首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Bioremediation of paper and pulp mill effluents   总被引:1,自引:0,他引:1  
Pulp and paper mill effluents pollute water, air and soil, causing a major threat to the environment. Several methods have been attempted by various researchers throughout the world for the removal of colour from pulp and paper mill effluents. The biological colour removal process uses several classes of microorganisms--bacteria, algae and fungi--to degrade the polymeric lignin derived chromophoric material. White rot fungi such as Phanerochaete chrysosporium, Corius versicolor, Trametes versicolor etc., are efficient in decolourizing paper and pulp mill effluents. Gliocladium virens, a saprophytic soil fungus decolourised paper and pulp mill effluents by 42% due to the production of hemicellulase, lignin peroxidase, manganese peroxidase and laccase.  相似文献   

2.
Selected strains of three species of white rot fungi, Pleurotus ostreatus, Phanerochaete chrysosporium and Trametes versicolor, were grown in sterilized soil from straw inocula. The respective colonization rates and mycelium density values decreased in the above mentioned order. Three- and four-ringed PAHs at 50 ppm inhibited growth of fungi in soil to some extent. The activities of fungal MnP and laccase (units per g dry weight of straw or soil), extracted with 50 mM succinate-lactate buffer (pH 4.5), were 5 to 20-fold higher in straw compared to soil. The enzyme activities per g dry soil in P. ostreatus and T. versicolor were similar, in contrast to P. chrysosporium, where they were extremely low. Compared to the aerated controls, P. ostreatus strains reduced the levels of anthracene, pyrene and phenanthrene by 81–87%, 84–93% and 41–64% within 2 months, respectively. During degradation of anthracene, all P. ostreatus strains accumulated anthraquinone. PAH removal rates in P. chrysosporium and T. versicolor soil cultures were much lower.  相似文献   

3.
三种白腐菌及其组合菌种木质素降解酶比较研究   总被引:2,自引:0,他引:2  
朱红栓菌Trametes cinnabarina、糙皮侧耳Pleurotus ostreatus、黄孢原毛平革菌Phanerochaete chrysosporium是产生木质素降解酶能力强的菌株。对三种白腐菌及其组合菌种产生木质素降解酶能力和行为进行了比较分析和研究。结果表明,最佳培养方式为液体振荡培养;最佳培养基为酵母膏液体培养基。在产漆酶(laccases,lacs)方面,Pleurotus ostreatus和Phanerochaete chrysosporium的组合菌种的酶活最强,在第6天出现峰值,酶活达到450U/L;在产锰过氧化物酶(manganese peroxidases,mnps)方面,Trametes cinnabarina和Pleurotus ostreatus的组合菌种的酶活最强,在第10天出现峰值,酶活达到1050U/L;在产木质素过氧化物酶(lignin peroxidases,lips)方面,Trametes cinnabarina和Phanerochaete chrysosporium的组合菌种的酶活最强,在第8天出现产酶峰值,酶活达到2990U/L。筛选结果表明,组合菌种比单菌种产生的三种主要木质素降解酶的活性强,这为白腐菌高效产酶提供了一条新的途径,并为白腐菌研究领域的后续工作奠定基础。  相似文献   

4.
Biobleaching of hardwood unbleached kraft pulp (UKP) by Phanerochaete chrysosporium and Trametes versicolor was studied in the solid-state fermentation system with different culture media. In this fermentation system with low-nitrogen and high-carbon culture medium, pulp brightness increased by 15 and 30 points after 5 days of treatment with T. versicolor and P. chrysosporium, respectively, and the pulp kappa number decreased with increasing brightness. A comparison of manganese peroxidase (MnP), lignin peroxidase (LiP), and laccase activities assayed by using fungus-treated pulp and the filtrate after homogenizing the fungus-treated pulp in buffer solution indicated that enzymes secreted from fungi were adsorbed onto the UKP and that assays of these enzyme activities should be carried out with the treated pulp. Time course studies of brightness increase and MnP activity during treatment with P. chrysosporium suggested that it was difficult to correlate them on the basis of data obtained on a certain day of incubation, because the MnP activity fluctuated dramatically during the treatment time. When brightness increase and cumulative MnP, LiP, and laccase activities were determined, a linear relationship between brightness increase and cumulative MnP activity was found in the solid-state fermentation system with both P. chrysosporium and T. versicolor. This result suggests that MnP is involved in brightening of UKP by white rot fungi.  相似文献   

5.
Phanerochaete chrysosporium extensively degraded and mineralized chlorobenzene and o-, m-, and p-dichlorobenzenes. The rate of degradation was in the following order: monochlorobenzene > m-dichlorobenzene > o-dichlorobenzene > p-dichlorobenzene. Net level of degradation was generally higher than mineralization. Maximal degradation and mineralization of chlorobenzenes were observed in malt extract cultures in which the lignin peroxidases and manganese peroxidases are not known to be produced. The fungus degraded both chlorobenzene and toluene when presented as a mixture, indicating its ability to simultaneously degrade chloro-substituted and methyl-substituted benzenes.  相似文献   

6.
White rot fungi efficiently degrade lignin, a complex aromatic polymer in wood that is among the most abundant natural materials on earth. These fungi use extracellular oxidative enzymes that are also able to transform related aromatic compounds found in explosive contaminants, pesticides and toxic waste. We have sequenced the 30-million base-pair genome of Phanerochaete chrysosporium strain RP78 using a whole genome shotgun approach. The P. chrysosporium genome reveals an impressive array of genes encoding secreted oxidases, peroxidases and hydrolytic enzymes that cooperate in wood decay. Analysis of the genome data will enhance our understanding of lignocellulose degradation, a pivotal process in the global carbon cycle, and provide a framework for further development of bioprocesses for biomass utilization, organopollutant degradation and fiber bleaching. This genome provides a high quality draft sequence of a basidiomycete, a major fungal phylum that includes important plant and animal pathogens.  相似文献   

7.
Wastewaters from the fruit packaging industry contain a high pesticide load and require treatment before their environmental discharge. We provide first evidence for the potential bioremediation of these wastewaters. Three white rot fungi (WRF) (Phanerochaete chrysosporium, Trametes versicolor, Pleurotus ostreatus) and an Aspergillus niger strain were tested in straw extract medium (StEM) and soil extract medium (SEM) for degrading the pesticides thiabendazole (TBZ), imazalil (IMZ), thiophanate methyl (TM), ortho-phenylphenol (OPP), diphenylamine (DPA) and chlorpyrifos (CHL). Peroxidase (LiP, MnP) and laccase (Lac) activity was also determined to investigate their involvement in pesticide degradation. T. versicolor and P. ostreatus were the most efficient degraders and degraded all pesticides (10 mg l−1) except TBZ, with maximum efficiency in StEM. The phenolic pesticides OPP and DPA were rapidly degraded by these two fungi with a concurrent increase in MnP and Lac activity. In contrast, these enzymes were not associated with the degradation of CHL, IMZ and TM implying the involvement of other enzymes. T. versicolor degraded spillage-level pesticide concentrations (50 mg l−1) either fully (DPA, OPP) or partially (TBZ, IMZ). The fungus was also able to rapidly degrade a mixture of TM/DPA (50 mg l−1), whereas it failed to degrade IMZ and TBZ when supplied in a mixture with OPP. Overall, T. versicolor and P. ostreatus showed great potential for the bioremediation of wastewaters from the fruit packaging industry. However, degradation of TBZ should be also achieved before further scaling up.  相似文献   

8.
Degradation of anthracene by selected white rot fungi   总被引:5,自引:0,他引:5  
Abstract Approximately 60% of the originally supplied anthracene (AC) was degraded in ligninolytic stationary cultures of selected white rot fungi within 21 days. All the white rot fungi tested oxidized AC to anthraquinone (AQ). Unlike Phanerochaete chrysosporium and strain Px, with Pleurotus ostreatus, Coriolopsis polyzona and Trametes versicolor , AQ did not accumulate in the cultures, indicating that AQ was degraded further and its degradation did not appear to be a rate-limiting step. However, P. ostreatus and C. polyzona failed to degrade AQ in the absence of AC. P. ostreatus, T. versicolor and strain Px did not produce lignin peroxidase (ligninase) (LIP) under the test conditions but oxidized AC to AQ suggesting that white rot fungi produce enzyme(s) other than LIP capable of oxidizing compounds with high ionization potential like AC. Moreover, in the case of Ph. chrysosporium and C. polyzona , AC degradation started earlier than the production of LIP. Veratryl alcohol (VA) seemed to be playing a role in AC oxidation catalyzed by LIP in Ph. chrysosporium .  相似文献   

9.
AIMS: Four selected fungi were screened for their ability to decolourize a textile effluent and commercial reactive dyes in a solid medium. METHODS AND RESULTS: Ligninolytic enzymes activities (lignin peroxidase, manganese peroxidase and laccase) and siderophores presence were monitored in decolourized plates. RESULTS: The results showed low lignin peroxidase activity and no manganese peroxidase activity was detected for all fungi. Laccase activity was observed in Reactive Blue 19 decolourized plates by Trametes versicolor and Trametes villosa. Siderophores presence was observed in Trametes versicolor, Phanerochaete chrysosporium and Lentinus edodes decolourized plates. CONCLUSION: Lentinus edodes displayed the greatest decolourization ability both in terms of extent and rapidity of decolourization. SIGNIFICANCE AND IMPACT OF THE STUDY: The transformation observed for dyes open the possibility to study siderophores to treat dyes and textile effluents.  相似文献   

10.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

11.
The ability of Phanerochaete chrysosporium to bioremediate TNT (2,4,6-trinitrotoluene) in a soil containing 12,000 ppm of TNT and the explosives RDX (hexahydro-1,3,5-trinitro-1,3,5- triazine; 3,000 ppm) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine; 300 ppm) was investigated. The fungus did not grow in malt extract broth containing more than 0.02% (wt/vol; 24 ppm of TNT) soil. Pure TNT or explosives extracted from the soil were degraded by P. chrysosporium spore-inoculated cultures at TNT concentrations of up to 20 ppm. Mycelium-inoculated cultures degraded 100 ppm of TNT, but further growth was inhibited above 20 ppm. In malt extract broth, spore-inoculated cultures mineralized 10% of added [14C]TNT (5 ppm) in 27 days at 37 degrees C. No mineralization occurred during [14C]TNT biotransformation by mycelium-inoculated cultures, although the TNT was transformed.  相似文献   

12.
The characteristic biodegradation of monomeric styrene by Phanerochaete chrysosporium KFRI 20742, Trametes versicolor KFRI 20251 and Daldinia concentrica KFRI 40-1 was carried out to examine the resistance, its degradation efficiency and metabolites analysis. The estrogenic reduction effect of styrene by the fungi was also evaluated. The mycelium growth of fungi differentiated depending on the concentration levels of styrene. Additionally P. chrysosporium KFRI 20742 showed superior mycelium growth at less than 200 mg/l, while D. concentrica KFRI 40-1 was more than 200 mg/l. The degradation efficiency reached 99% during one day of incubation for all the fungi. Both manganese-dependent peroxidase and laccase activities in liquid medium were the highest at the initial stage of incubation, whereas the lowest was after the addition of styrene. However, both activities were gradually recovered after. The major metabolites of styrene by P. chrysosporium KFRI 20742 were 2-phenyl ethanol, benzoic acid, cyclohexadiene-1,4-dione, butanol and succinic acid. From one to seven days of incubating the fungi, the expression of pS2 mRNA widely known as an estrogen response gene was decreased down to the level of baseline after one day. Also, the estrogenic effect of styrene completely disappeared after treatment with supernatant of P. chrysosporium KFRI 20742 from one week of culture down to the levels of vehicle.  相似文献   

13.
Abstract: White-rot fungi produce extracellular lignin-modifying enzymes, the best characterized of which are laccase (EC 1.10.3.2), lignin peroxidases (EC 1.11.1.7) and manganese peroxidases (EC 1.11.1.7). Lignin biodegradation studies have been carried out mostly using the white-rot fungus Phanerochaete chrysosporium which produces multiple isoenzymes of lignin peroxidase and manganese peroxidase but does not produce laccase. Many other white-rot fungi produce laccase in addition to lignin and manganese peroxidases and in varying combinations. Based on the enzyme production patterns of an array of white-rot fungi, three categories of fungi are suggested: (i) lignin-manganese peroxidase group (e.g. P. chrysosporium and Phlebia radiata ), (ii) manganese peroxidase-laccase group (e.g. Dichomitus squalens and Rigidoporus lignosus ), and (iii) lignin peroxidase-laccase group (e.g. Phlebia ochraceofulva and Junghuhnia separabilima ). The most efficient lignin degraders, estimated by 14CO2 evolution from 14C-[Ring]-labelled synthetic lignin (DHP), belong to the first group, whereas many of the most selective lignin-degrading fungi belong to the second, although only moderate to good [14C]DHP mineralization is obtained using fungi from this group. The lignin peroxidase-laccase fungi only poorly degrade [14C]DHP.  相似文献   

14.
【目的】筛选能抗营养阻遏产漆酶的黄孢原毛平革菌,论证其产漆酶的确定性及抗营养阻遏产木质素酶的可行性,为白腐菌产酶代谢调控、木质素降解机理的研究奠定基础。【方法】利用重复紫外诱变法,以愈创木酚富氮鉴别培养基筛选目标菌株;比较不同营养条件下菌体生长与产酶动力学差异研究产酶营养调控机理;通过热处理、排除锰离子和加入过氧化氢酶等不同措施论证黄孢原平毛平革菌能否产生漆酶。【结果】3种不同方法均证实选育到的pcR5305和pcR5324菌株在限氮与富氮条件下均能产生漆酶,pcR5305和pcR5324在限氮条件下产漆酶分别达到203.5、187.6 U/L;在富氮条件下为220.6、183.9 U/L,而原菌株pc530在两种条件下都基本不产生漆酶。二菌株产漆酶调控方式不同,pcR5305漆酶产生与菌体生长同步,而pcR5324漆酶产生却受营养氮阻遏。二菌株同时具有抗营养阻遏高产木质素过氧化物酶(LiP)和锰过氧化物酶(MnP)(分别为LiP 1343.2、MnP 252.2 U/L;LiP 1169.5、MnP 172.4 U/L)的能力。【结论】筛选到的黄孢原毛平革菌变异菌株能产漆酶,同时表现了抗营养阻遏产漆酶、木质素过氧化物酶和锰过氧化物酶的能力,具有重要的生产应用与理论研究价值,为白腐菌产酶代谢调控机理研究提供了原始菌株并奠定了良好的基础。  相似文献   

15.
贝壳状革耳菌和黄孢平革菌固体培养酶系比较   总被引:13,自引:0,他引:13  
白腐菌黄孢平革菌(Phanerochaete chrysosporium) 与贝壳状革耳菌(Panus conchatus)在类似自然状态的固体培养条件下酶的分泌情况有 较大差异。P.conchatus和P.chrysosporium的主要木素降解酶分别是漆酶和锰过氧化物酶 ;两种菌均产生较高水平的木聚糖酶;P.conchatus在整个培养过程中所产生的内切葡 聚糖酶、微晶纤维素酶和纤维二糖酶活力均比P.chrysosporium相应酶的活力低得多, 尤其是内切葡聚糖酶。研究结果初步揭示了P.conchaus降解木素的主要酶系及选择性降 解木素的原因。  相似文献   

16.
iTRAQ-based quantitative secretome analysis of Phanerochaete chrysosporium   总被引:1,自引:0,他引:1  
The basidiomycete fungi such as Phanerochaete chrysosporium secrete large amount of hydrolytic and oxidative enzymes and degrade lignocellulosic biomass. The lignin depolymerizing proteins were extensively studied, but cellulose, hemicellulose and pectin hydrolyzing enzymes were poorly explored. In this study P. chrysosporium was grown in cellulose, lignin and mixture of cellulose and lignin, and secretory proteins were quantified by isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics using liquid chromatography tandem mass spectrometry (LC-MS/MS). An iTRAQ quantified 117 enzymes comprising cellulose hydrolyzing endoglucanases, exoglucanases, beta-glucosidases; hemicelluloses hydrolyzing xylanases, acetylxylan esterases, mannosidases, mannanases; pectin-degrading enzymes polygalacturonase, rhamnogalacturonase, arabinose and lignin degrading protein belonging to oxidoreductase family. Under cellulose and cellulose with lignin culture conditions, enzymes such as endoglucanases, exoglucanases, β-glucosidases and cellobiose dehydrogenase were significantly upregulated and iTRAQ data suggested hydrolytic and oxidative cellulose degradation. When lignin was used as a major carbon source, enzymes such as copper radical oxidase, isoamyl oxidase, glutathione S-transferase, thioredoxin peroxidase, quinone oxidoreductase, aryl alcohol oxidase, pyranose 2-oxidase, aldehyde dehydrogenase, and alcohol dehydrogenase were expressed and significantly regulated. This study explored cellulose, hemicellulose, pectin and lignin degrading enzymes of P. chrysosporium that are valuable for lignocellulosic bioenergy.  相似文献   

17.
High-molecular-weight polymers were produced by a crude concentrated supernatant from ligninolytic Phanerochaete chrysosporium cultures in a reaction mixture containing pentachlorophenol and a humic acid precursor (ferulic acid) in the presence of a detergent and H2O2. Pure manganese peroxidase, lignin peroxidase, and laccase were also shown to catalyze the reaction.  相似文献   

18.
The ability of Phanerochaete chrysosporium to degrade six alkyl halide insecticides (aldrin, dieldrin, heptachlor, chlordane, lindane, and mirex) in liquid and soil-corncob matrices was compared by using 14C-labeled compounds. Of these, only [14C]lindane and [14C]chlordane underwent extensive biodegradation, as evidenced by the fact that 9.4 to 23.4% of these compounds were degraded to 14CO2 in 30 days in liquid cultures and 60 days in soil-corncob cultures inoculated with P. chrysosporium. Although [14C]aldrin, [14C]dieldrin, [14C]heptachlor, and [14D]mirex were poorly mineralized, substantial bioconversion occurred, as determined by substrate disappearance and metabolite formation. Nonbiological disappearance was observed only with chlordane and heptachlor.  相似文献   

19.
The ability of Phanerochaete chrysosporium to degrade six alkyl halide insecticides (aldrin, dieldrin, heptachlor, chlordane, lindane, and mirex) in liquid and soil-corncob matrices was compared by using 14C-labeled compounds. Of these, only [14C]lindane and [14C]chlordane underwent extensive biodegradation, as evidenced by the fact that 9.4 to 23.4% of these compounds were degraded to 14CO2 in 30 days in liquid cultures and 60 days in soil-corncob cultures inoculated with P. chrysosporium. Although [14C]aldrin, [14C]dieldrin, [14C]heptachlor, and [14D]mirex were poorly mineralized, substantial bioconversion occurred, as determined by substrate disappearance and metabolite formation. Nonbiological disappearance was observed only with chlordane and heptachlor.  相似文献   

20.
Dibenzyl sulfide metabolism by white rot fungi   总被引:1,自引:0,他引:1  
Microbial metabolism of organosulfur compounds is of interest in the petroleum industry for in-field viscosity reduction and desulfurization. Here, dibenzyl sulfide (DBS) metabolism in white rot fungi was studied. Trametes trogii UAMH 8156, Trametes hirsuta UAMH 8165, Phanerochaete chrysosporium ATCC 24725, Trametes versicolor IFO 30340 (formerly Coriolus sp.), and Tyromyces palustris IFO 30339 all oxidized DBS to dibenzyl sulfoxide prior to oxidation to dibenzyl sulfone. The cytochrome P-450 inhibitor 1-aminobenzotriazole eliminated dibenzyl sulfoxide oxidation. Laccase activity (0.15 U/ml) was detected in the Trametes cultures, and concentrated culture supernatant and pure laccase catalyzed DBS oxidation to dibenzyl sulfoxide more efficiently in the presence of 2,2'-azinobis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) than in its absence. These data suggest that the first oxidation step is catalyzed by extracellular enzymes but that subsequent metabolism is cytochrome P-450 mediated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号