首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anaerobic reduction kinetics of purified rat liver ferric cytochrome P-450 from phenobarbital-treated rat liver microsomes, reconstituted with saturating NADPH-cytochrome P-450 reductase, have been investigated and were shown not to be monophasic. From experiments correlating changes in the rate of fast-phase reduction with the spin state of the heme iron existing at preequilibrium, data were obtained consistent with a model for spin-state control of cytochrome P-450 reduction wherein the high-spin form of the hemoprotein is more rapidly reduced than the low-spin form. In addition, the temperature dependence of the reduction process in the presence of the substrate benzphetamine was studied. From the results obtained it is suggested that the endothermic nature of the low- to high-spin transition largely accounts for the apparent activation energy observed for the reduction of high-spin cytochrome P-450 being relatively temperature insensitive when compared to the rate constant for reduction of the membrane-bound form of the hemoprotein.  相似文献   

2.
A purified low-spin form of cytochrome P-450 was isolated from phenobarbital-induced rabbit liver microsomes. The preparation was functionally active and free from cytochromes b5 and P-420 and phospholipids. The specific content of the cytochrome was 18 nmoles per mg of protein. At the molecular weight of the hemoprotein of 50,000, it corresponds to 90% of purification. The purified hemoprotein binds substrates of type II and some substrates of type I. The complexes formed reveal spectral properties, similar to those for the complexes of these substrates with the microsomal form of cytochrome P-450.  相似文献   

3.
When CCl4 was incubated with rat liver microsomes from phenobarbital-treated rats in an aerobic or anaerobic atmosphere, over 69% of the heme moiety of cytochrome P-450 was destroyed. At least 45% of the degraded heme under both reaction conditions was accounted for as heme-derived products irreversibly bound to microsomal proteins. Furthermore, 33% of the irreversibly bound products were bound specifically to a 54-kDa form of cytochrome P-450. A structurally different compound, 2-isopropyl-4-pentenamide, also destroyed the heme moiety of cytochrome P-450 and produced heme-derived adducts of microsomal proteins that accounted for 28% of the destroyed heme. These results represent a novel mechanism for the destruction of cytochromes P-450 by xenobiotics.  相似文献   

4.
3,4,5,3',4'-Pentachlorobiphenyl (PenCB), one of the most potent 3-methylcholanthrene (MC)-type inducers of hepatic enzymes in animals, caused a remarkable induction of liver microsomal monooxygenases, particularly 7-ethoxyresorufin (7-ER) O-deethylase, benzo(a)pyrene (BP) 3-hydroxylase, and testosterone 16 alpha-hydroxylase in chickens, but not NADPH-cytochrome c(P-450) reductase and cytochrome b5. Two forms of cytochrome P-450 (P-450) in liver microsomes of PenCB-treated chickens were purified and characterized. The absorption maxima of the CO-reduced difference spectra of both enzymes (chicken P-448 L and chicken P-448 H) were at 448 nm. From the oxidized form of their absolute spectra, chicken P-448 L was a low-spin form and chicken P-448 H was a high-spin form. They had molecular masses of 56 and 54 kDa, respectively. In a reconstituted system, 7-ER O-deethylation, BP 3-hydroxylation, and testosterone 16 alpha-hydroxylation were catalyzed at high rates by chicken P-448 L but not by chicken P-448 H. Chicken P-448 L also catalyzed N-demethylation of aminopyrine, benzphetamine, and ethylmorphine with relatively low activity. On the other hand, chicken P-448 H functioned only in catalyzing estradiol 2-hydroxylation. These results were supported by an inhibition study of microsomal monooxygenases using an antibody against each enzyme. Immunochemical studies revealed that the enzymes differ from each other but are both inducible by PenCB-treatment. Chicken P-448 L and chicken P-448 H respectively comprise about 82 and 7% of the total P-450 content in chicken liver microsomes.  相似文献   

5.
Results are presented that support our hypothesis [Backes, W. L., Sligar, S. G., & Schenkman, J. B. (1980) Biochem. Biophys. Res. Commun. 97, 860-867] that the multiphasic reduction kinetics of cytochrome P-450 are, in part, due to the spin equilibrium of the ferric hemoprotein. The disappearance of the high-spin charge-transfer band at 650 nm during reduction of the hemoprotein by NADPH was fast, exhibiting a rate constant greater than that of the fast phase of reduction measured by formation of the carbon monoxide adduct. In contrast, the disappearance of the ferric low-spin form of the cytochrome was at a considerably slower rate. A mathematical expression of the fractional content of high-spin cytochrome P-450 was obtained by comparing the ratio of the initial rate of change in the fraction of total oxidized cytochrome remaining to the initial rate of change in the fraction of high-spin ferric P-450 remaining. Results supporting the model were obtained by using both microsomes and purified cytochrome P-450 RLM5. The calculation from experimental data yielded results that were similar to those obtained by different extrapolation methods used for estimation of the amount of high-spin cytochrome P-450, supporting further the proposed relationship between the spin equilibrium and the reduction kinetics of this hemoprotein.  相似文献   

6.
Cytochromes P-450 and P-448 in rat liver microsomes were solubilized with sodium cholate and were partially purified. The preparations contained 5.0–5.5 nmoles of cytochrome P-450 or P-448 per mg of protein; contamination with cytochrome P-420 and cytochrome b5, was less than 10% of the total heme content. The absolute spectra of Cytochromes P-450 and P-448 differed only slightly; both hemoproteins had a Soret peak at 418–419 nm in the oxidized absolute spectra and at 448 and 450 nm in the reduced plus CO absolute spectra. Both hemoproteins showed typical type I (benzphetamine) and type II (aniline) binding spectra but differed in their binding of hexobarbital (another type I substrate). The total phospholipid content of the preparation (per mg protein) has been reduced by approximately 90% relative to microsomes and the hemoprotein has been purified 20–25 fold with respect to phospholipid. The partially purified hemoprotein fractions, after combination with a reductase and lipid fraction, were capable of oxidizing a variety of substrates inluding drugs, steroids, and chemical carcinogens.  相似文献   

7.
We have developed a specific radioimmunoassay to quantify NADPH: cytochrome P-450 reductase. The assay is based on the use of 125I-labelled NADPH: cytochrome P-450 reductase as the radiolabelled antigen and can detect quantities of this protein in amounts as low as 30 pg. The results of the radioimmunoassay demonstrates that the 2.7-fold increase in enzyme activity in rat liver microsomal membranes after phenobarbital treatment is due to increased amounts of the protein. beta-Naphthoflavone treatment, however, did not alter the activity or the quantity of this enzyme in microsomes. The quantification of NADPH: cytochrome P-450 reductase in the microsomes isolated from control and phenobarbital- and beta-naphthoflavone-treated animals permits the calculation of the ratio of this protein to that of total cytochromes P-450. A molar ratio of 15:1 (cytochromes P-450/NADPH: cytochrome P-450 reductase) was calculated for control and phenobarbital-treated animals. This ratio increased to 21:1 after beta-naphthoflavone treatment. Thus the molar ratio of these proteins in liver microsomes can vary with exposure of the animals to particular xenobiotics.  相似文献   

8.
Aldrin epoxidation was studied in monooxygenase systems reconstituted from purified rat liver microsomal cytochrome P-450 or P-448, NADPH-cytochrome c reductase, dilauroylphosphatidylcholine and sodium cholate. Cytochrome P-450, purified from hepatic microsomes of phenobarbital-treated rats, exhibited a high rate of dieldrin formation. The low enzyme activity observed in the absence of the lipid and sodium cholate was increased threefold by addition of dilauroylphosphatidylcholine and was further stimulated twofold by addition of sodium cholate. The apparent Km for aldrin in the complete system was 7 +/- 2 microM. SKF 525-A, at a concentration of 250 microM, inhibited aldrin epoxidation by 65%, whereas 7,8-benzoflavone had no inhibitory effect at concentrations up to 250 microM. Addition of ethanol markedly increased epoxidase activity. The increase was threefold in the presence of 5% ethanol. When cytochrome P-448 purified from hepatic microsomes of 3-methylcholanthrene-treated rats was used, a very low rate of epoxidation was observed which was less than 3% of the activity mediated by cytochrome P-450 under similar assay conditions. Enzyme activity was independent of the lipid factor dilauroylphosphatidylcholine. The apparent Km for aldrin was 27 +/- 7 microM. The modifiers of monooxygenase reactions, 7,8-benzoflavone, SKF 525-A and ethanol, inhibited the activity mediated by cytochrome P-448. The I50 was 0.05, 0.2 and 800 mM, respectively. These results indicate that aldrin is a highly selective substrate for cytochrome P-450 species present in microsomes of phenobarbital-treated animals and is a poor substrate for cytochrome P-448. The two forms of aldrin epoxidase can be characterised by their turnover number, their apparent Km and their sensitivity to modifiers, like 7,8-benzoflavone and ethanol.  相似文献   

9.
Cytochrome P-450d was isolated from isosafrol-induced rat liver microsomes by affinity chromatography on 1.8-diaminooctyl-Sepharose 4B and chromatography on hydroxylapatite using a linear potassium phosphate gradient (45-250 mM). The enzyme has a molecular mass of 54 kDa, CO-maximum 448 nm is characterized by a high spin state; the rate of 4-aminobiphenyl hydroxylation is 54 nmol/min/nmol of cytochrome P-450d (37 degrees C), those, of 7-ethoxyresorufin O-deethylation and benz (a) pyrene oxidation are 1 nmol/min/nmol of cytochrome P-450d (22 degrees C) and 2 nmol/min/nmol of cytochrome P-450d (37 degrees C), respectively. The properties of cytochrome P-450d were compared to those of cytochrome P-450c isolated from 3-methylcholanthrene-induced rats. The yield of these cytochromes under the conditions used (10% P-450d from isosafrol-induced microsomes and 15% P-450c from 3-methylcholanthrene-induced microsomes) was relatively high. Antibodies to cytochromes P-450d and P-450c were obtained. Using rocket immunoelectrophoresis the percentage of these hemoprotein forms in 3-methylcholanthrene-induced (P-450d-20%, P-450c-70%) and isosafrol-induced rat liver microsomes (P-450d-50%, P-450c-15%) was determined.  相似文献   

10.
Lipophilic thiol compounds interact spectrally with liver microsomes from phenobarbital-pretreated rats by formation of unusual optical difference spectra with peaks at 378, 471, 522 and 593 nm in the oxidized state. The binding kinetics were biphasic. The EPR spectrum of cytochrome P-450 was slightly modified but the magnitude of the low-spin signal was unchanged. n-Octanethiol competitively displaced metyrapone and n-octane from the active site of cytochrome P-450. Other thiols behaved similarly with variations in the magnitude and the affinity of the binding process. Tertiary thiols caused the formation of the high-spin cytochrome P-450 substrate complex, and model studies with myoglobin revealed that steric hindrance prevented the liganding of the tertiary thiol group to the ferric cytochrome P-450. Addition of thiols to dithionite reduced microsomes resulted in relatively small spectral changes with maxima at 449 nm typical for ligand complexes of the ferrous cytochrome. It was concluded that lipophilic thiols can be bound as ligands by at least two species of oxidized cytochrome P-450 which represent, however, not more than about one fifth of the total cytochrome P-450 content in liver microsomes from phenobarbital-pretreated rats.  相似文献   

11.
Using immunochemical methods, the identity of cytochrome P-448 from liver microsomes of mice of "inducible" and "non-inducible" lines during induction by xenobiotics of MX-type (3-methylcholanthrene, 3,4-benzpyrene, 2,3,7,8-tetrachlorodibenzodioxin) was established. This hemoprotein form was shown to play a role in 3,4-benzpyrene metabolism. Monospecific antibodies to purified cytochromes P-448 and P-450 were obtained; the cytochrome P-448 content in microsomes was measured by rocket immunoelectrophoresis. The content of cytochrome P-448 in control and phenobarbital-induced microsomes makes up to 10-15% of the total hemoprotein content determinable from the CO-spectra. 3-Methylcholanthrene and 3,4-benzpyrene injected into "non-inducible" mice cause no increase in the content of this hemprotein form, whereas in mice induced with 2,3,7,8-tetrachlorodibenzodioxin it rises to 50%. Under these conditions, an almost 100% inhibition of 3,4-benzpyrene metabolism by antibodies to cytochrome P-448 is observed. Antibodies against cytochrome P-448 obtained from liver microsomes of 3-methylcholanthrene-induced mice cause a 90% inhibition of 3,4-benzpyrene in microsomes induced with 3-methylcholanthrene and 2,3,7,8-tetrachlorodibenzodioxin.  相似文献   

12.
Hepatic microsomal azoreductase activity with amaranth (3-hydroxy-4[(4-sulfo-1-naphthalenyl)azo]-2,7-naphthalenedisulfonic acid trisodium salt) as a substrate is proportional to the levels of microsomal cytochrome P-450 from control or phenobarbital-pretreated rats and mice or cytochrome P-448 from 3-methylchol-anthrene-pretreated animals. In the "inducible" C57B/6J strain of mice, 3-methylcholanthrene and phenobarbital pretreatment cause an increase in cytochrome P-448 and P-450 levels, respectively, which is directly proportional to the increase of azoreductase activity. However, in the "noninducible" DBA/2J strain of mice, only phenobarbital treatment causes the increase both in cytochrome P-450 levels and azoreductase activity, while 3-methylcholanthrene has no effect. These experiments suggest that the P-450 type cytochromes are responsible for azoreductase activity in liver microsomes.  相似文献   

13.
The effects of high pressure (1-2000 bar) on the spin state and substrate binding equilibria in cytochrome P-450 have been determined. The high-spin (S = 5/2) to low spin (S = 1/2) transition of the ferric hemoprotein was monitored by uv-visible spectroscopy at various substrate concentrations. Increasing hydrostatic pressure on a sample of substrate-bound cytochrome P-450 resulted in a decrease in the high-spin fraction as monitored by a Soret maxima at 391 nm and an increase in the low-spin 417-nm region of the spectrum. These pressure-induced optical changes were totally reversible for all pressures below 800 bar and were found to correspond to simple substrate dissociation from the enzyme. High levels of the normally metabolized substrate, d-camphor, corresponding to a 99.9% saturation of the hemoprotein active site (50 mM Tris-Cl, 100 mM KCl, pH 7.2) completely prevented the pressure-induced high-spin to low-spin transition that is observed at less than saturating substrate concentrations. A gradual increase in the formation of the inactive P-420 form of the cytochrome was noted if the pressure of the sample was increased above 800 bar. These pressure-linked spectral changes were used to determine the microscopic volume change accompanying substrate binding, which was found to be -47.0 +/- 2 ml/mol (pH 7.2) which represents a substantial change for a ligand dissociation reaction. The observed volume change for camphor binding decreases to -30.6 +/- 2 ml/mol at pH 6.0, suggesting the involvement of a linked proton equilibrium. Various substrate analogs of camphor induce varying degrees of low-spin to high-spin shift upon binding to ferric cytochrome P-450 (3). The volume changes for the dissociation of these substrates were very similar to those obtained with camphor. The conformational changes associated with a shift from high- to low-spin ferric iron appear to be small in comparison to the overall macroscopic changes in volume accompanying substrate binding to the enzyme.  相似文献   

14.
Hepatic microsomal azoreductase activity in mice was induced with phenobarbital (PB) and 3-methylcholanthrene (3-MC). Antibodies against cytochrome P-450 inhibited azoreductase activity of PB-treated animals while antibodies against cytochrome P-448 inhibited liver azoreductase activity of 3-MC-treated animals, each by about 90%. These antibodies also inhibited microsomal 7-ethoxycoumarin-O-deethylase activity to the same extent. It is concluded that hepatic microsomal azoreductase activity is almost totally dependent on cytochromes P-450 and P-448 and the contribution, if any, of other microsomal components is negligible.  相似文献   

15.
Two hepatic microsomal cytochromes P-450, P-450F-1 and P-450F-2 were purified to electrophoretic homogeneity from untreated adult female rats by high-performance liquid chromatography (HPLC) with anion-exchange, cation-exchange, and hydroxyapatite columns. Cytochromes P-450F-1 and P-450F-2 were not adsorbed with the anion-exchange column, but were retained on a cation-exchange column and were separated poorly. These forms separated on hydroxyapatite HPLC. The molecular weights of cytochromes P-450F-1 and P-450F-2 were 50,000 and 49,000, respectively. The absolute spectrum of the oxidized forms indicated that they had the low-spin state of heme, and the CO-reduced spectral maxima of cytochromes P-450F-1 and P-450F-2 were at 450 and 448 nm, respectively. Both forms catalyzed the N-demethylation of benzphetamine and had low catalytic activity for 7-ethoxycoumarin. Cytochrome P-450F-1 had low 2 alpha-hydroxylation activity toward testosterone. Cytochrome P-450F-2 had low 15 alpha-hydroxylation activity. On the basis of these results and those of NH2-terminal sequence analysis, cytochrome P-450F-2 seemed to be the typical female-specific cytochrome P-450. The NH2-terminal sequence of cytochrome P-450F-1 was identical to that of cytochrome P-450PB-2 purified from hepatic microsomes of male rats treated with phenobarbital. Cytochromes P-450F-1 and P-450PB-2 had identical chromatographic properties, minimum molecular weight, spectral properties, and peptide maps. Furthermore, the antibody to phenobarbital-inducible cytochrome P-450PB-2 gave a single immunoprecipitin band with cytochrome P-450F-1 by Ouchterlony double-diffusion analysis.  相似文献   

16.
Circular dichroism (CD) spectra were measured for cytochromes P-450 (P-450) purified from phenobarbital- and 3-methylcholanthrene-induced rabbit liver microsomes. No striking difference in alpha-helix content was seen between phenobarbital-induced P-450 (PB P-450) (50%), phenobarbital-induced P-448 (PB P-448) (40%) and 3-methylcholanthrene-induced P-448 (MC P-448) (45--50%) in terms of ultraviolet CD spectra. Strong negative CD spectra associated with 3-methylcholanthrene transitions for MC P-448 in the near-ultraviolet region (250--310 nm) and weaker negative CD spectra associated with Soret transitions for PBP-448 ([theta] = 50 000) and MCP-448 ([theta] = 160 000), indicated that structures of these preparations are strikingly different from each other. Reduction of P-450 and P-448 led to a remarkable decrease of the Soret CD trough, suggesting that reduction was accompanied by a striking conformational change in the vicinity of the heme. Since CO complexes of reduced P-450 and P-448 showed a CD trough and an S-shaped CD, respectively, associated with the absorption peak at 450 nm, the heme vicinities are remarkably different from each other. The CD spectra in the visible region are also discussed. It was noticed that P-420, the denatured form of P-450, exhibited no CD spectra in the Soret and visible regions.  相似文献   

17.
Procedures are described for the isolation of two forms of rabbit liver microsomal liver microsomal cytochrome P-450 (P-450LM) in homogeneous state. They are designated by their relative electrophoretic mobilities on polyacrylamide gel in the presence of sodium dodecyl sulfate as P-450LM2 and P-450LM4. P-450LM2, which was isolated from phenobarbital-induced animals, has a subunit molecular weight of 48,700. The best preparations contain 20 nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. P-450LM4, which is induced by beta-naphthoflavone but is also present in phenobarbital-induced and untreated animals, was isolated from all three sources and found to have a subunit molecular weight of 55,300. The best preparations contain 17nmol of the cytochrome per mg of protein and 1 molecule of heme per polypeptide chain. Some of the purified preparations of the cytochromes, although electrophoretically homogeneous, contain apoenzyme due to heme loss during purification. The purified proteins contain no detectable NADPH-cytochrome P-450 reductase, cytochrome b5, or NADH-cytochrome b5 reductase, and only low levels of phospholipid (about 1 molecule per subunit). Amino acid analysis indicated that P-450LM2 and P-450LM4 are similar in composition, but the latter protein has about 60 additional residues. The COOH-terminal amino acid of P-450LM2 is arginine, as shown by carboxypeptidase treatment, whereas that of P-450LM4 is lysine. NH2-terminal amino acid residues could not be detected. Carbohydrate analysis indicated that both cytochromes contain 1 residue of glucosamine and 2 of mannose per polypeptide subunit. The optical spectra of the oxidized and reduced cytochromes and carbon monoxide complexes were determined. Oxidized P-450LM2 has maxima at 568, 535, and 418 nm characteristic of a low spin hemeprotein, and P450LM4 from beta-naphthoflavone-induced, phenobarbital-induced, or control microsomes has maxima at 645 and 394 nm, characteristic of the high spin state. The spectrum of -450lm4 becomes similar to that of P-450LM2 at high protein concentrations or upon the addition of detergent (Renex), whereas the spectrum of P-450LM2 is unaffected by the protein concentration or the presence of detergent. Electron paramagnetic resonance spectrometry of the purified cytochromes indicated that oxidized -450lm2 is in the low spin state, whereas P-450LM4 is largely, but not entirely, in the high spin state.  相似文献   

18.
Comparative EPR studies were made on two high-spin Fe(III) porphine model systems and mammalian liver microsomal cytochromes P-450, all of which exhibit approximately the same degrees of rhombicity in their EPR spectra. Comparison of g values and linewidths as a function of temperature, and of the microwave power saturation demonstrated that EPR characteristics of P-450 are more similar to the Fe(III) porphines having the thiolate axial ligand than in the other model systems, the mixed crystals of Fe(III) porphine with the corresponding free base porphine, in which no thiolate ligand is involved. There is, however, a discrepancy between P-450 and the model thiolates with respect to the size of the zero-field parameter D. These observations indicate that P-450 heme has essential structural features in common with thiolates but the Fe-S bond of P-450 may be modified from its normal orientation in model thiolates, probably as a result of the constraints imposed by the protein structure.  相似文献   

19.
The technique of electron paramagnetic resonnance spectrometry has been applied to the study of plant microsomal electron-transport components. Only tulip-bulb microsomes were found to give strong enough signals to allow detailed study. At 77 K in the oxidised state, signals were observed at g values of 2.40, 2.25 and 1.93, characteristic of cytochrome P-450 in the low-spin state, and also at g = 4.27, attributable to ferric iron in a rhombic environment. The signals at g = 2.40, 2.25 and 1.93 disappeared upon reduction with sodium dithionite. At 10 K in the oxidised state, signals at g = 8.3 and 3.3 appeared, and these were attributed to high-spin cytochrome P-450. At this temperature a further signal at g = 6, due to cytochrome P-420, was seen in aged tulip-bulb microsomes. Redox titration of both high-spin and low-spin cytochrome P-450 gave the same apparent midpoint potential of -315 +/- mV at pH 6.8 and 25 degrees C. The significance of this value is discussed. Addition of "type I" or "type II" ligands to oxidized cytochrome P-450 caused an increase and a decrease, respectively, in the ratio of the high-spin to the low-spin form. A second effect of aniline, a type II ligand of cytochrome P-450, was to remove the g = 6 signal, suggesting that it also interacts with cytochrome P-420. No iron-sulphur proteins similar to those found in some other cytochrome P-450 electron-transport chains could be detected in any of the microsomes analysed.  相似文献   

20.
Utilizing two-dimensional gel electrophoresis, the polypeptide composition of a purified microsomal cytochrome P-450 preparation isolated from phenobarbital-treated Long-Evans rats obtained from Charles River Laboratories has been examined. The purified protein consists of three polypeptides with nearly identical subunit molecular weights (approximately 52,000) but differing in net charge. These three polypeptides can be detected in liver microsomes isolated from phenobarbital-treated rats by immunoblot analysis but are virtually absent in microsomes isolated from untreated rats. All three polypeptides appear to be products of distinct mRNAs since they can be immunoprecipitated from rabbit reticulocyte lysates programmed with poly(A+)-RNA isolated from phenobarbital-treated rats. The amount of functional mRNA specific for the P-450 polypeptides increases dramatically in response to an acute administration of phenobarbital; however, in untreated rats the amount of functional mRNA was below the level of detection by the translational assay. These data are consistent with the very low level of the phenobarbital-inducible cytochromes P-450 in liver microsomes isolated from untreated rats. Finally, the data indicate that all three cytochrome P-450 mRNAs increase rapidly in response to phenobarbital administration and are regulated coordinately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号