首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Responses of zooplankton to nutrient enrichment and fish predation were studied in 1998 and 1999 by carrying out parallel mesocosm experiments in six lakes across Europe. 2. Zooplankton community structure, biomass and responses to nutrient and fish manipulation showed geographical and year‐to‐year differences. Fish had a greater influence than nutrients in regulating zooplankton biomass and especially the relative abundances of different functional groups of zooplankton. When fish reduced the biomass of large crustaceans, there was a complementary increase in the biomasses of smaller crustacean species and rotifers. 3. High abundance of submerged macrophytes provided refuge for zooplankton against fish predation but this refuge effect differed notably in magnitude among sites. 4. Large crustacean grazers (Daphnia, Diaphanosoma, Sida and Simocephalus) were crucial in controlling algal biomass, while smaller crustacean grazers and rotifers were of minor importance. Large grazers were able to control phytoplankton biomass even under hypereutrophic conditions (up to 1600 μg TP L?1) when grazer biomass was high (>80–90 μg dry mass L?1) or accounted for >30% of the grazer community. 5. The littoral zooplankton community was less resistant to change following nutrient enrichment in southern Spain, at high temperatures (close to 30 °C), than at lower temperatures (17–23 °C) characterising the other sites. This lower resistance was because of a greater importance of nutrients than zooplankton in controlling algal biomass. 6. Apart from the reduced role of large crustacean grazers at the lowest latitude, no consistent geographical patterns were observed in the responses of zooplankton communities to nutrient and fish manipulation.  相似文献   

2.
Forrest J  Arnott SE 《Oecologia》2006,150(1):119-131
Dispersal can be an important determinant of local diversity and species composition, but evidence for effects of the regional species pool on local zooplankton communities has been mixed. Theory and experiments suggest that immigration will be necessary for maintenance of community diversity and functioning during periods of environmental change; conversely, fluctuating resource levels may increase the likelihood of invasion success. We conducted a factorial-design mesocosm experiment to test the effects of a nutrient pulse and weekly immigration from other lakes on the diversity and composition of a pelagic zooplankton community. Contrary to expectations, there were no interactive effects of nutrient enrichment and immigration on any measure of diversity, and the initial shift in community composition in response to the nutrient pulse did not depend on the introduction of new species or genotypes from more productive lakes. Although immigration increased species richness in enclosures, success of most colonising species was poor. However, the dispersal treatment appears to have enabled a stronger predator response to increased herbivore numbers in nutrient-pulsed enclosures, leading to an eventual decline in the abundance of some herbivorous species in response to immigration. We conclude that community invasibility was not influenced by productivity, and that dispersal limitation did not strongly constrain the response of the zooplankton community to our applied disturbance. This indicates an unexpected resistance to change in species composition and diversity in spite of disturbance, and suggests that, in our study system, changes in the abundance of resident species are more important than introductions of new species in the community response to short-term environmental change.Electronic Supplementary Material Supplementary material is available to authorized users in the online version of this article at .  相似文献   

3.
1. With increases in river discharge over time and space, zooplankton generally encounter increased turbulence, turbidity, hydraulic forces, downstream advection and food limitations, all of which should affect species diversity and densities. Of these factors, the role of turbulence on the distribution of zooplankton is least known along longitudinal and lateral dimensions in river networks. 2. We tested the factorial effects of turbulence and grazing level on Ohio River potamoplankton in spring and summer using twelve 1600‐L, outdoor mesocosms. Turbulence was calculated using the Froude number for equal depths but with current velocities of 0.064 and 0.32 m s?1. Grazing levels corresponded to a high density treatment (=ambient river densities of rotifers, copepods and cladocerans) and a low density treatment (initially no zooplankton >64 μm). All tanks had the same water residence time, and hydraulic stress was minimized by circular flow patterns. 3. Zooplankton densities and population growth rates were significantly affected by turbulence level and season. In general, rotifer populations grew faster in high turbulence tanks (though Keratella and Brachionus populations flourished in both treatments in summer) and microcrustaceans thrived better in low turbulence environments. The larger, calanoid copepods handled more turbulent conditions much better than cyclopoids or nauplii. Zooplankton had no detectable effects on particulate organic carbon concentrations in either month (values were higher in spring), but rotifers reduced chlorophyll concentrations in both months. 4. The relative importance of turbulence in controlling potamoplankton is probably to vary not only on a longitudinal basis in river networks but also with both the hydrogeomorphic complexity of river reaches and the type and amount of river regulation. Plans for river rehabilitation and management should incorporate non‐turbulent habitats in large rivers as a means of enhancing zooplankton populations and providing an important food web component for planktivores.  相似文献   

4.
Many observational studies in North American lakes have documenteddecreases in phytoplankton abundance after the invasion of thezebra mussel (Dreissena polymorpha). However, few field experimentshave examined in detail the effect of zebra mussels on phytoplanktonabundance and species composition over an extended period. Replicatedin situ mesocosms were used to evaluate the impact of naturaldensities of zebra mussels on phytoplankton and ciliate biovolume,and algal species composition over a 5-week period in a habitatthat lacked extant mussel populations. Mussel biomass used inthe experiment was determined using a regression model basedon a data analysis that predicts zebra mussel biomass from totalphosphorus concentration. Within 1 week, zebra mussels decreasedphytoplankton biovolume by 53% and ciliate biovolume by 71%.The effect of zebra mussels on ciliate biovolume was sustainedthroughout the study. However, the effect of zebra mussels onphytoplankton abundance gradually waned over the remaining 4weeks of the experiment, such that the declining effect of zebramussels could not be explained by a shift towards less edibleand/or faster growing algal species. The mussels’ decliningcondition could help to explain the effect observed over thecourse of the experiment.  相似文献   

5.
1. In situ enclosure experiments were performed in the mesotrophic Bermejales reservoir to evaluate the algal response to changes in the nutrient supply and in the zooplankton size structure and density in a 2 × 2 factorial design. The experiments were conducted during the spring bloom of nanoplanktonic diatoms in 1989. 2. Nutrient enrichment promoted a great increase of phytoplankton biomass indicating a strong nutrient limitation on phytoplankton growth. Total phytoplankton biomass was significantly lower in the Daphina-added enclosures at a given nutrient level and strong direct an indirect effect of zooplankton on phytoplankton community structure and nutrient availability were observed. 3. Most of the nanoplanktonic species were effectively grazed but species with protective coverings and large size colonies were favoured by grazers and small chlorococcales were unaffected probably because of their compensatory high growth rates. The decrease in total biomass imposed by grazers is attributable mainly to the decrease of Cyclotella ocellata, the most abundant species. This taxon suffers two net effects of zooplankton: direct grazing and the indirect decrease of Si availability caused by the growth of C. ocellata which was promoted by P excretion by zooplankton. Indirect effects of grazers on Si availability should, therefore, be taken into account in explaining phytoplankton succession and community structure. 4. In this experiment grazers affected considerably the nanoplanktonic community in Bermejales reservoir. The extent which they were affected, however, depended not only on the algal size as a determinant of edibility but also greatly on the specific nutrient requirements and taxonomic features of the algal species.  相似文献   

6.
1. The impacts of nutrients (phosphorus and nitrogen) and planktivorous fish on phytoplankton composition and biomass were studied in six shallow, macrophyte‐dominated lakes across Europe using mesocosm experiments. 2. Phytoplankton biomass was more influenced by nutrients than by densities of planktivorous fish. Nutrient addition resulted in increased algal biomass at all locations. In some experiments, a decrease was noted at the highest nutrient loadings, corresponding to added concentrations of 1 mg L?1 P and 10 mg L?1 N. 3. Chlorophyll a was a more precise parameter to quantify phytoplankton biomass than algal biovolume, with lower within‐treatment variability. 4. Higher densities of planktivorous fish shifted phytoplankton composition toward smaller algae (GALD < 50 μm). High nutrient loadings selected in favour of chlorophytes and cyanobacteria, while biovolumes of diatoms and dinophytes decreased. High temperatures also may increase the contribution of cyanobacteria to total phytoplankton biovolume in shallow lakes.  相似文献   

7.
Summary 1. Species compositions of zooplankton and phytoplankton were followed in Tuesday Lake before and after experimental manipulation of its fish populations (addition of piscivorous largemouth bass, removal of planktivorous minnows). Plankton dynamics were compared to those of adjacent, unmanipulated Paul Lake, where piscivorous fish have been dominant historically. 2. Indices of similarity for the zooplankton communities in the two lakes in 1984 prior to the manipulation were low; however, following the manipulation in spring, 1985, similarity of the zooplankton in the two lakes rose considerably and remained high throughout 1986. This was the result of an increase in Tuesday Lake of previously rare large-bodied cladocerans (Daphnia pulex, Holopedium gibberum) which were the dominants in Paul Lake, and the disappearance in Tuesday Lake of the dominant small-bodied copepod Tropocyclops prasinus, a minor component of the Paul Lake zooplankton. These observations are consistent with prior observations of the effects of size-selective predation on zooplankton communities. 3. Phytoplankton communities also responded strongly to the manipulation, with similarity indices for the two lakes rising from low levels in 1984 to high levels of similarity in 1985 and 1986, reflecting the decrease of formerly dominant Tuesday Lake taxa which were unimportant in Paul Lake and the appearance or increase in Tuesday Lake of several taxa characteristic of the Paul Lake phytoplankton assemblage. these results clearly show that food web structure can have pronounced effects on community composition at all levels of the food web, and that, just as zooplankton communities are structured by sizeselective predation, phytoplankton communities are structured by herbivory. These observations may provide some insight into factors governing the complex distributions of phytoplankton species among various lakes.A contribution from the University of Notre Dame Environmental Research Center, funded by NSF grants BSR-83-08918 and BSR-86-06271  相似文献   

8.
Mamani  A.  Koncurat  M. L.  Boveri  M. 《Hydrobiologia》2019,829(1):19-29

Whether macrophytes offer an effective refuge for zooplankton in all shallow lakes is subject to debate. To explore potential constraints between different predator threats and the related habitat choice by zooplankton, we conducted a mesocosm experiment in 12 large-sized pools mimicking the nearshore environment with part of its length being covered by submersed macrophytes (Egeria densa) and holding a mixed zooplankton community. Four treatments were used: (i) young zooplanktivorous fish (3 silverside, Odontesthes bonariensis) in the “open-water” zone; (ii) macroinvertebrate predator (31 grass shrimp, Palaemonetes argentinus) in the vegetated zone; (iii) both, fish in the open-water and shrimp in the vegetated zones; and (iv) control with no predators. Our results show specific effects of each predator on the abundance, composition, and size of cladocerans. Regarding distribution, in control and shrimp mesocosms, no differences were found between the two zones, while cladocerans were clearly more abundant in the vegetated side in the presence of fish. When both fish and shrimp were present, cladocerans preferred the vegetated zone too, but in a smaller proportion, and their abundance was less. The presence of predatory macroinvertebrates in vegetated littoral zone reduces the refuge value of this habitat, at least for cladocerans.

  相似文献   

9.

Zooplankton play a key role in energy transfer within lake food webs, but we have a poor knowledge concerning their role as phytoplankton grazers in shallow subtropical lakes. In this study, we aimed to determine how zooplankton grazing upon phytoplankton is altered in different scenarios of fish predation and turbidity, and we explored the relevance of grazing compared to other environmental variables, to explain phytoplankton biomass changes. A mesocosm experiment was conducted by including the following treatments: fish, turbidity, fish + turbidity, and a control (without fish or varying turbidity). The experiment lasted 21 days, and samples were taken four times. Zooplankton grazing was only effective for the microphagous group upon Cryptophyceae, while large Chlorophyceae and small pennate Bacillariophyceae biomass were benefited in the presence of copepods and cladocerans, being negatively affected by depletions in nitrogen availability. In the turbidity treatment, a reduction in phytoplankton biomass was obtained, artificially increasing zooplankton grazing on phytoplankton, while fish presence inhibited grazing of adult copepods and cladocerans. The other groups of phytoplankton were only influenced by the environment. This experiment suggests that phytoplankton biomass variations would be more affected by the environment than by zooplankton grazing in shallow lakes from the Paraná River.

  相似文献   

10.
Studies on the effect of eutrophication on the ecology of shallow lakes, usually pay scant attention to changes within the epiphytic algal community, though the contribution of this to the ecosystem dynamics is transcendental. In order to test the influence of nutrient loadings and fish densities in the structure of algal epiphyton in a shallow lake, an experiment was performed using in situ mesocosms. Nutrient additions were related to significant decreases in the total epiphyton biovolume and that of bacillariophyceans and zygnematophyceans, but with increases in the abundance of cyanobacteria. The different response of algal groups at the higher nutrient concentrations (increases or decreases in their abundance and/or biovolume) can be related to their ecophysiological constraints such as different resistance to toxicant ammonium accumulation. Plant-associated macroinvertebrates numbers were positively correlated with total numbers of epiphyton. The presence of planktivorous fish enhanced the abundance and biovolume of all algal groups, except cyanobacteria. Fishes enhanced the abundance of plant-associated animals and of total epiphyton. Fish indirect effects (e.g., nutrients release) and their dietary particularities were among the factors that together with nutrients influenced epiphyton growth. The role of indirect effects of fishes and the importance of their dietary particularities are stressed as key factors to understand the processes controlling epiphyton ecology and the food web structure of shallow lakes. Handling editor: D. Ryder.  相似文献   

11.
Nürnberg  Gertrud K.  Shaw  Margo 《Hydrobiologia》1998,382(1-3):97-112
The relationships between long-term surface average concentrations of humic acids measured as water colour, dissolved organic carbon (DOC) or Secchi disk transparency and trophic state variables were studied with literature data from more than 600 freshwater lakes. The geometric means of summer surface average nutrient (phosphorus and nitrogen) concentration, phytoplankton biomass (chlorophyll concentration), and hypolimnetic anoxia (anoxic factor) were significantly higher in coloured than in clear lakes. The regressions of colour or DOC on these trophic state variables were positive and significant throughout a range of three orders of magnitude. Phytoplankton or primary productivity was higher in coloured lakes, when expressed per volume of epilimnion. Annual integral primary productivity expressed on an areal basis was smaller in coloured lakes, probably a reflection of shallower phototrophic depths in these lakes. There is evidence that annual integral bacteria productivity is much higher in coloured lakes for two reasons: first, epilimnetic bacteria production was ca. four times higher in coloured lakes, second, other studies have shown that hypolimnetic bacteria production is commonly higher than epilimnetic production, especially in anoxic hypolimnia that are frequent in coloured lakes. All volumetrically expressed variables indicated higher productivity in coloured lakes. In addition, high bacteria productivity reflects a different food chain involving mixotrophs, possibly compensating for low light conditions. Our analyses indicate that primary and secondary productivity is as high as or higher than in clear lakes. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
Ding  Yanqing  Xu  Hai  Deng  Jianming  Qin  Boqiang  He  Youwen 《Hydrobiologia》2019,829(1):167-187
Hydrobiologia - An increased nutrient loading drives eutrophication of lake ecosystems. Nutrient loading has two different origins: (1) internal loading due to nutrients release from sediments and...  相似文献   

13.
The main focus of this study was to investigate the effects of lime treatment with Ca(OH)2 on a hypereutrophic hardwater lake (Lake Alserio, Northern Italy), focusing on its impact on plankton communities. We performed a mesocosm experiment using two large enclosures, one for treatment and one control, in the lake. The addition of Ca(OH)2 proved to be effective in reducing phosphorus concentration, but the effect was limited in time. Redissolution of the precipitating calcium carbonate as it came into contact with the deep water determined a phosphorus increase about 2 weeks after the liming. The liming had a strong impact on the plankton assemblage, as was demonstrated by the sharp decrease in phytoplankton and zooplankton biomass and density, and 1 month after the treatment we observed a different taxonomic composition inside the enclosure from that of the lake. The result of the experiment showed that liming with Ca(OH)2 can be regarded as a suitable treatment for accelerating recovery of the lake. Multiple treatments will be necessary to improve the trophic level over a longer period.  相似文献   

14.
In two mesocosm experiments designed to study the effect of nutrients and turbulence on trophic levels below fish larvae in the ecosystem, turbulence was created by oscillating grids. Utilizing two different frequencies, two levels of turbulence (`high' and `low') were generated in a total of eight mesocosms in both experiments. In each mesocosm a two-layer density structure was created. We succeeded in generating turbulence that mimics turbulence found in natural ecosystems, with turbulent eddies on larger scales than those relevant for organism interactions. Energy dissipation rates () were calculated from the frequency spectrums of the measured turbulent velocities. In the second experiment the average energy dissipation rates in the upper layer were 1.9×10–7 W kg–1 and 5.5×10–8 W kg–1 in the `high' and `low' enclosures, respectively. Finding `background' turbulence levels between 5.3×10–9 and 3×10 –8 W kg–1, we suggest that future experiments consider turbulent measurements as a standard variable.  相似文献   

15.
1. Climate warming is expected to change respiration in shallow lakes but to an extent that depends on nutrient state. 2. We measured sediment respiration (SR) over the season in the dark on intact sediment cores taken from a series of flow‐through, heated and unheated, nutrient‐enriched and unenriched mesocosms. The natural seasonal temperature cycle ranged from 2 to 20 °C in the unheated mesocosms. In the heated mesocosms, the temperature was raised 4–6 °C above ambient temperatures, depending on season, following the A2 climate change scenario downscaled to the local position of the mesocosms, but enlarged by 50%. We further measured ecosystem respiration (ER) in the mesocosms based on semi‐continuous oxygen measurements. 3. SR changed over the season and was approximately ten times higher in summer than in winter. SR showed no clear response to warming in the nutrient‐enriched treatment, while it increased with warming in the unenriched mesocosms which also had lower fish densities. 4. ER was not affected by artificial warming or nutrient enrichment, but it was ten times higher in summer than in winter. 5. SR contributed 24–32% to ER. The SR:ER ratio was generally stimulated by warming and was higher in winter than in summer, especially in the nutrient‐enriched mesocosms. 6. Our results indicate that climate warming may lead to higher SR, especially in clear, macrophyte‐dominated systems. Moreover, the contribution of SR to ER will increase with higher temperatures, but decrease as the winters get shorter.  相似文献   

16.
Wetlands Ecology and Management - Turbidity influences the success of fish feeding, but little is known about the difference in the effects of turbidity as a result of organic and inorganic matter....  相似文献   

17.
Su  Ling  Jin  Zongan  Xie  Lichao  Tang  Yali  Liu  Zhengwen  Zhong  Ping  Su  Yaling  Lin  Qiuqi 《Hydrobiologia》2021,848(18):4179-4188
Hydrobiologia - Submerged macrophytes cannot be utilized directly by zooplankton. However, vegetation can serve as an organic carbon resource for heterotrophic bacteria, which are themselves...  相似文献   

18.
In order to evaluate latitudinal differences in the relationship of phytoplankton biomass and diversity with environmental conditions in shallow lakes, we sampled 98 shallow lakes from three European regions: Denmark (DK), Belgium/The Netherlands (BNL) and southern Spain (SP). Phytoplankton biomass increased with total phosphorus (TP) concentrations and decreased with submerged macrophyte cover across the three regions. Generic richness was significantly negatively related to submerged macrophyte cover and related environmental variables. Zooplankton:phytoplankton biomass ratios were positively related to submerged macrophyte cover and negatively to phytoplankton generic richness in DK and BNL, suggesting that the low generic richness in lakes with submerged macrophytes was due to a higher zooplankton grazing pressure in these regions. In SP, phytoplankton generic richness was not influenced by zooplankton grazing pressure but related to conductivity. We observed no relationship between phytoplankton generic richness and TP concentration in any of the three regions. The three regions differed significantly with respect to mean local and regional generic richness, with BNL being more diverse than the other two regions. Our observations suggest that phytoplankton diversity in European shallow lakes is influenced by submerged macrophyte cover indirectly by modulating zooplankton grazing. This influence of submerged macrophytes and zooplankton grazing on phytoplankton diversity decreases from north to south.  相似文献   

19.
Low phytoplankton biomass usually occurs in the presence of submerged macrophytes, possibly because submerged macrophytes enhance top-down control of phytoplankton by offering a refuge for efficient grazers like Daphnia against fish predation. However, other field studies also suggest that submerged macrophytes suppress phytoplankton in the absence of Daphnia. In order to investigate these mechanisms further, we conducted an outdoor mesocosm experiment to study the effect of submerged macrophytes (Elodea nuttallii) on phytoplankton and zooplankton biomass. The experiment combined four nutrient addition levels (0, 10, 100, and 1000 μg P l−1; N/P ratio: 16) with three macrophyte levels (no macrophytes, artificial macrophytes, and real macrophytes). We inoculated the tanks with species-rich inocula of phytoplankton and zooplankton but excluded fish or macro-invertebrates. Probably due to the lack of predators in the mesocosms, potential grazing rates of pelagic zooplankton (estimated from zooplankton biomass) did not differ between the macrophyte treatment combinations. Compared to the treatment combinations without macrophytes, lower phytoplankton biomass occurred in the treatment combinations with real macrophytes at all the nutrient addition levels and in those with artificial macrophytes at all the nutrient levels except the highest. Significantly, higher abundances of plant-associated filter feeders (Simocephalus vetulus and Ceriodaphnia spp.) occurred in the treatment combinations with real and artificial macrophytes. The estimated potential grazing rate of these plant-associated filter feeders indicated that these filter feeders could be responsible for the lower phytoplankton biomass in the presence of real and artificial macrophytes. Our results suggest that the plant-associated filter feeders may be significant grazers in vegetated shallow lakes.  相似文献   

20.
Arctic Sea ice biota: design and evaluation of a mesocosm experiment   总被引:1,自引:0,他引:1  
A mesocosm experiment (enclosure volume 220 l) was designed such that sea ice inhabited by Arctic Sea ice organisms was formed and maintained under natural conditions at 66°N in Rovaniemi, Finland. The experiment was run from natural freezing in December 1994 to melting in April 1995. The ice was inhabited by diatoms, chlorophyceae, heterotrophic flagellates, ciliates, nematodes and turbellarians. Biomass in the ice, expressed as Chlorophyll a concentration, was 20–110 μg l−1; total cell densities varied from 5 × 106 to 35 × 106 cells l−1. Amongst phototrophic organisms, a succession from a flagellate-dominated community (Chlamydomonas sp.) to a multi-species diatom-dominated community was observed. Typical Arctic species such as Nitzschia frigida and Melosira arctica were present in the ice. Bacterial concentration varied between 2 × 108 and 7 × 108 cells l−1. At least two trophic levels were present in the ice. Received: 3 April 1997 / Accepted: 9 September 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号