首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of saturated, monounsaturated and polyunsaturated non-esterified fatty acids on the rate of transfer of radiolabeled cholesteryl esters from high density lipoproteins (HDL) to low density lipoproteins (LDL), induced by the cholesteryl ester transfer protein (CETP), have been studied. Human high-density lipoproteins-subfraction 3 (HDL3) containing radiolabeled cholesteryl esters were incubated with LDL at 37 degrees C with or without CETP and in the absence or in the presence of non-esterified fatty acids. Less than 6% of the total radioactivity was recovered in the LDL fraction after incubation of HDL3, and LDL for 3 h at 37 degrees C in the absence of CETP, regardless of whether or not non-esterified fatty acids were added. The addition of CETP to the incubation mixture induced a time-dependent redistribution of radiolabeled cholesteryl esters from HDL3 to LDL. Non-esterified fatty acids were found to alter the rate of transfer of cholesteryl esters induced by CETP. While short chain saturated non-esterified fatty acids (caprylic and capric acids) had no effect on the rate of transfer of cholesteryl esters, the medium and long chain ones (lauric, myristic, palmitic and stearic acids) significantly increased the CETP-mediated transfers from HDL3 to LDL. At low concentrations, unsaturated fatty acids also stimulated the CETP-mediated redistribution of radiolabeled cholesteryl esters from HDL3 to LDL. As the concentration of either oleic, linoleic or arachidonic acids increased to higher levels, a significant proportion of fatty acids remained unassociated with lipoprotein particles. Under these circumstances the transfer process was inhibited. These results show that non-esterified fatty acids can modulate the CETP-mediated transfer of cholesteryl esters from HDL to LDL and that this effect is dependent on both the length and the degree of unsaturation of their monomeric carbon chain.  相似文献   

2.
Ramsey AJ  Chinkers M 《Biochemistry》2002,41(17):5625-5632
The protein serine/threonine phosphatase designated PP5 has little basal activity, and physiological activators of the enzyme have never been identified. Purified PP5 can, however, be activated by partial proteolysis or by the binding of supraphysiological concentrations of polyunsaturated long-chain fatty acids to its tetratricopeptide repeat (TPR) domain. To test whether activation of PP5 by polyunsaturated but not saturated fatty acids was an artifact of the lower solubility of saturated fatty acids, the effects of fatty acyl-CoA esters were examined. Saturated and unsaturated long-chain fatty acids are both freely water-soluble when esterified to CoA. Long-chain fatty acyl-CoA esters activated PP5 at physiological concentrations, with the saturated compounds being more effective. We investigated the effects of chain length and of the CoA moiety on PP5 activation. Chains of 16 carbons or more were required for optimal activation, with no activation observed below 10 carbons. On the basis of competition studies using acetyl-CoA, the function of the CoA moiety appeared to be to increase solubility of the fatty acyl moiety rather than to interact with a specific binding site. These data suggested that long-chain fatty acid-CoA esters might be physiological activators of PP5 and point to a potential link between fatty acid metabolism and signal transduction via this enzyme. Because heat shock protein 90 is also known to bind to the TPR domain of PP5 via its C-terminal domain (C90), we investigated its effect on PP5 activity. C90 activated the enzyme approximately 10-fold. Thus, we have identified two potential physiological activators of PP5.  相似文献   

3.
In a previous publication (Lagrost, L. and Barter, P.J. (1991) Biochim. Biophys. Acta 1085, 209-216), saturated and cis unsaturated non-esterified fatty acids have been shown to modulate the rate at which cholesteryl esters are transferred from high-density lipoproteins (HDL) to low-density lipoproteins (LDL) in the presence of the human cholesteryl ester transfer protein (CETP). In the present report, the effects of cis (oleic acid) and trans (elaidic acid) monounsaturated isomers on the CETP-mediated transfer of cholesteryl esters between HDL and LDL were compared. Mixtures of human LDL and HDL3, containing or not radiolabelled cholesteryl esters, were incubated at 37 degrees C with CETP in the presence or in the absence of either stearic (18:0), oleic (18:1 cis) or elaidic (18:1 trans) acids. It was observed that oleic acid and elaidic acid had different effects on the CETP-mediated redistribution of radiolabelled cholesteryl esters as well as on the net mass transfer of cholesterol from HDL3 to LDL. In particular, at high non-esterified fatty acid/lipoprotein ratio, the transfer of cholesteryl esters was significantly inhibited by the cis isomer and increased by the trans isomer.  相似文献   

4.
The effects of arachidonic acid on glycine uptake, exchange and efflux in C6 glioma cells were investigated. Arachidonic acid produced a dose-dependent inhibition of high-affinity glycine uptake. This effect was not due to a simple detergent-like action on membranes, as the inhibition of glycine transport was most pronounced with cis-unsaturated long-chain fatty acids, whereas saturated and trans-unsaturated fatty acids had relatively little or no effect. Endogenous unsaturated non-esterified fatty acids may exert a similar inhibitory effect on the transport of glycine. The mechanism for this inhibitory effect has been examined in a plasma membrane vesicle preparation derived from C6 cells, which avoids metabolic or compartmentation interferences. The results suggest that part of the selective inhibition of glycine transport by arachidonic acid could be due to the effects of the arachidonic acid on the lipid domain surrounding the carrier.  相似文献   

5.
Summary The protective influence of bovine serum albumin against growth inhibition caused by fatty acids was studied in human hepatoma (HepG2) and immortalized human kidney epithelial (IHKE) cells. In general, growth inhibition by unsaturated fatty acids (0.15 mmol/liter) increased with increasing number of double bonds. For HepG2 cells crude albumin (1g/100 ml) did not greatly modify growth inhibition by arachidonic, eicosapentaenoic, and docosahexaenoic acid. With oleic, linoleic, and linolenic acids, crude and defatted albumin stimulated cell growth. In contrast, for IHKE cells both albumins counteracted growth inhibition by unsaturated fatty acids to approximately the same extent. When HepG2 cells were cultured in the presence of saturated fatty acids (0.3 mmol/liter), C2, C6, and C8 had no or little inhibitory effect. C10 and C12 inhibited cell growth appreciably, whereas C14, and especially C16, had poor inhibitory effects. Crude albumin counteracted growth inhibition by all these fatty acids. In contrast, defatted albumin had little or no effect (except against C10 and C12), and even increased the growth inhibition by C14 and C16. With unsaturated fatty acids there seemed to be an inverse relationship between cell growth and the concentration of thiobarbituric acid reactive substances (TBARS) in media. Vitamin E abolished growth inhibition (and the increase in TBARS concentration) by unsaturated fatty acids. The complex interaction between fatty acids and albumins calls for great caution when interpreting data on growth effects.  相似文献   

6.
Purified rat pancreas protein kinase C (PKC) is activated by unsaturated free fatty acids (oleic and arachidonic). The ethyl esters of these fatty acids are ineffective as enzyme activators. However, when the ethyl esters are added in combination with a free fatty acid, there is significant enhancement of enzyme activation. Nearly optimal PKC activation was obtained when non-activating ethyl oleate or ethyl arachidonate was added to sub-optimally activating concentrations of oleic or arachidonic acids. In addition to the ethyl esters, 1-monooleylglycerol also had a potentiating effect on PKC activation by oleic acid. However, the degree of activation observed in the presence of a free fatty acid and an acyl ester of the fatty acid quantitatively never surpassed that produced by sn-1,2-dioleylglycerol. Our findings indicate that significant PKC activation can be achieved by presenting the enzyme with an environment which we believe approximates the structural characteristics of the endogenous activator, sn-1,2-diacylglycerol.  相似文献   

7.
The inhibitory effects of various fatty acids on topoisomerases were examined, and their structure activity relationships and mechanism of action were studied. Saturated fatty acids (C6:0 to C22:0) did not inhibit topoisomerase I, but cis-unsaturated fatty acids (C16:1 to C22:1) with one double bond showed strong inhibition of the enzyme. The inhibitory potency depended on the carbon chain length and the position of the double bond in the fatty acid molecule. The trans-isomer, methyl ester and hydroxyl derivative of oleic acid had no or little inhibitory effect on topoisomerases I and II. Among the compounds studied petroselinic acid and vaccenic acid (C18:1) with a cis-double bond were the potent inhibitors. Petroselinic acid was a topoisomerase inhibitor of the cleavable complex-nonforming type and acted directly on the enzyme molecule in a noncompetitive manner without DNA intercalation.  相似文献   

8.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

9.
Differences between the influences of phorbol esters (such as 4 beta-12-O-tetradecanoylphorbol 13-acetate) and of fatty acids (such as oleic acid) on the synthesis and turnover of phosphatidylcholine (PtdCho) and other phospholipids have been studied in glioma (C6), neuroblastoma (N1E-115), and hybrid (NG108-15) cells in culture using [methyl-3H]choline, [32P]Pi, [1,2-14C]ethanolamine, or 1-14C-labeled fatty acids as lipid precursors. 100-500 microM oleic acid stimulated PtdCho synthesis 3- to 5-fold in all three cell lines, but had little influence on chase of choline label following a 24-h pulse. Phorbol ester (50-200 nM) stimulated PtdCho synthesis 1.5- to 3-fold in C6 cells, was without effect in N1E-115 cells, and had intermediate effects on NG108-15 cells. Phorbol ester stimulated both uptake of extracellular choline and synthesis of PtdCho, whereas fatty acid stimulated only synthesis. Release of radioactivity from 24-h pulse-labeled PtdCho to the medium was enhanced by phorbol ester in C6 cells. Incorporation of [32P]Pi, primarily into PtdCho, was stimulated, whereas utilization of [1,2-14C]ethanolamine or 1-14C-fatty acid was little altered by phorbol ester. C6 cells "down-regulated" with phorbol ester lost the stimulatory response of subsequent treatment with phorbol esters on PtdCho synthesis, but the response to fatty acid was enhanced. Fatty acid had little influence on the relative binding of phorbol ester or "translocation" of phorbol ester binding sites. Accordingly, metabolism of phospholipids in these cultured cells of neural origin is markedly influenced by cell type, phospholipid class, condition of incubation medium, and nature of stimulator. Phorbol esters and fatty acids appear to enhance phospholipid synthesis and turnover by distinct intracellular mechanisms.  相似文献   

10.
In an attempt to learn how nonsteroidal factors modulate brain progestin and glucocorticoid receptors, the effects of saturated and unsaturated fatty acids, and phosphatidylinositol on the binding of [3H]R5020 or [3H]dexamethasone, determined by sucrose density gradient and gel filtration on LH20, were examined in the cerebral cortical cytosol from 10-day-old female rats which contain a considerable amount of progestin and glucocorticoid receptors. Unsaturated fatty acids such as oleic (C18:1), arachidonic (C20:4) and docosahexaenoic acid (C22:4) depressed the [3H]R5020 or [3H]dexamethasone binding in increasing order, but saturated fatty acids had no effect. Arachidonic and docosahexaenoic acids, which were strong inhibitors, lowered the binding dose dependently. The fatty acid inhibition on brain progestin and glucocorticoid receptors was thus a function of acid dose and degree of acid unsaturation. Interestingly, prostaglandin D2 did not show any effect. Among phospholipids tested the inhibitory effect of phosphatidylinositol on the [3H]R5020 binding was evident, but no significant effect was found with phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine or sphingomyelin. The phosphatidylinositol inhibition was dose dependent. Analysis on kinetics and Scatchard plot have revealed the noncompetitive type of inhibition by arachidonic acid and phosphatidylinositol. From these results it is suggested that the unsaturated nonestrified fatty acid, arachidonic acid, and phosphoinositides modulate the brain progestin and, possibly, glucocorticoid receptors through their binding at sites different from steroid binding sites on the respective receptor molecules.  相似文献   

11.
Quantitative estimates of free fatty acids in total lipid extracts of plasma were obtained by glc on nonpolar columns following trimethylsilylation. The presence of other lipid esters in the reaction mixture had no effect upon the yield of the trimethylsilyl (TMS) esters or upon their resolution on the glc column. Routine quantitations by gas-liquid chromatography (glc) were obtained on 2 ft × 1/8 in. o.d. stainless steel columns packed with 3% OV-1 on 100–120 mesh Gas Chrom Q by means of temperature programming in the range 175–350°C with tridecanoin as internal standard. High resolution glc of the TMS esters of fatty acids was done on a 6 ft × 1/8 in. o.d. glass column packed with 1% SE-30 on Gas Chrom Q. In both instances the fatty acids were resolved on the basis of carbon number and by the presence or absence of double bonds. On gas chromatography/mass spectrometry (GC/MS), TMS esters of fatty acids were shown to yield proportionally greater amounts of high mass fragments, including the parent ions, than their methyl or ethyl esters, which has special advantages for the detection and characterization of polyunsaturated fatty acids.  相似文献   

12.
Epicuticular waxes have been characterised from the flowers of raspberry and hawthorn, on both of which adult raspberry beetles (Byturus tomentosus) can feed. The flower wax from both species had similar alkane profiles and also contained long-chain alcohols, aldehydes and fatty acids. The range of the carbon numbers detected for these classes of compounds was broadly similar in both but the relative amounts of each differed between species. Raspberry flower wax also contained fatty acid methyl esters, a group of compounds that has rarely been detected in plant epicuticular waxes, however, these were not observed in hawthorn flower wax. Long-chain alcohol-fatty acid esters with carbon numbers ranging from C36 to C48 were also detected in both plant species. However, an examination of their constituent acids indicated that in hawthorn the esters based on the C16 fatty acid predominated, whilst in raspberry flower wax, esters based on the C20 fatty acid were most abundant. Both species also contained pentacyclic triterpenoids, which accounted for, on average, over 16 and 48% of the total wax extracted from raspberry and hawthorn flowers respectively. In the former, ursolic and oleanolic acids accounted for over 90% of the pentacyclic triterpenes, whilst hawthorn flower wax, in addition to containing these acids, also contained high relative concentrations of both free and esterified alpha- and beta-amyrins.  相似文献   

13.
We have demonstrated that the uptake and agonist-induced release of a pulse of arachidonate are influenced by the size and composition of preexisting endogenous fatty acid pools. EFD-1 cells, an essential fatty acid-deficient mouse fibrosarcoma cell line, were incubated with radiolabeled (14C or 3H] arachidonate, linoleate, eicosapentaenoate (EPA), palmitate, or oleate in concentrations of 0-33 microM for 24 h. After 24 h, the cells were pulsed with 0.67 microM radiolabeled (3H or 14C, opposite first label) arachidonate for 15 min and then stimulated with 10 microM bradykinin for 4 min. Because EFD-1 cells contain no endogenous essential fatty acids, we were able to create essential fatty acid-repleted cells for which the specific activity of the newly constructed endogenous essential fatty acid pool was known. Loading the endogenous pool with the essential fatty acids arachidonate, eicosapentaenoate, or linoleate (15-20 nmol of fatty acid incorporated/10(6) cells) decreased the uptake of a pulse of arachidonate from 200 to 100 pmol/10(6) cells but had no effect on palmitate uptake. The percent of arachidonate incorporated during the pulse which was released upon agonist stimulation increased 2-fold (4-8%) as the endogenous pool of essential fatty acids was increased from 0 to 15-20 nmol/10(6) cells. This 8% release was at least 3-fold greater than the percent release from the various endogenous essential fatty acid pools. In contrast, loading the endogenous pool with the nonessential fatty acids oleate or palmitate to more than 2-3 times their preexisting cellular level had no effect on the uptake of an arachidonate pulse. Like the essential fatty acids, increasing endogenous oleate increased (by 2-fold) the percent release of arachidonate incorporated during the pulse, whereas endogenous palmitate had no effect on subsequent agonist-induced release from this arachidonate pool. These studies show that preexisting pools of essential and nonessential fatty acids exert different effects on the uptake and subsequent releasability of a pulse of arachidonate.  相似文献   

14.
The effects of arachidonic acid (AA) and other long-chain fatty acids on voltage-dependent Ca channel current (ICa) were investigated, with the whole cell patch clamp method, in longitudinal smooth muscle cells of rabbit ileum. 10-30 microM AA caused a gradual depression of ICa. The inhibitory effect of AA was not prevented by indomethacin (10 microM) (an inhibitor of cyclooxygenase) or nordihydroguaiaretic acid (10 microM) (an inhibitor of lipoxygenase). 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H7; 25-50 microM) or staurosporine (2 microM) (inhibitors of protein kinase C) did not block the AA-induced inhibition of ICa, and application of phorbol ester (a protein kinase C activator) (phorbol-12,13-dibutyrate, 0.2 microM) did not mimic the AA action. Some other cis-unsaturated fatty acids (palmitoleic, linoleic, and oleic acids) were also found to depress ICa, while a trans-unsaturated fatty acid (linolelaidic acid) and saturated fatty acids (capric, lauric, myristic, and palmitic acids) had no inhibitory effects on ICa. Myristic acid consistently increased the amplitude of ICa at negative membrane potentials. The present results suggest the possible role of AA, and perhaps other fatty acids, in the physiological and/or pathological modulation of ICa in smooth muscle.  相似文献   

15.
H Nefic 《Mutation research》2001,498(1-2):89-98
Vitamin C (ascorbic acid) is an antioxidant that can scavenge free radicals and protect cellular macromolecules, including DNA, from oxidative damage induced by different agents. The protective effect of Vitamin C on cisplatin induced chromosome aberrations has been determined in the human peripheral lymphocyte chromosome aberration test in vitro. The results of treatments with Vitamin C indicated that it statistically significantly decreases the number of chromosome aberrations and number of metaphases with aberrations induced with cisplatin, but it can not completely protect cells from damage. The test concentrations of Vitamin C (10 and 100 microg/ml) had a limited antimutagen effect on cisplatin (0.5 microg/ml), which can cause genetic damage through free radical mechanisms. The antimutagen effect included the anticlastogenic effect of Vitamin C and its ability to decrease the number of aneuploid mitoses. Vitamin C showed the most efficient anticlastogenic effect during simultaneous treatment with cisplatin. Also, Vitamin C reduced cell toxicity of cisplatin during simultaneous treatment.  相似文献   

16.
We have investigated the effects of the specific platelet-activating factor (PAF; 1-alkyl-2-acetyl-glycerophosphocholine) antagonist BN52021 on free fatty acid (FFA) and diacylglycerol (DG) accumulation and on the loss of fatty acids from phosphatidylinositol-4,5-bisphosphate (PIP2) in mouse brain. Mice were pretreated with BN52021 (10 mg/kg, i.p.) 30 min before electroconvulsive shock (ECS) or postdecapitation ischemia. These procedures cause rapid breakdown of PIP2 and accumulation of FFA and DG. Lipid extracts were prepared from microwave-fixed cerebrum and fractionated by TLC, and the fatty acid methyl esters were prepared by methanolysis and quantified by capillary GLC. In saline or vehicle (dimethyl sulfoxide)-treated mice, ECS caused marked accumulation of FFA and DG and loss of mainly stearic (18:0) and arachidonic (20:4) acids from PIP2. BN52021 pretreatment of ECS-treated mice decreased the accumulation of free palmitic (16:0), 18:0, 20:4, and docosahexaenoic (22:6) acids with no effect on the fatty acids in DG or the loss of PIP2. BN52021 had no effect on basal levels of FFA, DG, or PIP2. One minute of postdecapitation ischemia induced PIP2 loss and accumulation of FFA and DG. BN52021 attenuated the accumulation of free 20:4 and 22:6 acids, decreased the content of oleic (18:1), 20:4, and 22:6 acids in DG, but had no effect on PIP2 loss. These data indicate that BN52021 reduces the injury-induced activation of phospholipase A2 and lysophospholipase, which mediate the accumulation of FFA in brain, while having a negligible effect on phospholipase C-mediated degradation of PIP2.  相似文献   

17.
Possible antimutagenic actions of probiotics--mainly lactic acid bacteria--were examined using in vitro and in vivo test systems. In the Ames test with Salmonella typhimurium TA1538 beef extract and nitrosated beef extract were used as mutagens. L. casei showed high antimutagenic activity on mutagenicity induced by nitrosated beef extract only without S9 mix, whereas Omniflora (a lyophilized preparation of lactobacilli and E. coli) and its cell-free culture broth exhibited antimutagenic action only on beef extract. The actions of probiotics were more homogeneous when living animals were used in the tests. Using busulfan as a mutagen both the chromosome aberration test (with Chinese hamster bone marrow cells) and the micronucleus test (with bone marrow cells of Chinese hamsters and mice) showed strong anticlastogenic action when L. casei, Omniflora or yoghurt (with living bifiobacteria) were given orally at the same time as the mutagen. Lactobacilli were effective also after i.p. injection. Cell-free culture broths had no or only weak antimutagenic effects. Mutagen-induced chromosome aberrations and micronuclei were reduced by up to 80% by the lactobacilli.  相似文献   

18.
The principal lipids associated with the electron transport membrane of Haemophilus parainfluenzae are phosphatidylethanolamine (78%), phosphatidylmonomethylethanolamine (0.4%), phosphatidylglycerol (18%), phosphatidylcholine (0.4%), phosphatidylserine (0.4%), phosphatidic acid (0.2%), and cardiolipin (3.0%). Phospholipids account for 98.4% of the extractible fatty acids. There are no glycolipids, plasmalogens, alkyl ethers, or lipo amino acid esters in the membrane lipids. Glycerol phosphate esters derived from the phospholipids by mild alkaline methanolysis were identified by their staining reactions, mobility on paper and ion-exchange column chromatography, and by the molar glycerol to phosphate ratios. Eleven diacyl phospholipids can be separated by two-dimensional thin-layer chromatography. Each lipid served as a substrate for phospholipase D, and had a fatty acid to phosphate ratio of 2:1. Each separated diacyl phospholipid was deacylated and the glycerol phosphate ester was identified by paper chromatography in four solvent systems. Of the 11 separated phospholipids, 3 were phosphatidylethanolamines, 2 were phosphatidylserines, and 2 were phosphatidylglycerols. Phosphatidylcholine, cardiolipin, and phosphatidic acid were found at a single location. Phosphatidylmonomethylethanolamine was found with the major phosphatidylethanolamine. Three distinct classes of phospholipids are separable according to their relative fatty acid compositions. (i) The trace lipids consist of two phosphatidylethanolamines, two phosphatidylserines, phosphatidylcholine, phosphatidic acid, and a phosphatidylglycerol. Each lipid represents less than 0.3% of the total lipid phosphate. These lipids are characterized by high proportions of the short (C(10) to C(14)) and long (C(19) to C(22)) fatty acids with practically no palmitoleic acid. (ii) The major phospholipids (93% of the lipid phosphate) are phosphatidylethanolamine, phosphatidylmonomethylethanolamine, and phosphatidylglycerol. These lipids contain a low proportion of the short (C(19)) fatty acids. Palmitic and palmitoleic acids represent over 80% of the total fatty acids. (iii) The fatty acid composition of the cardiolipin is intermediate between the other two classes. Both palmitoleic and the longer fatty acids represent a significant proportion of the total fatty acid.  相似文献   

19.
The uncoupling protein 1 (UCP1) is a H(+) carrier which plays a key role in heat generation in brown adipose tissue. The H(+) transport activity of UCP1 is activated by long-chain fatty acids and inhibited by purine nucleotides. While nucleotide binding has been well characterized, the interaction of fatty acid with UCP1 remains unknown. Here I demonstrate the binding of fatty acids by competition with a fluorescent nucleotide probe 2(')-O-dansyl guanosine 5(')-triphosphate (GTP), which has been shown previously to bind at the nucleotide binding site in UCP1. Fatty acids but not their esters competitively inhibit the binding of 2(')-O-dansyl GTP to UCP1. The fatty acid effect was enhanced at higher pH, suggesting the binding of fatty acid anion to UCP1. The inhibition constants K(i) were determined by fluorescence titrations for various fatty acids. Short-chain (C<8) fatty acids display no affinity, whereas medium-chain (C10-14) and unsaturated C18 fatty acids exhibit stronger affinity (K(i)=65 microM, for elaidic acid). This specificity profile agrees with previous functional data obtained in both proteoliposomes and mitochondria, suggesting a possible physiological role of this fatty acid binding site.  相似文献   

20.
CDP-diglyceride : inositol transferase was inhibited by unsaturated fatty acids. The inhibitory activity decreased in the following order: arachidonic acid greater than linolenic acid greater than linoleic acid greater than oleic acid greater than or equal to palmitoleic acid. Saturated fatty acids such as myristic acid, palmitic acid, and stearic acid had no effect. Calcium ion also inhibited the activity of CDP-diglyceride : inositol transferase. In rat hepatocytes, arachidonic acid inhibited 32P incorporation into phosphatidylinositol and phosphatidic acid without any significant effect on 32P incorporation into phosphatidylcholine, phosphatidylethanolamine and phosphatidylserine. Ca2+ ionophore A23187 also inhibited 32P incorporation into phosphatidylinositol. However, 32P incorporation into phosphatidic acid was stimulated with Ca2+ ionophore A23187. Phosphatidylinositol-specific phospholipase C was activated by unsaturated fatty acids. Polyunsaturated fatty acids such as arachidonic acid and linolenic acid had a stronger effect than di- and monounsaturated fatty acids. Saturated fatty acids had no effect on the phospholipase C activity. The phospholipase C required Ca2+ for activity. Arachidonic acid and Ca2+ had synergistic effects. These results suggest the reciprocal regulation of phosphatidylinositol synthesis and breakdown by unsaturated fatty acids and Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号