首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
乙偶姻是枯草芽孢杆菌的主要代谢产物,它作为一种食用香精,广泛应用于食品、烟草、化妆品、清洁剂、酒类等行业。本研究首先在不产芽孢的枯草芽孢杆菌(BSD1,阻断了芽孢的合成途径)中敲除了2,3-丁二醇脱氢酶(BDH)的编码基因bdh A、乳酸脱氢酶(LDH)的编码基因ldh和乙酸激酶的编码基因(ACK)ack A,随后克隆了来自菌株B.subtilis168的α-乙酰乳酸合成酶(ALS)和α-乙酰乳酸脱羧酶(ALDC)基因als S和als D,并将其在上述敲除菌中过量表达,结果表明阻断副产物合成途径和加强乙偶姻合成途径关键酶的表达,会显著提高乙偶姻的产量,最终乙偶姻产量达到38.08 g/L,产率为0.45 g·L~(-1)·h~(-1),产率提高了约87.5%。  相似文献   

2.
【背景】枯草芽孢杆菌体内含有一种可响应胞内氧化还原水平的因子,称之为氧化还原感应全局调控因子Rex (由基因ydiH编码)。Rex可通过感知辅酶NADH/NAD+水平的变化来调节胞内氧化还原平衡。【目的】研究Rex对枯草芽孢杆菌乙偶姻合成和辅因子代谢的相关性。【方法】利用比较转录组挖掘乙偶姻和2,3-丁二醇可逆转化过程中显著差异的基因,并通过Cre/lox基因敲除技术敲除ydiH、acuA (乙酰AcsA)和acoC (二氢脂酰胺乙酰转移酶)。随后,利用实时荧光定量PCR (RT-qPCR)技术分析敲除菌株中乙偶姻相关基因的转录水平。【结果】通过发酵实验发现,敲除ydiH会在一定程度上抑制菌体的生长速率,但发酵前期乙偶姻单位细胞产量和底物转化率都得到了显著提高;敲除acuA和acoC后,对乙偶姻合成、菌体生长和糖耗速率均影响不大;敲除ydiH后,与乙偶姻合成相关基因alsR (alsSD的正转录调控因子)、alsS (α-乙酰乳酸合成酶)、alsD (α-乙酰乳酸脱羧酶)和bdhA (2,3-丁二醇脱氢酶)的转录水平显著上调。【结论】枯草芽孢杆菌氧化还原感应全局调控因子Rex通过抑制与...  相似文献   

3.
陶然  毛雨丰  付晶  黄灿  王智文  陈涛 《微生物学通报》2017,44(11):2530-2538
【目的】研究乙酸合成途径阻断及NADH氧化酶表达对于谷氨酸棒杆菌生产乙偶姻的影响。【方法】在谷氨酸棒杆菌CGF2中异源表达als SD操纵子构建乙偶姻生产菌株CGT1,考察敲除乙酸生成途径cat和pqo对乙偶姻的影响。然后引入短乳杆菌的NADH氧化酶,在优化的溶氧条件下研究其对乙偶姻产量的影响。【结果】CGT1在摇瓶发酵中可积累6.27 g/L乙偶姻,敲除cat使乙偶姻产量显著提高30.94%,达到8.21 g/L;双敲除cat和pqo没有进一步提高产量。通过优化发酵的溶氧水平,乙偶姻产量达到10.06 g/L。在高溶氧水平下引入NADH氧化酶导致菌株的生长和糖代谢速率提高,但乙偶姻产量略有降低。在分批补料发酵中,重组菌株乙偶姻产量达到40.51 g/L,产率为0.51 g/(L?h)。【结论】在谷氨酸棒杆菌中阻断乙酸合成途径cat能够有效提高乙偶姻产量,NADH氧化酶在高溶氧水平下表达不利于乙偶姻的合成,需要进一步调节表达水平以确定其效果。  相似文献   

4.
目的:在大肠杆菌宿主中过量表达丁二酮还原酶(DAR),同时构建辅酶NADH原位再生系统,利用全细胞高效催化丁二酮不对称还原合成(S)-乙偶姻。方法:PCR克隆多黏芽孢杆菌(Paenibacillus polymyxa) dar基因连到质粒pETDuet-1,转化至大肠杆菌(Escherichia coli) BL21(DE3),构建重组菌E. coli BL21(DE3)-DAR;通过Hi Trap TALON柱亲和层析纯化表达产物DAR酶蛋白,测定DAR的比酶活和分子动力学参数。在重组菌E. coli BL21(DE3)-DAR中构建辅酶NADH原位再生系统,协同表达枯草芽孢杆菌(Bacillus subtilis)的葡萄糖脱氢酶(GDH),构建重组菌E. coli BL21(DE3)-DAR/GDH,并以此重组菌为全细胞生物催化剂,优化催化条件,提高(S)-乙偶姻的产量和产率。结果:获得重组工程菌E. coli BL21(DE3)-DAR和E. coli BL21(DE3)-DAR/GDH。DAR以NADH为辅酶还原丁二酮的米氏常数Km、最大催化速率Vmax、催化常数Kcat分别为2. 59mmol/L、1. 64μmol/(L·min·mg)、12. 3/s,还原丁二酮生成(S)-乙偶姻光学的纯度为95. 86%,具有较好的催化效率和立体异构体选择性。构建辅酶NADH原位再生系统后,重组菌E. coli BL21(DE3)-DAR/GDH可高效催化丁二酮合成乙偶姻。在最优催化条件下分批补料,乙偶姻产量达51. 26g/L,转化率为81. 37%,生产速率为5. 13g/(L·h)。结论:使用非手性化合物原料丁二酮生产高附加值的手性化合物(S)-乙偶姻,以重组菌为全细胞生物催化剂合成(S)-乙偶姻,不需额外添加昂贵的辅酶,具有较高的生产应用价值。  相似文献   

5.
(R,R)-2,3-BD是一种重要的四碳平台化合物,在液晶材料、高附加值手性化合物,尤其是不对称合成光学纯药物等方面有天然优势.将来源于多粘芽孢杆菌(Paenibacillus polymyxa)DSM 365的α-乙酰乳酸合成酶(α-acetolactate synthase)基因 alsS、α-乙酰乳酸脱羧酶(α-acetolactate decarboxylase)基因alsD和(R,R)-2,3-丁二醇脱氢酶(2,3-butanediol dehydrogenase)基因R,R-bdh与表达载体pMA5连接,导入多粘芽孢杆菌P.polymyxa DSM 365中加强(R,R)-2,3-丁二醇的主代谢途径,构建可高效合成(R,R)-2,3-丁二醇的多粘芽孢杆菌工程菌株DM-5.利用工程菌株DM-5补料分批发酵60 h,(R,R)-2,3-丁二醇产量达54.91 g/L,得率为0.52 g/g,生产强度为0.92 g·L-1·h-1,与野生菌株相比(R,R)-2,3-丁二醇产量增加19.66%,且副产物甲醇浓度不变,乙醇、乙偶姻积累下降.本研究结果表明,在多粘芽孢杆菌中过量表达关键基因alsS、alsD和R,R-bdh 能够显著提高(R,R)-2,3-丁二醇的产量和生产强度,为多粘芽孢杆菌的代谢工程改造和工业化生产(R,R)-2,3-丁二醇提供参考.  相似文献   

6.
目前2,3-丁二醇生产菌株大部分为致病菌,对人类健康和环境具有一定威胁。从牛奶样品中分离到1株产2,3-丁二醇的芽孢杆菌127-7,分析其16S rRNA基因序列,确定该菌株为地衣芽孢杆菌(Bacillus licheniformis)。进一步对菌株127-7进行紫外诱变,筛选耐受高浓度葡萄糖和高产乙偶姻的菌株。摇瓶发酵结果显示,突变株BL41的2,3-丁二醇产量较出发菌株127-7提高了41.1%。对发酵副产物分析发现,不控制发酵液pH可以显著降低乳酸产量,2,3-丁二醇产量在72 h达到81.4 g/L。进一步调整补糖策略,维持最低残糖浓度为30 g/L,菌株BL41产2,3-丁二醇83.4 g/L,最高产率为1.9 g/L·h,发酵时间缩短至46 h。结果表明,地衣芽胞杆菌BL41可以作为候选菌株,用于工业规模2,3-丁二醇的生产。  相似文献   

7.
研究多粘类芽胞杆菌利用廉价底物生物柴油副产物粗甘油批次发酵生产乙偶姻,考察不同pH条件、不同转速下乙偶姻、2,3-丁二醇和乙酸3种主要产物的产量,根据发酵结果设计一种三阶段溶氧调节的方法,结果表明:经76h批次发酵,乙偶姻产量为14.62 g/L,副产物2,3-丁二醇和乙酸分别为1.24和2.93 g/L;副产物量低,且易于分离,可以有效减少后期分离提取产物的成本。  相似文献   

8.
L-异亮氨酸是人体必需氨基酸之一,具有很大的商业价值。在谷氨酸棒杆菌中,合成一分子L-异亮氨酸需要消耗四分子NADPH。因此,提高胞内NADPH浓度是提高L-异亮氨酸产量的重要手段之一。在乳糖发酵短杆菌JHI3-156中过量表达酿酒酵母的NADH激酶编码基因POS5△MTS,发酵48 h表达菌株JHI3-156/pDXW-10-POS5△MTS的胞内NADP~+浓度增加了27μmol/L(17%),NADPH浓度增加了36μmol/L(96%);发酵72 h后L-异亮氨酸产量是(3.02±0.52)g/L,比对照菌(1.96±0.04)g/L提高了54%。本研究表明,过表达POS5△MTS基因能提高NADPH的供应,促进了L-异亮氨酸的生物合成。  相似文献   

9.
目的:研究透明颤菌血红蛋白基因(vgb)在产聚γ-谷氨酸(γ- PGA)的地衣芽孢杆菌ATCC9945a中的表达及对其生物量和产量的影响.方法:以大肠杆菌-枯草芽孢杆菌的穿梭表达载体pUBC19为骨架,构建含有枯草芽孢杆菌的组成型启动子P43和透明颤菌血红蛋白结构基因的穿梭表达载体pUBC19 - PV,并通过电击转化得到重组的产γ-PGA的地衣芽孢杆菌(B.licheniformis).一氧化碳差光谱验证重组B.licheniformis 中是否表达了有活性的血红蛋白.摇瓶发酵试验研究重组菌株和对照菌株生物量和发酵产物产量的变化.结果表明,重组菌株的生长明显比对照菌株快,但是γ - PGA的产量却比原始菌株低:在正常供氧时,其产量12.8g/L,比亲株产量21.7g/L下降了41%,贫氧环境下产量8.8g/L,比亲株产量12.8g/L降低了31%.结论:vgb 在重组菌株中表达了有活性的的透明颤菌血红蛋白,并可以促进细胞的生长,但聚谷氨酸的产量却有所下降.文章针对聚γ-谷氨酸产量的下降原因进行了讨论,并对下一步的工作提出了建议.  相似文献   

10.
枯草芽孢杆菌(Bacillus subtilis)发酵生产乙偶姻的pH调控策略   总被引:1,自引:0,他引:1  
郝飞  吴群  徐岩 《微生物学通报》2013,40(6):921-927
【目的】为了提高Bacillus subtilis CCTCC M 208157发酵生产乙偶姻的效率。【方法】在7 L发酵罐水平上考察不同pH条件对菌株生长及乙偶姻合成的影响。【结果】pH对菌株合成乙偶姻有显著影响,pH 4.5有利于细胞合成乙偶姻,但是延迟期较长;pH 5.5时菌株生长较快,但乙偶姻的产量偏低。因此提出了两阶段pH控制策略:发酵前期(0 16 h),控制pH 5.5;发酵中后期(16 72 h),控制pH 4.5。【结论】通过此策略,菌株合成乙偶姻的能力得到进一步提高,乙偶姻的产量、产率和生产强度分别为32.7 g/L、0.41 g/g和0.91 g/(L.h),分别比初始发酵条件下提高了41%、42%和69%。  相似文献   

11.
[目的]了解乙醛酸循环在地衣芽胞杆菌WX-02生物合成聚谷氨酸中作用,为聚谷氨酸生产提供新的解决方法。[方法]采用基因工程手段,以地衣芽胞杆菌WX-02为原始菌株,分别增强表达和敲除异柠檬酸裂解酶ace A基因,检测发酵过程中聚谷氨酸产量、生物量、胞内外代谢物和相关基因转录量。[结果]增强表达异柠檬酸裂解酶ace A基因后,胞内谷氨酸浓度显著升高(483.42 ng/m L/Log(CFU)),溢流代谢产物减少(乙酸5.41 g/L、乙偶姻5.82 g/L、2,3-丁二醇7.31 g/L),聚谷氨酸生物合成产量为11.74 g/L,相比原始菌株提高15%。谷氨酸脱氢酶roc G基因、谷氨酸消旋酶glr基因和聚谷氨酸合成酶复合体中pgs B基因转录水平相对原始菌株分别提高1.61倍、1.32倍和1.24倍。[结论]增强乙醛酸循环可以降低地衣芽胞杆菌WX-02乙酸等溢流代谢产物合成,提高胞内谷氨酸合成能力,并上调聚谷氨酸合成酶基因转录水平,最终提高聚谷氨酸生物合成产量。  相似文献   

12.
提高中温α-淀粉酶生产菌株的发酵温度,对减少冷却水消耗降低生产成本有重要意义。本文利用基因删除技术删除了地衣芽孢杆菌CBBD302菌株α-淀粉酶的编码基因(amy L)获得突变株D402。将表达解淀粉芽孢杆菌中温α-淀粉酶基因Ba A的重组质粒p HY-WZX-Ba A转化D402,获得表达中温α-淀粉酶的重组地衣芽孢杆菌D402/p HY-WZX-Ba A。摇瓶发酵实验显示,重组菌最适发酵温度为42℃,比原生产菌株提高8℃,最高产酶水平达到301 U/m L。30 L发酵罐发酵试验,78 h达到最高酶活531 U/m L。重组酶的最适作用温度为60℃,最适作用p H 6.5,在90℃保温20 min可以完全失活,保持了中温α-淀粉酶既能在淀粉糊化温度下保持稳定又便于灭酶的优良性能。  相似文献   

13.
[目的]构建能够专一性合成光学纯(R,R)-2,3-丁二醇的大肠杆菌工程菌,并进行发酵条件优化。[方法]将来源于多粘芽孢杆菌的(R,R)-2,3-丁二醇脱氢酶基因bdh,来源于阴沟肠杆菌的α-乙酰乳酸合成酶基因bud B和α-乙酰乳酸脱羧酶基因bud A与表达载体p Tr C99A连接,导入大肠杆菌中构建人工合成途径。筛选最适的培养基和发酵条件,提高(R,R)-2,3-丁二醇的产量、产率和得率。[结果]获得高效合成(R,R)-2,3-丁二醇的工程菌株GXASB,筛选到最适碳源及其浓度为120 g/L木薯淀粉,最适pH为6.5,最适接种量为10%,在发酵罐中进行同步糖化法发酵,(R,R)-2,3-丁二醇产量达到105.28 g/L,光学纯为99.1%,得率为0.47 g/g,生产强度为1.95 g/(L·h)。[结论]在大肠杆菌中表达基因簇bud B-bud A-bdh能够专一性合成光学纯(R,R)-2,3-丁二醇,经优化发酵条件后,能够显著提高(R,R)-2,3-丁二醇的合成效率。同时工程菌能够利用非粮原料木薯淀粉高效生产(R,R)-2,3-丁二醇,补料发酵产量达到105.28 g/L,为使用廉价原料工业化生产(R,R)-2,3-丁二醇提供参考。  相似文献   

14.
[目的]了解乙醛酸循环在地衣芽胞杆菌WX-02生物合成聚谷氨酸中作用,为聚谷氨酸生产提供新的解决方法。[方法]采用基因工程手段,以地衣芽胞杆菌WX-02为原始菌株,分别增强表达和敲除异柠檬酸裂解酶ace A基因,检测发酵过程中聚谷氨酸产量、生物量、胞内外代谢物和相关基因转录量。[结果]增强表达异柠檬酸裂解酶ace A基因后,胞内谷氨酸浓度显著升高(483.42 ng/m L/Log(CFU)),溢流代谢产物减少(乙酸5.41 g/L、乙偶姻5.82 g/L、2,3-丁二醇7.31 g/L),聚谷氨酸生物合成产量为11.74 g/L,相比原始菌株提高15%。谷氨酸脱氢酶roc G基因、谷氨酸消旋酶glr基因和聚谷氨酸合成酶复合体中pgs B基因转录水平相对原始菌株分别提高1.61倍、1.32倍和1.24倍。[结论]增强乙醛酸循环可以降低地衣芽胞杆菌WX-02乙酸等溢流代谢产物合成,提高胞内谷氨酸合成能力,并上调聚谷氨酸合成酶基因转录水平,最终提高聚谷氨酸生物合成产量。  相似文献   

15.
鉴定高产纳豆激酶菌株Td,分析纳豆激酶的分子特征。利用菌体形态、生理生化特征、以及分子生物学方法对菌株Td进行鉴定;并采用MALDI-TOF质谱测定与分析、SDS-PAGE和纤溶活性测定等方法检测纳豆激酶特性,利用PCR方法扩增纳豆激酶的基因全长。结合菌体形态、生理生化特征和16S r DNA、gyr A基因序列、DNA-DNA杂交率等实验结果,鉴定菌株Td为枯草芽孢杆菌枯草亚种(Bacillus subtilis subsp.subtilis);菌株Td发酵产生的纳豆激酶产量可达300 mg/L以上,占发酵液总蛋白的40%以上;纤溶活性达230 U/m L以上;氨基酸序列与subtilisin E的序列相似性最高;基因全长序列为1 143 bp。枯草芽孢杆菌枯草亚种Td是一株高产、高活性纳豆激酶的产生菌,具有优良的工业化开发价值。  相似文献   

16.
γ-聚谷氨酸在食品、化妆品、生物医药等领域具有广泛的应用,目前主要的生产菌株是谷氨酸依赖型菌株,在生产过程中需要添加谷氨酸作为前体,因而生产γ-聚谷氨酸的成本较高。文中主要研究从糖质原料一步法发酵合成γ-聚谷氨酸的生产工艺。首先,从产γ-聚谷氨酸的菌株枯草芽孢杆菌中克隆γ-聚谷氨酸合成酶的基因簇pgs BCA,在谷氨酸棒杆菌模式菌株ATCC13032中进行诱导型和组成型表达,结果显示,仅诱导型表达菌株可以积累γ-聚谷氨酸,产量为1.43 g/L。进一步对诱导条件进行优化,确定诱导时间为2 h,IPTG浓度为0.8 mmol/L,γ-聚谷氨酸产量为1.98g/L。在此基础上,在一株高产谷氨酸的谷氨酸棒杆菌F343中外源表达pgs BCA,对重组菌进行发酵,结果表明,在摇瓶发酵中γ-聚谷氨酸产量达到10.23g/L,在5L发酵罐中产量达到20.08g/L;继而对γ-聚谷氨酸进行分子量测定,结果显示,产自F343重组菌的γ-聚谷氨酸的重均分子量比产自枯草芽孢杆菌的提高34.77%。文中构建了一步法发酵糖质原料生产γ-聚谷氨酸的新途径,同时为开发其潜在应用奠定了基础。  相似文献   

17.
利用BLAST从B.cereus ATCC14579的基因组中找到一段与枯草芽孢杆茵核黄素操纵子具有较高相似性的4.6kb大小的基因组DNA片段,该片段中含有完整的核黄素操纵子。该操纵子结构基因的编码产物的氨基酸序列与枯草芽孢杆菌核黄素操纵子相应结构基因的编码产物的氨基酸序列具有99%的同源性。该片段被克隆到大肠杆茵一枯草芽孢杆茵穿梭载体pHP13M中。表达分析的结果表明B.cereus ATCC14579核黄素操纵子可在大肠杆茵和枯草芽孢杆菌中表达。利用PCR方法用来自枯草杆菌的sac B基因的启动子替换B.cereus ATCC14579核黄素操纵子原有的启动子使其更好表达。替换启动子后的核黄素操纵子在本文使用的发酵条件下有较好的表达,核黄素产量从39.5mg/L增加到61.7mg/L.  相似文献   

18.
聚γ-谷氨酸高产菌的选育与培养基优化   总被引:1,自引:0,他引:1  
利用合成培养基为筛选培养基,以枯草芽孢杆菌(Bacillus subtilis)B6-1为出发菌株,经过三轮紫外线诱变和一轮硫酸二乙酯诱变得到了聚γ-谷氨酸高产突变株枯草芽孢杆菌W003,摇瓶液体发酵的聚γ-谷氨酸产量由出发菌株的10.9 g/L提高到20.5 g/L.单因素实验结果表明,该菌产聚γ-谷氨酸的合适碳源为葡萄糖,氮源为硫酸铵.通过正交实验得到了优化的培养基配方,经36h液体发酵,聚γ-谷氨酸产量可达到45.3 g/L.  相似文献   

19.
【背景】β-淀粉酶在食品和医疗领域应用广泛。目前工业上使用的β-淀粉酶主要从植物中提取,生产成本高,限制了β-淀粉酶的应用。微生物生产的β-淀粉酶尽管早有报道,但由于产酶水平低下,因而一直未能实现工业化。【目的】实现巨大芽孢杆菌β-淀粉酶在枯草芽孢杆菌中的高效诱导表达,缓解碳分解代谢物阻遏(Carbon catabolite repression,CCR)对该重组酶表达的影响,并研究其酶学性质。【方法】克隆枯草芽孢杆菌木糖诱导启动子,构建木糖诱导表达载体以介导巨大芽孢杆菌1514的β-淀粉酶编码基因amyM在枯草芽孢杆菌中的异源表达。定点突变位于amyM信号肽编码区的分解代谢物响应元件(Catabolite responsive element,CRE),降低碳源代谢对重组β-淀粉酶施加的阻遏。【结果】构建了诱导表达β-淀粉酶基因的重组枯草芽孢杆菌菌株。同义替换amyM-CRE保守碱基在不同程度上缓解了碳源所施加的CCR效应,重组酶的表达水平得到显著提高。重组酶的分子量为57 kD,水解可溶性淀粉主要生成麦芽糖和少量葡萄糖,其中麦芽糖含量为72%。该酶最适作用温度为50°C,最适反应pH为6.0。Co2+、Ca2+对重组β-淀粉酶具有激活作用。【结论】通过木糖诱导表达系统和碳代谢去阻遏实现了β-淀粉酶在枯草芽孢杆菌中的高效表达,酶活最高可达97.16 U/mL发酵液,比amyM基因来源菌巨大芽孢杆菌1514的β-淀粉酶产量提高了440倍,为β-淀粉酶发酵生产的工业化提供了支撑。  相似文献   

20.
筛选噬菌体抗性菌株以解决枯草芽孢杆菌(Bacillus subtilis)生产过程中噬菌体污染问题并提高抗性菌株的发酵水平。采用双层平板法从异常发酵液中分离并纯化以枯草芽孢杆菌为宿主的噬菌体,利用纯化得到的噬菌体筛选实验室芽孢杆菌库以得到抗性菌株,结合16S rDNA和gyrA基因序列进行系统发育分析确定其分类地位,以分批发酵的生长曲线及葡萄糖含量曲线作为基础,对发酵培养基的初糖浓度及葡萄糖的流加方式进行优化提高筛选到的噬菌体抗性菌株的发酵水平。从异常发酵液中分离到噬菌体S01及S02并在实验室芽孢杆菌库中筛选到一株噬菌体无法侵染的芽孢杆菌BS-2,结合16S rDNA及gyrA基因序列的系统发育分析将BS-2鉴定为枯草芽孢杆菌,按照葡萄糖初始浓度15 g/L,葡萄糖浓度低于5 g/L时以2 g/L·h的速度流加葡萄糖,补加量10 g/L的流加补料方法,可以将发酵水平提高至2.43×1010 CFU/mL。枯草芽孢杆菌BS-2具有较好的噬菌体抗性且经过工艺优化可以达到较高发酵水平,有较强工业化应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号