首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
葡萄糖转运蛋白1(glucose tansporter 1,GLUT1)由SLC2A1基因编码,调控不同细胞从多个组织摄取葡萄糖的能力。慢性病是当今人类死亡的第一主因,发病原因与人体内环境紊乱、代谢异常、环境污染相关。GLUT1作为最先被发现的葡萄糖转运蛋白家族成员,对慢性病的调控起到至关重要作用。本文针对GLUT1蛋白的生物学结构和功能及其与慢性病如糖尿病及其并发症、慢性炎症和肿瘤的关联机制进行探讨,试图找到以GLUT1蛋白介导的信号通路治疗慢性病的相关分子机制和有效方案。  相似文献   

2.
葡萄糖转运蛋白4(GLUT4)。主要分布于骨胳肌,心肌及脂肪组织中,当胰岛素与细胞膜受体结合后。产生一系列信号,促进GLUT4从胞内易位至细胞膜,GLUT4通过自身构象改变。将葡萄糖摄入细胞内,从而协助维持血糖的稳定,这些具体信号正在被广泛深入的研究。现在发现至少有两条独立的信号传导途径。一条是经典的PI3K途径。另一条是新近发现的Cb1/CAP途径。深入了解这些信号传导途径。对于揭示2型糖尿病的发病机制有重要的意义。  相似文献   

3.
GLUT4在胰岛素作用下的转运上膜是血糖调控的一个关键途径.其中包含了两个重要的过程-胰岛素信号转导以及GLUT4转运途径.在这两个过程中新的特异分子的发现以及它们功能特点的研究是发展有效的药物治疗糖尿病的关键因素.本文主要从GLUT4在胞内的循环途径,胰岛素调节的GLUT4的转运以及转运中的调控蛋白三个方面着手,综述了GLUT4的转运调控研究进展.  相似文献   

4.
在脂肪和骨骼肌细胞中,胰岛素可迅速刺激葡萄糖转运,即通常所说的GLUT4转运。 GLUT4转运是指Rabs与GTP结合时,促进囊泡与微管和微丝蛋白结合,并通过锚定和融合作用使GLUT4囊泡与目标膜结构融合。多数 Rab 家族成员广泛表达于各种组织细胞中,且在细胞内定位十分广泛,几乎存在于真核细胞所有的膜相关的细胞器的胞浆侧。 Rab 蛋白作为囊泡运输的分子开关,通过调节运输小泡的停泊和融合,在囊泡的形成、转运、粘附、锚定、融合等过程中起着重要的作用。 Rab蛋白受到多种上游调节蛋白的调节,同时调控着下游的多种效应蛋白,构成了复杂的调控网络:任何一个环节改变都可能会导致蛋白质转运的异常,进而引发疾病。本文系统阐述了Rab蛋白在葡萄糖转运过程中的作用及该领域的最新进展。  相似文献   

5.
葡萄糖通过血脑屏障从血液中进入脑组织必须依赖葡萄糖转运蛋白(glucose transporter,GLUT)的帮助.GLUT1是血脑屏障上最主要的GLUT,也是脑毛细血管壁内皮细胞的分子标记.动物研究显示在急性脑缺血后脑内的GLUT1表达增加.检测了7例慢性微血管缺血性脑血管病变(ischemic cerebrovascular diseases,ICVD)的尸检脑组织中的GLUT1水平,并与11例同龄对照组比较.结果发现GLUT1水平在ICVD组中降低.其降低可能是由于低氧诱导因子-1α(hypoxia-induciblefactor-1α,HIF-1α)的下调所致.但是,在ICVD脑组织中的GLUT1水平降低不伴随有蛋白质O-GlcNAc糖基化水平的下降.上述结果为探讨脑缺血病变的机理提供了新线索.  相似文献   

6.
目的 探讨AUF1在胞质DNA引起的细胞葡萄糖代谢应答中的作用及其机制。方法 (1)用核质分离技术分离细胞核与细胞质,并通过生物素-亲和素亲和层析技术分离细胞质中与胞质DNA(ISD)结合的蛋白质,然后通过“银染-质谱”和“复合物-质谱”技术鉴定出差异蛋白——AUF1。再利用体外结合实验验证AUF1与胞质DNA的相互作用。(2)在胞质DNA刺激后,通过ATP检测试剂盒和CCK8细胞氧还活力检测试剂,比较野生型细胞和基于CRISPR/Cas9技术的AUF1基因敲除细胞中葡萄糖代谢应答情况。(3)通过半定量PCR技术,在野生型、基因敲除AUF1、基因敲除后回补AUF1或空载体的四类细胞中检测葡萄糖转运蛋白GLUTs以及葡萄糖代谢相关酶的mRNA表达情况,筛选出与细胞糖代谢相关的AUF1下游效应分子——GLUT3。进而用实时荧光定量PCR进行验证。(4)通过半定量和荧光定量PCR分析胞质DNA刺激下GLUT3的mRNA变化情况,分析胞质DNA的刺激是否影响GLUT3的mRNA表达。结果 (1)两次质谱分析均发现AUF1能与ISD结合。体外结合实验也证实,不论是原核表达的GST-AUF1还是真核细胞表达的GFP-AUF1均能与单链和双链的ISD相结合。(2)基因敲除AUF1后的HEK293细胞在用胞质DNA刺激后,胞内的ATP水平和对CCK8的还原能力都明显高于野生型细胞。提示AUF1基因敲除细胞内的葡萄糖代谢不受胞质DNA刺激所抑制,说明AUF1很可能参与了胞质DNA对细胞糖代谢的调节。(3)半定量PCR技术检测发现在AUF1敲除的细胞中GLUT3的mRNA明显减少,而其他的GLUT家族成员和代谢酶则没有显著差异。实时荧光定量PCR证实上述现象,提示AUF1很可能通过稳定GLUT3的mRNA参与葡萄糖代谢的调节。(4)无论是单链还是双链ISD刺激后的细胞中,GLUT3的mRNA均减少,说明GLUT3可能是胞质DNA对糖代谢的调节过程中的一个下游效应分子。结论 AUF1能与胞质DNA结合,很可能通过调节下游GLUT3的mRNA稳定性参与胞质DNA引起的糖代谢应答反应。  相似文献   

7.
关于酵母重组蛋白内的Bromodomain识别乙酰化赖氨酸的研究近年来受到广泛的关注,但是其识别配体并与之相紧密结合的机理有待进一步的研究。本文采用2015年开发的结合位点拓扑学方法(FCTM)和分子动力学模拟的方式对Bromodomains识别并结合配体的机理进行了充分研究,其中分子动力学模拟时间达24 ns。通过FCTM方法发现结合位点的几何结构具有高度的凹性,且其alphaspace达到了131。分子动力学模拟的结果显示:在模拟的过程中结合位点表面的脯氨酸(Pro66)始终对配体保持着强的分子间相互作用,同时pocket内的水分子分布对配体的氢键网络也一直存在影响。以上结果表明Bromodomains识别并结合配体有两个重要因素:蛋白结构域自身的几何结构和配体受到来自于结合位点表面的氨基酸分子相互作用和pocket内水分子的氢键网络作用。  相似文献   

8.
Li DL  Han H 《中国应用生理学杂志》2008,24(3):353-355,I0003
目的:观察新生大鼠缺氧缺血后脑内葡萄糖转运蛋白1( GLUT1)和葡萄糖转运蛋白3 (GLUT3)的表达情况以及孕酮对其的影响.方法:新生SD大鼠40只,随机分成4组:正常组、假手术组、缺氧缺血组和孕酮组.建立新生鼠缺氧缺血性脑病模型,免疫组化方法检测新生大鼠海马部位GLUT1及GLUT3的表达.结果:正常组和假手术组新生大鼠海马可见少量GLUT1和GLUT3 的表达,两组间无显著差异( P>0.05);缺氧缺血组GLUT1和GLUT3表达均明显高于假手术组(P<0.05);孕酮组GLUT的表达不仅明显高于假手术组(P<0.01),而且明显高于缺氧缺血组(P<0.05).结论:孕酮通过上调GLUT1和GLUT3的表达以维持脑组织的能量供给,增强神经元对缺氧缺血的耐受性.  相似文献   

9.
本文主要描述了麦芽糖结合蛋白(MBP)和属于ATP结合盒式蛋白(ABC)家族的麦芽糖转运蛋白复合物MalFGK2的相互作用。通过基因、结构和生化分析可知,MBP和MalFGK2以不同构象进行相互作用。在这个转运系统中,MBP与麦芽糖结合,并与MalFGK2发生相互作用,从而将麦芽糖从胞外转运至胞内,但由于MBP和MalFGK2都有多种构象,所以它们的相互作用很复杂。相互作用机理模型最重要的特点是结合配体的MBP,通过稳定MalFGK2的高能量构象来启动依赖ATP的麦芽糖转运过程。麦芽糖转运蛋白机理模型表明,ABC型转运系统利用外周结合蛋白,其转运过程基本上是不可逆的。  相似文献   

10.
葡萄糖转运蛋白4(glucose transporter 4,GLUT4)参与胰岛素敏感的脂肪细胞和肌肉细胞中的葡萄糖转运,对机体葡萄糖代谢至关重要。磷脂酰肌醇作为各种蛋白质的定位信号,参与调控细胞生长和新陈代谢,在胰岛素信号转导过程中起着关键作用。在过去的几十年里,关于磷脂酰肌醇信号调控GLUT4囊泡转运方面已有了很大的进展。该文总结了磷脂酰肌醇在GLUT4囊泡转运中的调控作用。  相似文献   

11.
用稳定过表达并带有myc表位的葡萄糖转运子1(glucose transporter 1, GLUT1)或葡萄糖转运子4(glucose transporter 4, GLUT4)的L6骨骼肌细胞株定征GLUT1和GLUT4对胰岛素的响应. 所筛选的L6-GLUT1myc细胞克隆分化前后的葡萄糖摄取量均在线性范围. 100 nmol/L胰岛素使L6-GLUT1myc和L6-GLUT4myc肌原细胞膜上GLUT1或GLUT4的量分别达到基础组的(1.58±0.01)倍和(1.96±0.11)倍, 2-脱氧葡萄糖摄取量分别达到了(1.53±0.09)倍和(1.86±0.17)倍, 此作用可被渥曼青霉素(wortmannin)抑制. 胰岛素刺激了此2种细胞中的Akt磷酸化. L6-GLUT1myc肌原细胞的葡萄糖摄取量对胰岛素浓度呈剂量依赖性, 但与野生型细胞相比, 其对胰岛素的敏感性和最大响应没有改变. 但L6-GLUT4myc肌原细胞的葡萄糖摄取量对胰岛素的敏感性和最大响应均增加. 以前的研究提示毛喉素(forskolin)可能影响胰岛素刺激的GLUT4转位. 本研究表明, 在L6-GLUT4myc细胞中, 毛喉素使胰岛素刺激的葡萄糖摄取减少了65%, 此作用是由它对GLUT4的直接抑制而不是由其对GLUT4转位的影响造成的. 毛喉素和dipyridamole对GLUT4比对GLUT1有更强的抑制作用, 而戊巴比妥(pentobarbital)对GLUT1的抑制作用强于GLUT4. 应用这些抑制剂的结果表明、L6肌原细胞中基础状态下和胰岛素刺激状态下的葡萄糖主要由过表达的GLUT1或GLUT4转运. 因此, L6-GLUT1myc和L6-GLUT4myc细胞株为筛查对肌肉细胞GLUT1或GLUT4的活性或转位有不同作用的化合物提供了一个平台.  相似文献   

12.
溶质转运蛋白(solute carriers,SLC)超家族是人类细胞膜(含胞内膜)上最重要的膜转运蛋白家族之一,它参与了细胞间的物质运输、能量传递、营养代谢、信号传导等重要生理活动。SLC转运蛋白超家族包含52个亚家族,共有400多名成员。研究表明,人类基因突变所致SLC蛋白表达异常或功能缺陷与糖尿病、高血压、抑郁症等多种重大疾病密切相关,使得该家族蛋白的功能研究近年来备受关注。SLC转运家族蛋白三维结构的解析有助于阐述其底物选择性结合与转运的精确分子机制,为研究该家族功能相关疾病的分子机理以及针对理性药物研发奠定了精细的三维结构基础。本文对近年来溶质转运蛋白超家族的结构及功能研究进展进行了总结,试图对该家族的共性规律进行阐述。  相似文献   

13.
目的:建立稳定表达EGFP标记的葡萄糖转运蛋白4的CHO细胞系,为研究GLUT4在CHO细胞中的转运调节机制奠定基础。方法:采用分子克隆方法构建GLUT4-EGFP的融合蛋白,在FLP-in的CHO细胞系中表达,潮霉素筛选后得到稳定的细胞系。结果:通过共聚焦显微镜的检测,证明了此稳定细胞系的阳性率达到了99%。定位研究表明大部分GLUT4以囊泡形式分布在CHO细胞胞浆内,但是质膜上也有少量的GLUT4。结论:建立了一个稳定表达GLUT4-EGFP的CHO细胞系,为进一步研究GLUT4的转运提供了一个很好的细胞模型。  相似文献   

14.
葡萄糖转运蛋白5(glucose transporter 5, GLUT5)是人体唯一特异性转运果糖的膜转运蛋白,其主要在小肠上皮细胞表达,在膳食果糖摄取、代谢过程中有至关重要的作用.近年来,随着生活水平的不断提升,全球人均果糖摄入量急剧增加,由此导致的肥胖和代谢疾病也逐渐增多.由于GLUT5在膳食果糖吸收和代谢中具有关键作用,其与人类疾病的关系研究正受到越来越多的关注.越来越多的证据表明,从消化系统疾病到多种人类癌症,GLUT5都发挥了不可忽视的作用.然而,受限于各种困难和缺陷, GLUT5的分子结构研究尚未得到完全阐明.深入揭示GLUT5分子结构及其生物学功能将有助于人们更好地理解GLUT5相关疾病的发生机制,有利于设计针对性更强的靶向治疗药物.本文主要介绍了哺乳动物GLUT5的分子结构和转运机制研究现状,从最基础的分子生物学角度出发,展望GLUT5的潜在应用价值,以期能够为果糖代谢相关疾病的临床治疗提供更好的策略.  相似文献   

15.
最新研究表明,核受体LXR是糖代谢的关键调节因子。LXR在肌肉和脂肪组织中通过葡糖转运蛋白(GLUT)使葡萄糖上调控,在肝脏中通过抑制重要的糖合成酶的表达来抑制糖合成。  相似文献   

16.
细菌的肽转运蛋白包括3种,寡肽转运蛋白(Oligopeptide permease,Opp)、二肽转运蛋白(Dipeptide permease,Dpp)和二/三肽转运蛋白(Di-and tripeptide permease,Dtp)。Opp和Dpp属于ABC型超家族(ATP-binding cassette superfamily)转运蛋白,利用ATP水解产生的能量实现底物转运。对Opp和Dpp研究最多的是胞外肽结合蛋白OppA和DppA,它们起着最初识别与结合底物的重要作用。Dtp属于主要协助转运蛋白超家族(Major facilitator superfamily,MFS),与质子进行底物共转运。细菌肽转运蛋白的晶体结构解析结合大量的生化数据分析,使得人们对其转运机制有了深入的了解。本文对这三种肽转运蛋白的研究进展分别进行综述。  相似文献   

17.
Faldaprevir类似物(Faldaprevir analogue molecule,FAM)能有效抑制HCV NS3/4A蛋白酶的催化活性,是一种潜在抗HCV先导化合物。通过生物信息学统计分析了已报道的HCV NS3/4A蛋白酶晶体结构,得到了FAM-HCV NS3/4A蛋白酶晶体结构。对FAM-HCV NS3/4A蛋白酶复合物进行了20.4 ns的分子动力学模拟,重点从氢键和结合自由能两个角度分析了二者分子识别中的关键残基及结合驱动力。氢键和范德华力是促使FAM特异性结合到蛋白V132?S139、F154?D168、D79?D81和V55的活性口袋中的主要驱动力,这与实验数据较为吻合。耐药性突变实验分析了R155K、D168E/V和V170T定点突变对FAM分子识别的影响,为可能存在的FAM耐药性提供了分子依据。最后,用自由能曲面和构象聚类两个方法探讨了体系的构象变化,给出体系的4种优势构象,为后续的基于HCV NS3/4A蛋白酶结构的Faldaprevir类似物抑制剂分子设计提供一定的理论帮助。  相似文献   

18.
《生命的化学》2014,(3):423-423
<正>清华大学医学院颜宁教授研究组首次解析了人源葡萄糖转运蛋白GLUT1的晶体结构,初步揭示其工作机制以及相关疾病的致病机理,在人类攻克癌症、糖尿病等重大疾病的探索道路上迈出了极为重要的一步。该"具有里程碑意义"的成果于2014年6月5日发表在Nature。GLUT1几乎存在于人体每一个细胞中,是大脑、神经系统、肌肉等组织器官中最重要的葡萄糖转运蛋白,其功能异常对人体健康的影响体现在两个方面:一方面,GLUT1功能完全缺失将致  相似文献   

19.
胰岛素反应性的葡萄糖转运蛋白4(glucose transporter 4,GLUT4)在葡萄糖的摄取和代谢过程中发挥着重要作用。GLUT4蛋白表达水平直接影响机体葡萄糖的利用。肌细胞增强因子2(myocyte enhancer factor 2,MEF2)、过氧化物酶体增殖物激活受体(peroxisome proliferator activated receptors,PPARs)、CCAAT增强子结合蛋白α(CCAAT enhancer binding protein α,C/EBP-α)、固醇类反应元件结合蛋白1c(sterol response element binding protein 1c,SREBP-1c)等转录因子可以上调或下调Glut4基因转录。激素、代谢以及一些病理状态可以通过改变转录因子的量或活性影响Glut4。本文综述了在Glut4基因表达中发挥作用的转录因子,以及在特定的生理或病生理状态下Glut4基因表达调控的机制。  相似文献   

20.
纳他霉素是一种天然、广谱、高效的多烯大环内酯类还原性抗真菌剂,广泛应用于食品真菌污染的防治和临床真菌感染的治疗。纳他霉素胞外转运效率可能是限制褐黄孢链霉菌(Streptomyces gilvosporeus)发酵高产纳他霉素的重要因素。通过生物信息学及分子对接技术分析纳他霉素胞外转运蛋白SgnA/B,发现SgnA和SgnB两个异源二聚体组成的ABC转运蛋白是内向开口构象的转运蛋白,且2个结合位点与纳他霉素结合能力有强弱差异,更有利于纳他霉素的胞外转运。本研究以纳他霉素生产菌株——褐黄孢链霉菌F607为出发菌株,构建了sgnA/B基因超表达菌株F-EX,以分析sgn A/B基因超表达对纳他霉素合成及胞外转运的影响。研究发现,纳他霉素对数合成期的F-EX菌株不仅提高了纳他霉素胞外/胞内比,其120 h发酵总产量也提高了12.5%,达到7.38 g/L。最后,通过转录组测序发现,sgnA/B基因超表达除提高纳他霉素胞外转运效率外,还影响了与多种氨基酸、丙酸盐、糖、五碳化合物代谢和TCA循环相关基因的表达。研究表明,强化纳他霉素胞外转运有利于纳他霉素的合成,是提高褐黄孢链霉菌纳他霉素产量的有效...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号