivery of Yop effectors in general and is not as suggested in Y. enterocolitica directly required for translocation of a subset of Yop effectors.  相似文献   

14.
15.
Pathogenic Yersinia species employ type III machines to transport virulence factors across the bacterial envelope. Some substrates for the type III machinery are secreted into the extracellular medium, whereas others are targeted into the cytosol of host cells. We found that during infection of tissue culture cells, yersiniae secrete small amounts of LcrV into the extracellular medium. Knockout mutations of lcrV abolish Yersinia targeting and reduce expression of the lcrGVHyopBD operon. In contrast, a block in LcrV secretion does not affect targeting, but results in premature expression and secretion of Yop proteins into the extracellular medium. LcrV-mediated activation of the type III pathway is thought to occur by sequestration of the regulatory factor LcrG, presumably via the formation of LcrV.LcrG complexes. These results suggest that intrabacterial LcrV regulates the expression and targeting of Yop proteins during Yersinia infection, whereas secreted LcrV is required to ensure specificity of Yop injection into eukaryotic cells.  相似文献   

16.
Pathogenic yersiniae secrete the Yop anti-host proteins using a type-III secretion pathway. The components of the secretion machinery are encoded by three loci on the pYV plasmid: virA, virB, and virC . In this paper we describe the characterization of eight non-polar mutants of the virC locus, constructed by allelic exchange. The yscE, FG, I, J and K mutants were defective in Yop secretion and independent of Ca2+ (Cl) for their growth at 37°C. Substitution of the 12 N-terminal amino-acid residues of YscF impaired secretion of YopB and YopD only and led also to a Cl phenotype. The culture supernatant of the yscH mutant contained all the Yops except the 18 kDa YopR. Complementation experiments and an immunoblot analysis confirmed that YopR is encoded by the yscH gene. The LD50 for the mouse of the yscH mutant was 10-fold higher than that of the parental strain indicating that YopR is involved in pathogenesis. The phenotype of the yscM mutant was similar to that of the wild-type strain. However, overproduction of YscM from a multicopy plasmid in wild-type Yersinia enterocolitica prevented Yop secretion and synthesis. A hybrid YopH—LacZ' protein, encoded by a gene transcribed from the lac promoter, was secreted by a strain overexpressing YscM, showing that the secretion machinery was still functional. These results indicate that YscM plays a role in the feedback inhibition of Yop synthesis when secretion is compromised by acting as a negative regulator of Yop synthesis.  相似文献   

17.
Type III secretion system mediated secretion and translocation of Yop-effector proteins across the eukaryotic target cell membrane by pathogenic Yersinia is highly organized and is dependent on a switching event from secretion of early structural substrates to late effector substrates (Yops). Substrate switching can be mimicked in vitro by modulating the calcium levels in the growth medium. YscU that is essential for regulation of this switch undergoes autoproteolysis at a conserved N↑PTH motif, resulting in a 10 kDa C-terminal polypeptide fragment denoted YscUCC. Here we show that depletion of calcium induces intramolecular dissociation of YscUCC from YscU followed by secretion of the YscUCC polypeptide. Thus, YscUCC behaved in vivo as a Yop protein with respect to secretion properties. Further, destabilized yscU mutants displayed increased rates of dissociation of YscUCC in vitro resulting in enhanced Yop secretion in vivo at 30°C relative to the wild-type strain.These findings provide strong support to the relevance of YscUCC dissociation for Yop secretion. We propose that YscUCC orchestrates a block in the secretion channel that is eliminated by calcium depletion. Further, the striking homology between different members of the YscU/FlhB family suggests that this protein family possess regulatory functions also in other bacteria using comparable mechanisms.  相似文献   

18.
Many Gram-negative pathogens use a type III secretion machine to translocate protein toxins across the bacterial cell envelope. Pathogenic Yersinia spp. export at least 14 Yop proteins via a type III machine, which recognizes secretion substrates by signals encoded in yop mRNA or chaperones bound to unfolded Yop proteins. During infection, substrate recognition appears to be regulated in a manner that allows the Yersinia type III pathway to direct Yops to the bacterial envelope, the extracellular medium or into the cytosol of host cells.  相似文献   

19.
The pathogenic Yersinia species share a conserved type III secretion system, which delivers cytotoxic effectors known as Yops into target mammalian cells. In all three species, YopK (also called YopQ) plays an important role in regulating this process. In cell culture infections, yopK mutants inject higher levels of Yops, leading to increase cytotoxicity; however, in vivo the same mutants are highly attenuated. In this work, we investigate the mechanism behind this paradox. Using a β-lactamase reporter assay to directly measure the effect of YopK on translocation, we demonstrated that YopK controls the rate of Yop injection. Furthermore, we find that YopK cannot regulate effector Yop translocation from within the bacterial cytosol. YopE is also injected into host cells and was previously shown to contribute to regulation of the injectisome. In this work we show that YopK and YopE work at different steps to regulate Yop injection, with YopK functioning independently of YopE. Finally, by expressing YopK within tissue culture cells, we confirm that YopK regulates translocation from inside the host cell, and we show that cells pre-loaded with YopK are resistant to Yop injection. These results suggest a novel role for YopK in controlling the Yersinia type III secretion system.  相似文献   

20.
A comparative study of the structural and functional properties of recombinant Yersinia pestis Caf1 and human IL-1beta was performed. According to Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) data, IL-1beta and Caf1 are typical beta-structural proteins. Neither protein interacts with the hydrophobic probe ANS (8-anilino-1-naphthalenesulfonate) under physiological conditions. Specific binding of Caf1 [K(d) = (5.4 +/- 0.1) x 10(-10) M] to interleukin-1 receptors (IL-1Rs) on the surface of finite mouse fibroblasts (line NIH 3T3) was observed. Caf1 is able to inhibit high-affinity binding of (125)I-labeled IL-1beta to NIH 3T3 cells, and in the presence of Caf1, the binding of [(125)I]IL-1beta is characterized by a K(d) of (2.0 +/- 0.3) x 10(-9) M. Caf1 binding to IL-1R could reflect adhesive properties of the capsular subunits responsible for the contact of bacteria with the host immunocompetent cells. In its turn, this may represent a signal for the initiation of the expression and secretion of the proteins of Y. pestis Yop virulon. Thus, these results help to explain the importance of Caf1 in the interaction of Y. pestis with the host immune system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号