首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Crude inside-out vesicles from the methanogenic strain G?1 were prepared via protoplasts. These vesicles catalyzed methane formation from methyl-CoM and H2 at a maximal rate of 35 nmol/min.mg protein. Methane formation by the vesicles did not depend on the addition of ATP. This was in contrast to conventionally prepared crude extracts from the same organism or from Methanosarcina barkeri which exhibited strict ATP dependence of methanogenesis. ATP analogues inhibited methanogenesis by extracts to a much higher extent than that by vesicles. Both, particulate and soluble components prepared from the crude vesicles by ultracentrifugation were necessary for ATP-independent methane formation from methyl-CoM and H2. Hydrogenase activity was mainly associated with the particulate fraction whereas methyl-CoM methylreductase could be assigned to the soluble fraction. The detergent sulfobetaine inhibited methane formation from methyl-CoM without affecting hydrogenase or titanium citrate-dependent methylreductase activities, indicating that an additional membraneous component is involved in methanogenesis for methyl-CoM and H2.  相似文献   

2.
Methanogenic bacteria are considered to couple methane formation with the synthesis of ATP by a chemiosmotic mechanism. This hypothesis was tested with Methanobacterium thermoautotrophicum. Methane formation from H2 and CO2 (2.5 - 3 mumol X min-1 X mg cells-1) by cell suspensions of this organism resulted in the formation of an electrochemical proton potential (delta mu H +) across the cytoplasmic membrane of 230 mV (inside negative) and in the synthesis of ATP up to an intracellular concentration of 5 - 7 nmol/mg. The addition of ionophores at concentrations which completely dissipated delta mu H + without inhibiting methane formation did not result in an inhibition of ATP synthesis. It thus appears that delta mu H + across the cytoplasmic membrane is not the driving force for the synthesis of ATP in M. thermoautotrophicum.  相似文献   

3.
The rate of methane formation from H2 and CO2, the intracellular ATP content and the electrochemical proton potential (delta mu H+) were determined in cell suspensions of Methanobacterium thermoautotrophicum, which were permeabilized for K+ with valinomycin (1.2 mumol/mg protein). In the absence of extracellular K+ the cells formed methane at a rate of 4 mumol min-1 (mg protein)-1, the intracellular ATP content was 20 nmol/mg protein and the delta mu H+ was 200 mV (inside negative). When K+ was added to the suspensions the measured delta mu H+ decreased to the value calculated from the [K+]in/[K+]out ratio. Using this method of delta mu H+ adjustment, it was found that lowering delta mu H+ from 200 mV ([K+]in/[K+]out = 1000) to 100 mV ([K+]in/[K+]out = 40) had no effect on the rate of methane formation and on the intracellular ATP content. At delta mu H+ values below 100 mV ([K+]in/[K+]out less than 40) both the rate of methanogenesis and the ATP content decreased. Methanogenesis completely ceased and the ATP content was 2 nmol/mg when delta mu H+ was adjusted to values lower 50 mV ([K+]in/[K+]out less than 7). The data show that methanogenesis from H2 and CO2 and ATP synthesis in M. thermoautotrophicum are possible at relatively low electrochemical proton potentials. Similar results were obtained with Methanosarcina barkeri. Protonophoric uncouplers like 3,5,3',4'-tetrachlorosalicylanilide (TCS) or 3,5-di-tert-butyl-4-hydroxy-benzylidenemalononitrile (SF 6847) were found not to dissipate delta mu H+ below 100 mV in M. thermoautotrophicum even when used at high concentrations (400 nmol/mg protein). This finding explains the observed uncoupler insensitivity of methanogenesis and ATP synthesis in this organism.  相似文献   

4.
Cell suspensions of methanogenic bacteria (Methanosarcina barkeri, Methanospirillum hungatei, Methano-brevibacter arboriphilus, and Methanobacterium thermoautotrophicum) were found to form CO from CO2 and H2 according to the reaction: CO2 + H2----CO + H2O; delta G0 = +20 kJ/mol. Up to 15,000 ppm CO in the gas phase were reached which is significantly higher than the equilibrium concentration calculated from delta G0 (95 ppm under the experimental conditions). This indicated that CO2 reduction with H2 to CO is energy-driven and indeed the cells only generated CO when forming CH4. The coupling of the two reactions was studied in more detail with acetate-grown cells of M. barkeri using methanogenic substrates. The effects of the protonophore tetrachlorosalicylanilide (TCS) and of the proton-translocating ATPase inhibitor N,N'-dicyclohexylcarbodiimide (cHxN)2C were determined. TCS completely inhibited CO formation from CO2 and H2 without affecting methanogenesis from CH3OH and H2. In the presence of the protonophore the proton motive force delta p and the intracellular ATP concentration were very low. (cHxN)2C, which partially inhibited methanogenesis from CH3OH and H2, had no effect on CO2 reduction to CO. In the presence of (cHxN)2C delta p was high and the intracellular ATP content was low. These findings suggest that the endergonic formation of CO from CO2 and H2 is coupled to the exergonic formation of CH4 from CH3OH and H2 via the proton motive force and not via ATP. CO formation was not stimulated by the addition of sodium ions.  相似文献   

5.
When Methanobacterium thermoautotrophicum cells were incubated in 50 mM potassium phosphate buffer (pH 7.0) containing 1 M sucrose and autolysate from Methanobacterium wolfei, they were transformed into protoplasts. The protoplasts, which possessed no cell wall, lysed in buffer without sucrose. Unlike whole cells, the protoplasts did not show convoluted internal membrane structures. The protoplasts produced methane from H2-CO2 (approximately 1 mumol min-1 mg of protein-1) at about 50% the rate obtained for whole cells, and methanogenesis was coupled with ATP synthesis. Addition of the protonophore 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile (SF-6847) to protoplast suspensions resulted in a dissipation of the membrane potential (delta psi), and this was accompanied by a parallel decrease in the rates of ATP synthesis and methanogenesis. In this respect protoplasts differed from whole cells in which ATP synthesis and methanogenesis were virtually unaffected by the addition of the protonophore. It is concluded that the insensitivity of whole cells to protonophores could be due to internal membrane structures. Membrane preparations produced from lysis of protoplasts or by sonication of whole cells gave comparatively low rates of methanogenesis (methylcoenzyme M methylreductase activity, less than or equal to 100 nmol of CH4 min-1 mg of protein-1), and no coupling with ATP synthesis could be demonstrated.  相似文献   

6.
Methanogenesis from methyl-CoM and H2, as catalyzed by inside-out vesicle preparations of the methanogenenic bacterium strain G?1, was associated with ATP synthesis. That this ATP synthesis proceeded via an uncoupler-sensitive transmembrane proton gradient was concluded from the following results: 1. Various inhibitors that affected methane formation (e.g. 2-bromomethanesulfonate) also prevented ATP synthesis. 2. The protonophore 3,5-di-tert-butyl-4-hydroxybenzylidenemalononitrile, in combination with the K+ ionophore valinomycin, inhibited ATP synthesis completely without affecting methanogenesis. 3. The ATP synthase inhibitor diethylstilbestrol inhibited ATP synthesis. 4. Addition of the detergent sulfobetaine inhibited both methane formation and ATP synthesis; the former but not the latter could be restored by adding titanium(III) citrate as electron donor. In addition it was shown that ATP synthesis could also be driven by transmembrane proton gradients artificially imposed on the vesicles. Furthermore net methanogenesis-dependent ATP formation was shown by measuring [32P]phosphate incorporation.  相似文献   

7.
A sodium ion gradient (inside low) across the cytoplasmic membrane of Methanosarcina barkeri was required for methanogenesis from methanol. This could be concluded from the following results. (a) Inhibition of the Na+/H+ antiporter by K+ or amiloride led to an inhibition of methanogenesis from methanol. (b) Upon addition of the sodium ionophore monensin the Na+ gradient was abolished and at the same time methanogenesis from methanol was inhibited. (c) Methanogenesis was impaired when the Na+ gradient had the opposite orientation (inside high). All these inhibitory effects were not observed when H2 was present in addition to methanol indicating that the oxidation of methanol to CO2 was driven by a sodium-motive force. In accordance with this, a methanol-dependent influx of Na+ and a corresponding decrease of the membrane potential could be observed, when the Na+/H+ antiporter was inhibited by amiloride. This influx was indicative of the presence of a Na+ transport system which was functional when the oxidation of methanol had to be driven, but was not functional when H2 was present for reduction of methanol to methane.  相似文献   

8.
Abstract Everted vesicles of the methanogenic strain Gö1 synthesized ATP in response to methanogenesis from methyl-coenzyme M and H2. Simultaneously, a transmembrane pH gradient (ΔpH) was generated as evident from fluorescence quenching of acridine orange. Protonophorous uncouplers prevented ΔpH generation and ATP synthesis, but did not affect methanogenesis. The ATP synthase inhibitor diethylstilbestrol (DES) inhibited ATP synthesis but had no effect on methanogenesis and on ΔpH formation, indicating the essential role of the transmembrane proton potential in ATP synthesis. Progress has also been made in assigning specific functions to membrane components in methanogenesis from methyl-CoM and H2. Separation of cell extracts into cytoplasmic and membrane fraction revealed an essential role of membrane-bound components in electron transfer: methanogenesis catalyzed by the cytoplasmic fraction from strain Gö1 was stimulated several fold by membranes from various methanogens. This stimulation was prevented if the membranes had been treated with oxidants (O2, K3[Fe(CN)6]) or SH reagents (Ag+, p -chloromercuribenzoate, iodoacetamide) pointing to the involvement of functional SH groups in methanogenesis from methyl-CoM and H2.  相似文献   

9.
R Fischer  R K Thauer 《FEBS letters》1990,269(2):368-372
Cell extracts of Methanosarcina barkeri grown on acetate catalyzed the conversion of acetyl-CoA to CO2 and CH4 at a specific rate of 50 nmol min-1 mg-1. When ferredoxin was removed from the extracts by DEAE-Sephacel anion exchange chromatography, the extracts were inactive but full activity was restored upon addition of purified ferredoxin from M. barkeri or from Clostridium pasteurianum. The apparent Km for ferredoxin from M. barkeri was determined to be 2.5 M. A ferredoxin dependence was also found for the formation of CO2, H2 and methylcoenzyme M from acetyl-CoA, when methane formation was inhibited by bromoethanesulfonate. Reduction of methyl-coenzyme M with H2 did not require ferredoxin. These and other data indicate that ferredoxin is involved as electron carrier in methanogenesis from acetate. Methanogenesis from acetyl-CoA in cell extracts was not dependent on the membrane fraction, which contains the cytochromes.  相似文献   

10.
Methanogenesis from methanol by cell suspensions of Methanosarcina barkeri was inhibited by the uncoupler tetrachlorosalicylanilide. This inhibition was reversed by the addition of formaldehyde. 14C labeling experiments revealed that methanol served exclusively as the electron acceptor, whereas formaldehyde was mainly oxidized to CO2 under these conditions. These data support the hypothesis (M. Blaut and G. Gottschalk, Eur. J. Biochem. 141: 217-222, 1984) that the first step in methanol oxidation depends on the proton motive force or a product thereof. Cell extracts of M. barkeri converted methanol and formaldehyde to methane under an H2 atmosphere. Under an N2 atmosphere, however, formaldehyde was disproportionated to CH4 and CO2, whereas methanol was metabolized to a very small extent only, irrespective of the presence of ATP. It was concluded that cell extracts of M. barkeri are not able to oxidize methanol. In further experiments, the sodium dependence of methanogenesis and ATP formation by whole cells was investigated. Methane formation from methanol alone and the corresponding increase in the intracellular ATP content were strictly dependent on Na+. If, in contrast, methanol was utilized together with H2, methane and ATP were synthesized in the absence of Na+. The same is true for the disproportionation of formaldehyde to methane and carbon dioxide. From these experiments, it is concluded that in M. barkeri, Na+ is involved not in the process of ATP synthesis but in the first step of methanol oxidation.  相似文献   

11.
Lake Mendota sediments were studied to determine the role of H2 in sediment methanogenesis. H2 was generally not detectable in sediment. The addition of H2 to sediment significantly increased methanogenensis. The amount of methane produced was proportional to the concentration of hydrogen added. H2 addition stimulated the reduction of CO2 to methane, but did not significantly stimulate the conversion of methanol or the methyl position of acetate to methane. Various organic compounds also stimulated sediment methanogenesis. Formate, ethanol, and glucose were shown to serve as electron donors for CO2 reduction to methane. The addition of formate to sediment resulted in H2 evolution. H2 was not deith the phenomenon of interspecies hydrogen transfer. The results indicate that hydrogen is an important intermediate and a rate-limiting factor in sediment methanogenesis.  相似文献   

12.
Lake Mendota sediments were studied to determine the role of H2 in sediment methanogenesis. H2 was generally not detectable in sediment. The addition of H2 to sediment significantly increased methanogenensis. The amount of methane produced was proportional to the concentration of hydrogen added. H2 addition stimulated the reduction of CO2 to methane, but did not significantly stimulate the conversion of methanol or the methyl position of acetate to methane. Various organic compounds also stimulated sediment methanogenesis. Formate, ethanol, and glucose were shown to serve as electron donors for CO2 reduction to methane. The addition of formate to sediment resulted in H2 evolution. H2 was not deith the phenomenon of interspecies hydrogen transfer. The results indicate that hydrogen is an important intermediate and a rate-limiting factor in sediment methanogenesis.  相似文献   

13.
The pathway of acetate catabolism in Methanosarcina barkeri strain MS was studied by using a recently developed assay for methanogenesis from acetate by soluble enzymes in cell extracts. Extracts incubated with [2-14C]acetate, hydrogen, and ATP formed 14CH4 and [14C]methyl coenzyme M as products. The apparent Km for acetate conversion to methane was 5 mM. In the presence of excess acetate, both the rate and duration of methane production was dependent on ATP. Acetyl phosphate replaced the cell extract methanogenic requirement for both acetate and ATP (the Km for ATP was 2 mM). Low concentrations of bromoethanesulfonic acid and cyanide, inhibitors of methylreductase and carbon monoxide dehydrogenase, respectively, greatly reduced the rate of methanogenesis. Precipitation of CO dehydrogenase in cell extracts by antibodies raised to 95% purified enzyme inhibited both CO dehydrogenase and acetate-to-methane conversion activity. The data are consistent with a model of acetate catabolism in which methylreductase, methyl coenzyme M, CO dehydrogenase, and acetate-activating enzymes are components. These results are discussed in relation to acetate uptake and rate-limiting transformation mechanisms in methane formation.  相似文献   

14.
A series of molecular and geochemical studies were performed to study microbial, coal bed methane formation in the eastern Illinois Basin. Results suggest that organic matter is biodegraded to simple molecules, such as H(2) and CO(2), which fuel methanogenesis and the generation of large coal bed methane reserves. Small-subunit rRNA analysis of both the in situ microbial community and highly purified, methanogenic enrichments indicated that Methanocorpusculum is the dominant genus. Additionally, we characterized this methanogenic microorganism using scanning electron microscopy and distribution of intact polar cell membrane lipids. Phylogenetic studies of coal water samples helped us develop a model of methanogenic biodegradation of macromolecular coal and coal-derived oil by a complex microbial community. Based on enrichments, phylogenetic analyses, and calculated free energies at in situ subsurface conditions for relevant metabolisms (H(2)-utilizing methanogenesis, acetoclastic methanogenesis, and homoacetogenesis), H(2)-utilizing methanogenesis appears to be the dominant terminal process of biodegradation of coal organic matter at this location.  相似文献   

15.
Methane formation from acetate by resting cells of Methanosarcina barkeri was accompanied by an increase in the intracellular ATP content from 0.9 to 4.0 nmol/mg of protein. Correspondingly, the proton motive force increased to a steady-state level of -120 mV. The transmembrane pH gradient however, was reversed under these conditions and amounted to +20 mV. The addition of the protonophore 3,5,3',4'-tetrachlorosalicylanilide led to a drastic decrease in the proton motive force and in the intracellular ATP content and to an inhibition of methane formation. The ATPase inhibitor N,N'-dicyclohexylcarbodiimide stopped methanogenesis, and the intracellular ATP content decreased. The proton motive force decreased also under these conditions, indicating that the proton motive force could not be generated from acetate without ATP. The overall process of methane formation from acetate was dependent on the presence of sodium ions; upon addition of acetate to cell suspensions of M. barkeri, a transmembrane Na+ gradient in the range of 4:1 (Na+ out/Na+ in) was established. Possible sites of involvement of the Na+ gradient in the conversion of acetate to methane and carbon dioxide are discussed. Na+ is not involved in the CO dehydrogenase reaction.  相似文献   

16.
Cell suspensions of Methanosarcina barkeri were found to oxidize formaldehyde to CO2 and 2H2 (delta G0' = -27 kJ/mol CO2), when methanogenesis was inhibited by 2-bromoethanesulfonate. We report here that this reaction is coupled with (a) primary electrogenic Na+ translocation at a stoichiometry of 2-3 Na+/CO2, (b) with secondary H+ translocation via a Na+/H+ antiporter and (c) with ATP synthesis driven by an electrochemical proton potential. This is concluded from the following findings. Formaldehyde oxidation to CO2 and 2H2 was dependent on Na+ ions, 2-3 mol Na+/mol formaldehyde oxidized were extruded. Na+ translocation was inhibited by Na+ ionophores, but not affected by protonophores of Na+/H+ antiport inhibitors. Formaldehyde oxidation was associated with the build up of a membrane potential in the order of 100 mV (inside negative), which could be dissipated by sodium ionophores rather than by protonophores. Formaldehyde oxidation was coupled with ATP synthesis, which could be inhibited by Na+ ionophores, Na+/H+ antiport inhibitors, by protonophores and by the H+-translocating-ATP-synthase inhibitor, dicyclohexylcarbodiimide. With cell suspensions of Methanobacterium thermoautotrophicum similar results were obtained.  相似文献   

17.
Microbial ecosystem and methanogenesis in ruminants   总被引:1,自引:0,他引:1  
Ruminant production is under increased public scrutiny in terms of the importance of cattle and other ruminants as major producers of the greenhouse gas methane. Methanogenesis is performed by methanogenic archaea, a specialised group of microbes present in several anaerobic environments including the rumen. In the rumen, methanogens utilise predominantly H2 and CO2 as substrates to produce methane, filling an important functional niche in the ecosystem. However, in addition to methanogens, other microbes also have an influence on methane production either because they are involved in hydrogen (H2) metabolism or because they affect the numbers of methanogens or other members of the microbiota. This study explores the relationship between some of these microbes and methanogenesis and highlights some functional groups that could play a role in decreasing methane emissions. Dihydrogen ('H2' from this point on) is the key element that drives methane production in the rumen. Among H2 producers, protozoa have a prominent position, which is strengthened by their close physical association with methanogens, which favours H2 transfer from one to the other. A strong positive interaction was found between protozoal numbers and methane emissions, and because this group is possibly not essential for rumen function, protozoa might be a target for methane mitigation. An important function that is associated with production of H2 is the degradation of fibrous plant material. However, not all members of the rumen fibrolytic community produce H2. Increasing the proportion of non-H2 producing fibrolytic microorganisms might decrease methane production without affecting forage degradability. Alternative pathways that use electron acceptors other than CO2 to oxidise H2 also exist in the rumen. Bacteria with this type of metabolism normally occupy a distinct ecological niche and are not dominant members of the microbiota; however, their numbers can increase if the right potential electron acceptor is present in the diet. Nitrate is an alternative electron sinks that can promote the growth of particular bacteria able to compete with methanogens. Because of the toxicity of the intermediate product, nitrite, the use of nitrate has not been fully explored, but in adapted animals, nitrite does not accumulate and nitrate supplementation may be an alternative under some dietary conditions that deserves to be further studied. In conclusion, methanogens in the rumen co-exist with other microbes, which have contrasting activities. A better understanding of these populations and the pathways that compete with methanogenesis may provide novel targets for emissions abatement in ruminant production.  相似文献   

18.
Cell suspensions of Methanosarcina barkeri, grown on acetate, catalyzed the conversion of carbon monoxide and H2O to CO2 and H2 in stoichiometric amounts when methane formation was inhibited by bromoethanesulfonate. The specific activity was 80-120 nmol min-1 mg protein-1 at 5% CO in the gas phase. CO oxidation was coupled with the phosphorylation of ADP as indicated by a rapid increase of the intracellular ATP level upon start of the reaction. At least 0.1 mol ATP was formed/mol CO consumed. The onset of CO oxidation was also accompanied by an increase of the proton motive force (delta p) from 100 mV to 150 mV (inside negative). Addition of the uncoupler tetrachlorosalicylanilide to CO-metabolizing cells led to a rapid decrease of the ATP level and of delta p, and to an increase of the CO oxidation rate up to 70%. In the presence of the proton-translocating ATPase inhibitor N,N'-dicyclohexylcarbodiimide the phosphorylation of ADP was inhibited and CO oxidation slowed down, whereas delta p was almost unaffected. Inhibition of CO oxidation under these conditions was relieved by the addition of the protonophore tetrachlorosalicylanilide. The results indicate that in acetate-grown M. barkeri the free-energy change associated with the formation of CO2 and H2 from CO and H2O (delta G degrees = -20 kJ/mol) can be used to drive the phosphorylation of ADP and that the coupling proceeds via a chemiosmotic mechanism. A possible role of the carbon monoxide oxidation reaction as an energy-conserving site in acetate fermentation to CH4 and CO2 is discussed.  相似文献   

19.
Methanogenesis in rice field soils starts soon after flooding while potentially competing processes like reduction of sulphate and iron take place. Early methanogenesis is mainly driven by hydrogen, while later in the season acetate tends to become more important. Anaerobic ciliates are abundant during this period, and their endosymbionts use hydrogen produced by the ciliates to reduce carbon dioxide to methane. These endosymbiotic methanogens are protected from the competition for substrates with other bacteria that may control methanogenesis outside the protozoan cells. Thus, we focussed on early methanogenesis and on the potential contribution from ciliates and their endosymbionts. Only ciliates of the genus Metopus were found to harbour methanogens, as identified by the F(420)-fluorescence of the endosymbionts. We followed the population dynamics of the ciliates with time, and calculated the ratio of symbiotic methane production to overall methanogenesis. Symbiotic methane production was calculated from the species-specific numbers of methanogenic endosymbionts times the cell-specific methane production of the symbionts. According to this calculation, the symbionts' contribution to overall methane production was only 6.4% at the beginning and decreased with time. In a second experiment, colchicine and cycloheximide were used to inhibit all eukaryotes, comparing the remaining methane production rate to a control without inhibitors. In the inhibition experiment, the contribution from symbionts decreased from 40% to 6% during the first days after flooding, and dropped to near zero within 2 weeks. However, nearly all methane produced from H(2)/CO(2) could be attributed to the ciliates' symbionts between days 5 and 10 after flooding. Both experiments showed that the contribution of methanogenic symbionts to overall methane production is a transient phenomenon, restricted to the first 2 weeks.  相似文献   

20.
A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5 degrees C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-(14)C]acetate to sediment samples resulted in the passage of label mainly to CO(2). Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm(-3) h(-1) compared to 2.5 to 6 nmol cm(-3) h(-1)), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H(2) (2.4-fold), and H(2) uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H(2) release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, approximately 0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H(2) and CO(2) where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20 degrees C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号