首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microsomal prostaglandin (PG) E synthase-1 (mPGES-1) has recently been recognized as a novel, promising drug target for inflammation-related diseases. Functional and pathological studies on this enzyme further stimulate to understand its structure and the structure-function relationships. Using an approach of the combined structure prediction, molecular docking, site-directed mutagenesis, and enzymatic activity assay, we have developed the first three-dimensional (3D) model of the substrate-binding domain (SBD) of mPGES-1 and its binding with substrates prostaglandin H2 (PGH2) and glutathione (GSH). In light of the 3D model, key amino acid residues have been identified for the substrate binding and the obtained experimental activity data have confirmed the computationally determined substrate-enzyme binding mode. Both the computational and experimental results show that Y130 plays a vital role in the binding with PGH2 and, probably, in the catalytic reaction process. R110 and T114 interact intensively with the carboxyl tail of PGH2, whereas Q36 and Q134 only enhance the PGH2-binding affinity. The modeled binding structure indicates that substrate PGH2 interacts with GSH through hydrogen binding between the peroxy group of PGH2 and the -SH group of GSH. The -SH group of GSH is expected to attack the peroxy group of PGH2, initializing the catalytic reaction transforming PGH2 to prostaglandin E2 (PGE2). The overall agreement between the calculated and experimental results demonstrates that the predicted 3D model could be valuable in future rational design of potent inhibitors of mPGES-1 as the next-generation inflammation-related therapeutic.  相似文献   

2.
Microsomal prostaglandin E synthase-1 (mPGES-1) represents an attractive target for the treatment of rheumatoid arthritis and pain, being upregulated in response to inflammatory stimuli. Biochemical assays for prostaglandin E synthase activity are complicated by the instability of the substrate (PGH(2)) and the challenge of detection of the product (PGE(2)). A coupled fluorescent assay is described for mPGES-1 where PGH(2) is generated in situ using the action of cyclooxygenase 2 (Cox-2) on arachidonic acid. PGE(2) is detected by coupling through 15-prostaglandin dehydrogenase (15-PGDH) and diaphorase. The overall coupled reaction was miniaturized to 1536-well plates and validated for high-throughput screening. For compound progression, a novel high-throughput mass spectrometry assay was developed using the RapidFire platform. The assay employs the same in situ substrate generation step as the fluorescent assay, after which both PGE(2) and a reduced form of the unreacted substrate were detected by mass spectrometry. Pharmacology and assay quality were comparable between both assays, but the mass spectrometry assay was shown to be less susceptible to interference and false positives. Exploiting the throughput of the fluorescent assay and the label-free, direct detection of the RapidFire has proved to be a powerful lead discovery strategy for this challenging target.  相似文献   

3.
We cloned the cDNA for mouse microsomal prostaglandin (PG) E synthase-1 (mPGES-1) and expressed the recombinant enzyme in Escherichia coli. The membrane fraction containing recombinant mPGES-1 catalyzed the isomerization of PGH2 to PGE2 in the presence of GSH with K(m) values of 130 microM for PGH2 and 37 microM for GSH, a turnover number of 600 min(-1), and a k(cat)/K(m) ratio of 4.6 min(-1) microM(-1). Recombinant mPGES-1 was purified and used to generate a polyclonal antibody highly specific for mPGES-1. The antibody showed a single band on Western blotting of microsomal fractions from lipopolysaccharide-treated mouse peritoneal macrophages. Northern and Western blotting analyses revealed that mPGES-1 was induced together with cyclooxygenase-2 in mouse macrophages after treatment of the cells with lipopolysaccharide. Confocal immunofluorescence microscopy revealed that both mPGES-1 and cyclooxygenase-2 were colocalized in the lipopolysaccharide-treated macrophages. Taken together, these results demonstrate that mPGES-1 is an efficient downstream enzyme for the production of PGE2 in the activated macrophages treated by lipopolysaccharide.  相似文献   

4.
Microsomal prostaglandin E synthase (mPGES)-1 is one of several prostaglandin E synthases involved in prostaglandin H2 (PGH2) metabolism. In the present report, we characterize the contribution of mPGES-1 to cellular PGH2 metabolism in murine macrophages by studying the synthesis of eicosanoids and expression of eicosanoid metabolism enzymes in wild type and mPGES-1-deficient macrophages. Thioglycollate-elicited macrophages isolated from mPGES-1-/- animals and genetically matched wild type controls were stimulated with diverse pro-inflammatory stimuli. Prostaglandins were released in the following order of decreasing abundance from wild type macrophages stimulated with lipopolysaccharide: prostaglandin E2 (PGE2)>thromboxane B2 (TxB2)>6-keto prostaglandin F1alpha (PGF1alpha), prostaglandin F(2alpha) (PGF2alpha), and prostaglandin D2 (PGD2). In contrast, we detected in mPGES-1-/- macrophages a >95% reduction in PGE2 production resulting in the following altered prostaglandin profile: TxB2>6-keto PGF1alpha and PGF2alpha>PGE2, despite the comparable release of total prostaglandins. No significant change in expression pattern of key prostaglandin-synthesizing enzymes was detected between the genotypes. We then further profiled genotype-related differences in the eicosanoid profile using macrophages pre-stimulated with lipopolysaccharide followed by a 10-min incubation with 10 microm [3H]arachidonic acid. Eicosanoid products were subsequently identified by reverse phase high pressure liquid chromatography. The dramatic reduction in [3H]PGE2 formation from mPGES-1-/- macrophages compared with controls resulted in TxB2 and 6-keto PGF1alpha becoming the two most abundant prostaglandins in these samples. Our results also suggest a 5-fold increase in 12-[3H]hydroxyheptadecatrienoic acid release in mPGES-1-/- samples. Our data support the hypothesis that mPGES-1 induction in response to an inflammatory stimulus is essential for PGE2 synthesis. The redirection of prostaglandin production in mPGES-1-/- cells provides novel insights into how a cell processes the unstable endoperoxide PGH2 during the inactivation of a major metabolic outlet.  相似文献   

5.
Yamada T  Takusagawa F 《Biochemistry》2007,46(28):8414-8424
Prostaglandin E2 synthase (PGES) catalyzes the isomerization of PGH2 to PGE2. PGES type 2 (mPGES-2) is a membrane-associated enzyme, whose N-terminal section is apparently inserted into the lipid bilayer. Both intact and N-terminal truncated enzymes have been isolated and have similar catalytic activity. The recombinant N-terminal truncated enzyme purified from Escherichia coli HB101 grown in LB medium containing delta-aminolevulinate and Fe(NO3)3 has a red color, while the same enzyme purified from the same E. coli grown in minimal medium has no color. The red-colored enzyme has been characterized by mass, fluorescence, and EPR spectroscopies and X-ray crystallography. The enzyme is found to contain bound glutathione (GSH) and heme. GSH binds to the active site with six H-bonds, while a heme is complexed with bound GSH forming a S-Fe coordination bond with no polar interaction with mPGES-2. There is a large open space between the heme and the protein, where a PGH2 might be able to bind. The heme dissociation constant is 0.53 microM, indicating that mPGES-2 has relatively strong heme affinity. Indeed, expression of mPGES-2 in E. coli stimulates heme biosynthesis. Although mPGES-2 has been reported to be a GSH-independent PGES, the crystal structure and sequence analysis indicate that mPGES-2 is a GSH-binding protein. The GSH-heme complex-bound enzyme (mPGES-2h) catalyzes formation of 12(S)-hydroxy-5(Z),8(E),10(E)-heptadecatrienoic acid and malondialdehyde from PGH2, but not formation of PGE2. The following kinetic parameters at 37 degrees C were determined: KM = 56 microM, kcat = 63 s-1, and kcat/KM = 1.1 x 10(6) M-1 s-1. They suggest that mPGES-2h has significant catalytic activity for PGH2 degradation. It is possible that both GSH-heme complex-free and -bound enzymes are present in the same tissues. mPGES-2 in heme-rich liver is most likely to become the form of mPGES-2h and might be involved in degradation reactions similar to that of cytochrome P450. Since mPGES-2 is an isomerase and mPGES-2h is a lyase, mPGES-2 cannot simply be classified into one of six classes set by the International Union of Biochemistry and Molecular Biology.  相似文献   

6.
Microsomal prostaglandin E synthase (mPGES)-1, which is dramatically induced in macrophages by inflammatory stimuli such as lipopolysaccharide (LPS), catalyzes the conversion of cyclooxygenase-2 (COX-2) reaction product prostaglandin H(2) (PGH(2)) into prostaglandin E(2) (PGE(2)). The mPGES-1-derived PGE(2) is thought to help regulate inflammatory responses. On the other hand, excess PGE(2) derived from mPGES-1 contributes to the development of inflammatory diseases such as arthritis and inflammatory pain. Here, we examined the effects of liver X receptor (LXR) ligands on LPS-induced mPGES-1 expression in murine peritoneal macrophages. The LXR ligands 22(R)-hydroxycholesterol (22R-HC) and T0901317 reduced LPS-induced expression of mPGES-1 mRNA and mPGES-1 protein as well as that of COX-2 protein. However, LXR ligands did not influence the expression of microsomal PGES-2 (mPGES-2) or cytosolic PGES (cPGES) protein. Consequently, LXR ligands suppressed the production of PGE(2) in macrophages. These results suggest that LXR ligands diminish PGE(2) production by inhibiting the LPS-induced gene expression of the COX-2-mPGES-1 axis in LPS-activated macrophages.  相似文献   

7.
Prostaglandin (PG) E(2) (PGE(2)) plays a predominant role in promoting colorectal carcinogenesis. The biosynthesis of PGE(2) is accomplished by conversion of the cyclooxygenase (COX) product PGH(2) by several terminal prostaglandin E synthases (PGES). Among the known PGES isoforms, microsomal PGES type 1 (mPGES-1) and type 2 (mPGES-2) were found to be overexpressed in colorectal cancer (CRC); however, the role and regulation of these enzymes in this malignancy are not yet fully understood. Here, we report that the cyclopentenone prostaglandins (CyPGs) 15-deoxy-Delta(12,14)-PGJ(2) and PGA(2) downregulate mPGES-2 expression in the colorectal carcinoma cell lines Caco-2 and HCT 116 without affecting the expression of any other PGES or COX. Inhibition of mPGES-2 was subsequently followed by decreased microsomal PGES activity. These effects were mediated via modulation of the cellular thiol-disulfide redox status but did not involve activation of the peroxisome proliferator-activated receptor gamma or PGD(2) receptors. CyPGs had antiproliferative properties in vitro; however, this biological activity could not be directly attributed to decreased PGES activity because it could not be reversed by adding PGE(2). Our data suggest that there is a feedback mechanism between PGE(2) and CyPGs that implicates mPGES-2 as a new potential target for pharmacological intervention in CRC.  相似文献   

8.
9.
A rapid, robust and selective on-line solid-phase extraction-liquid chromatographic method with ultra-violet detection (on-line SPE-LC-UV) for microsomal prostaglandin E(2) synthase-1 (mPGES-1) inhibitor screening was developed and validated. Disrupted A549 cells were used as mPGES-1 source and the formation of prostaglandin E(2) (PGE(2)) out of the substrate prostaglandin H(2) (PGH(2)) was determined at 195 nm. Direct on-line sample clean up was achieved by automated column switch (C18 trap column) prior isocratic separation using a C18 analytical column. The on-line SPE-LC-UV method was accurate, precise and reproducible in the range of 71-1763 ng/ml for PGE(2) and met the generally accepted criteria for bioanalytical methods. The method was successfully applied to determine the IC(50) value of the known mPGES-1 inhibitor NS-398.  相似文献   

10.
Recombinant human microsomal prostaglandin E(2) synthase-1 (mPGES-1) was expressed in a baculovirus-Sf9 cell system. The mPGES-1 was solubilized from Sf9 cell membranes with diheptanoylphosphatidylcholine and purified in the presence of octylglucoside using hydroxyapatite column chromatography. The K(m) values of the substrates PGH(2) and GSH were 14 microM and 0.75 mM, respectively, with the purified enzyme. The specific activity (4 micromol/min/mg) was increased 3-5-fold by non-ionic and zwitterionic detergents. Kinetic analysis showed that dodecylmaltoside increases V(max) but does not affect the K(m) values of either substrate. Several other thiol-containing compounds were tested as glutathione replacements, none of which yielded detectable enzyme activity. During enzyme catalysis, glutathione was not oxidized and therefore can be considered an enzyme cofactor. No glutathione transferase or peroxidase activity could be determined with a range of potential substrates. The results show that purified mPGES-1 has a specific activity similar to Cox-2, consistent with its postulated role in Cox-2 mediated PGE(2) formation.  相似文献   

11.
Microsomal prostaglandin E2 synthase (mPGES)-1 is an inducible protein recently shown to be an important enzyme in inflammatory prostaglandin E2 (PGE2) production in some peripheral inflammatory lesions. However, in inflammatory sites in the brain, the induction of mPGES-1 is poorly understood. In this study, we demonstrated the expression of mPGES-1 in the brain parenchyma in a lipopolysaccharide (LPS)-induced inflammation model. A local injection of LPS into the rat substantia nigra led to the induction of mPGES-1 in activated microglia. In neuron-glial mixed cultures, mPGES-1 was co-induced with cyclooxygenase-2 (COX-2) specifically in microglia, but not in astrocytes, oligodendrocytes or neurons. In microglia-enriched cultures, the induction of mPGES-1, the activity of PGES and the production of PGE2 were preceded by the induction of mPGES-1 mRNA and almost completely inhibited by the synthetic glucocorticoid dexamethasone. The induction of mPGES-1 and production of PGE2 were also either attenuated or absent in microglia treated with mPGES-1 antisense oligonucleotide or microglia from mPGES-1 knockout (KO) mice, respectively, suggesting the necessity of mPGES-1 for microglial PGE2 production. These results suggest that the activation of microglia contributes to PGE2 production through the concerted de novo synthesis of mPGES-1 and COX-2 at sites of inflammation of the brain parenchyma.  相似文献   

12.
Prostaglandin E2 (PGE2) is the major primary prostaglandin generated by brain cells. However, the coordination and intracellular localization of the cyclooxygenases (COXs) and prostaglandin E synthases (PGESs) that convert arachidonic acid to PGE2 in brain tissue are not known. We aimed to determine whether microsomal and cytosolic PGES (mPGES-1 and cPGES) colocalize and coordinate activity with either COX-1 or COX-2 in brain tissue, particularly during development. Importantly, we found that cytosolic PGES also associates with microsomes (cPGES-m) from the cerebrum and cerebral vasculature of the pig and rat as well as microsomes from various cell lines; this seemed dependent on the carboxyl terminal 35-amino acid domain and a cysteine residue (C58) of cPGES. In microsomal membranes from the postnatal brain and cerebral microvessels of mature animals, cPGES-m colocalized with both COX-1 and COX-2, whereas mPGES-1 was undetectable in these microsomes. Accordingly, in this cell compartment, cPGES could coordinate its activity with COX-2 and COX-1 (partly inhibited by NS398); albeit in microsomes of the brain microvasculature from newborns, mPGES-1 was also present. In contrast, in nuclei of brain parenchymal and endothelial cells, mPGES-1 and cPGES colocalized exclusively with COX-2 (determined by immunoblotting and immunohistochemistry); these PGESs contributed to conversion of PGH2 into PGE2. Hence, contrary to a previously proposed model of exclusive COX-2/mPGES-1 coordination, COX-2 can coordinate with mPGES-1 and/or cPGES in the brain, depending on the cell compartment and the age group.  相似文献   

13.
Microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme regulating the synthesis of prostaglandin E2 (PGE2) in inflammatory conditions. In this study we investigated the regulation of mPGES-1 in gingival fibroblasts stimulated with the inflammatory mediators interleukin-1 beta (IL-1beta) and tumour necrosis factor alpha (TNFalpha). The results showed that IL-1beta and TNFalpha induce the expression of mPGES-1 without inducing the expression of early growth response factor-1 (Egr-1). Treatment of the cells with the PLA2 inhibitor 4-bromophenacyl bromide (BPB) decreased the cytokine-induced mPGES-1 expression accompanied by decreased PGE2 production whereas the addition of arachidonic acid (AA) upregulated mPGES-1 expression and PGE2 production. The protein kinase C (PKC) activator PMA did not upregulate the expression of mPGES-1 in contrast to COX-2 expression and PGE2 production. In addition, inhibitors of PKC, tyrosine and p38 MAP kinase markedly decreased the cytokine-induced PGE2 production but not mPGES-1 expression. Moreover, the prostaglandin metabolites PGE2 and PGF2alpha induced mPGES-1 expression as well as upregulated the cytokine-induced mPGES-1 expression indicating positive feedback regulation of mPGES-1 by prostaglandin metabolites. The peroxisome proliferator-activated receptor-gamma (PPARgamma) ligand, 15-deoxy-Delta12,14-prostaglandin J2 (15d-PGJ2), decreased mPGES-1 expression but not COX-2 expression or PGE2 production. The results indicate that the inflammatory-induced mPGES-1 expression is regulated by PLA2 and 15d-PGJ2 but not by PKC, tyrosine kinase or p38 MAP kinase providing new insights into the regulation of mPGES-1.  相似文献   

14.
Prostaglandin E2 (PGE2) is a key mediator involved in several inflammatory conditions. In this study, we investigated the expression and regulation of the terminal PGE2 synthesizing enzyme prostaglandin E synthases (mPGES-1, mPGES-2 and cPGES) in gingival fibroblasts stimulated with pro-inflammatory cytokines. We used siRNA knockdown of mPGES-1 to elucidate the impact of mPGES-1 inhibition on mPGES-2 and cPGES expression, as well as on PGE2 production. The cytokines TNFalpha and IL-1beta increased protein expression and activity of mPGES-1, accompanied by increased COX-2 expression and PGE2 production. The isoenzymes mPGES-2 and cPGES, constitutively expressed at mRNA and protein levels, were unaffected by the pro-inflammatory cytokines. We show for the first time that treatment with mPGES-1 siRNA down-regulated the cytokine-induced mPGES-1 protein expression and activity. Interestingly, mPGES-1 siRNA did not affect the cytokine-stimulated PGE2 production, whereas PGF(2alpha) levels were enhanced. Neither mPGES-2 nor cPGES expression was affected by siRNA silencing of mPGES-1. Dexamethasone and MK-886 both inhibited the cytokine-induced mPGES-1 expression while mPGES-2 and cPGES expression remained unaffected. In conclusion, mPGES-1 siRNA down-regulates mPGES-1 expression, and neither mPGES-2 nor cPGES substituted for mPGES-1 in a knockdown setting in gingival fibroblasts. Moreover, mPGES-1 siRNA did not affect PGE2 levels, whereas PGF(2alpha) increased, suggesting a compensatory pathway of PGE2 synthesis when mPGES-1 is knocked down.  相似文献   

15.
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible protein recently shown to be an important source of inflammatory PGE2. Here we have used mPGES-1 wild type, heterozygote, and null mice to assess the impact of reduction or absence mPGES-1 protein on the production of PGE2 and other prostaglandins in lipopolysaccharide (LPS)-treated macrophages and mice. Thioglycollate-elicited peritoneal macrophages with mPGES-1 deficiency were found to lose their ability to produce PGE2 upon LPS stimulation. Resident mPGES-1(-/-) peritoneal macrophages exhibited severely impaired PGE2-releasing activity but retained some LPS-inducible PGE2 production capacity. Both macrophage types showed a 50% decrease in PGE2 production with removal of one copy of the mPGES-1 gene. In vivo, mPGES-1 deletion abolished the LPS-stimulated production of PGE2 in spleen, kidney, and brain. Surprisingly, lack of mPGES-1 activity resulted in an 80-90% decrease in basal, cyclooxygenase-1 (COX-1)-dependent PGE2 production in stomach and spleen, and a 50% reduction in brain and kidney. Other prostaglandins (thromboxane B2, PGD2, PGF(2alpha), and 6-keto-PGF(1alpha)) were significantly elevated in stomachs of mPGES-1-null mice but not in other tissues. Examination of mRNA for several terminal prostaglandin synthases did not reveal changes in expression levels associated with mPGES-1 deficiency, indicating that gastric prostaglandin changes may be due to shunting of cyclooxygenase products to other terminal synthases. These data demonstrate for the first time a dual role for mPGES-1 in both inflammatory and COX-1-mediated PGE2 production and suggest an interdependence of prostanoid production with tissue-specific alterations of prostaglandin levels in the absence of mPGES-1.  相似文献   

16.
Cyclooxygenase-2 (COX-2)-dependent prostaglandin (PG) E(2) synthesis in the spinal cord plays a major role in the development of inflammatory hyperalgesia and allodynia. Microsomal PGE(2) synthase-1 (mPGES-1) isomerizes COX-2-derived PGH(2) to PGE(2). Here, we evaluated the effect of mPGES-1-deficiency on the nociceptive behavior in various models of nociception that depend on PGE(2) synthesis. Surprisingly, in the COX-2-dependent zymosan-evoked hyperalgesia model, the nociceptive behavior was not reduced in mPGES-1-deficient mice despite a marked decrease of the spinal PGE(2) synthesis. Similarly, the nociceptive behavior was unaltered in mPGES-1-deficient mice in the formalin test. Importantly, spinal cords and primary spinal cord cells derived from mPGES-1-deficient mice showed a redirection of the PGE(2) synthesis to PGD(2), PGF(2alpha) and 6-keto-PGF(1alpha) (stable metabolite of PGI(2)). Since the latter prostaglandins serve also as mediators of nociception they may compensate the loss of PGE(2) synthesis in mPGES-1-deficient mice.  相似文献   

17.
Prostaglandin E2 (PGE2) is shown to be essential for female reproduction. Cyclooxygenase (COX) is a rate-limiting enzyme in prostaglandin synthesis from arachidonic acid and exists in two isoforms: COX-1 and COX-2. Prostaglandin E synthase (PGES) is a terminal prostanoid synthase and can catalyse the isomerization of the COX product PGH2 to PGE2, including microsomal PGES-1 (mPGES-1), cytosolic PGES (cPGES) and mPGES-2. This study examined the protein expression of COX-1, COX-2, mPGES-1, cPGES and mPGES-2 in preimplantation mouse embryos by immunohistochemistry. Embryos at different stages collected from oviducts or uteri were transferred into a flushed oviduct of non-pregnant mice. The oviducts containing embryos were paraffin-embedded and processed for immunostaining. COX-1 immunostaining was at a basal level in zygotes and a low level at the 2-cell stage, reaching a high level from the 4-cell to blastocyst stage. COX-2 immunostaining was at a low level at the zygote stage and was maintained at a high level from the 2-cell to blastocyst stages. A low level of mPGES-1 immunostaining was observed from the zygote to 8-cell stages. The signal for mPGES-1 immunostaining became stronger at the morula stage and was strongly seen at the blastocyst stage. cPGES immunostaining was strongly observed in zygotes, 2-cell and 8-cell embryos. There was a slight decrease in cPGES immunostaining at the 4-cell, morula and blastocyst stages. mPGES-2 immunostaining was at a low level from the zygote to morula stages and at a high level at the blastocyst stage. We found that the COX-1, COX-2, mPGES-1, cPGES and mPGES-2 protein signals were all at a high level at the blastocyst stage. PGE2 produced during the preimplantation development may play roles during embryo transport and implantation.  相似文献   

18.
Human, microsomal, and glutathione-dependent prostaglandin (PG) E synthase-1 (mPGES-1) was expressed with a histidine tag in Escherichia coli. mPGES-1 was purified to apparent homogeneity from Triton X-100-solubilized bacterial extracts by a combination of hydroxyapatite and immobilized metal affinity chromatography. The purified enzyme displayed rapid glutathione-dependent conversion of PGH2 to PGE2 (Vmax; 170 micromol min-1 mg-1) and high kcat/Km (310 mm-1 s-1). Purified mPGES-1 also catalyzed glutathione-dependent conversion of PGG2 to 15-hydroperoxy-PGE2 (Vmax; 250 micromol min-1 mg-1). The formation of 15-hydroperoxy-PGE2 represents an alternative pathway for the synthesis of PGE2, which requires further investigation. Purified mPGES-1 also catalyzed glutathione-dependent peroxidase activity toward cumene hydroperoxide (0.17 micromol min-1 mg-1), 5-hydroperoxyeicosatetraenoic acid (0.043 micromol min-1 mg-1), and 15-hydroperoxy-PGE2 (0.04 micromol min-1 mg-1). In addition, purified mPGES-1 catalyzed slow but significant conjugation of 1-chloro-2,4-dinitrobenzene to glutathione (0.8 micromol min-1 mg-1). These activities likely represent the evolutionary relationship to microsomal glutathione transferases. Two-dimensional crystals of purified mPGES-1 were prepared, and the projection map determined by electron crystallography demonstrated that microsomal PGES-1 constitutes a trimer in the crystal, i.e. an organization similar to the microsomal glutathione transferase 1. Hydrodynamic studies of the mPGES-1-Triton X-100 complex demonstrated a sedimentation coefficient of 4.1 S, a partial specific volume of 0.891 cm3/g, and a Stokes radius of 5.09 nm corresponding to a calculated molecular weight of 215,000. This molecular weight, including bound Triton X-100 (2.8 g/g protein), is fully consistent with a trimeric organization of mPGES-1.  相似文献   

19.
20.
Prostaglandin (PG) H(2) (PGH(2)), formed from arachidonic acid, is an unstable intermediate and is converted efficiently into more stable arachidonate metabolites (PGD(2), PGE(2), and PGF(2)) by the action of three groups of enzymes. Prostaglandin E synthase catalyzes an isomerization reaction, PGH(2) to PGE(2). Microsomal prostaglandin E synthase type-2 (mPGES-2) has been crystallized with an anti-inflammatory drug indomethacin (IMN), and the complex structure has been determined at 2.6A resolution. mPGES-2 forms a dimer and is attached to lipid membrane by anchoring the N-terminal section. Two hydrophobic pockets connected to form a V shape are located in the bottom of a large cavity. IMN binds deeply in the cavity by placing the OMe-indole and chlorophenyl moieties into the V-shaped pockets, respectively, and the carboxyl group interacts with S(gamma) of C110 by forming a H-bond. A characteristic H-bond chain formation (N-H...S(gamma)-H...S(gamma)...H-N) is seen through Y107-C113-C110-F112, which apparently decreases the pK(a) of S(gamma) of C110. The geometry suggests that the S(gamma) of C110 is most likely the catalytic site of mPGES-2. A search of the RCSB Protein Data Bank suggests that IMN can fit into the PGH(2) binding site in various proteins. On the basis of the crystal structure and mutation data, a PGH(2)-bound model structure was built. PGH(2) fits well into the IMN binding site by placing the alpha and omega-chains in the V-shaped pockets, and the endoperoxide moiety interacts with S(gamma) of C110. A possible catalytic mechanism is proposed on the basis of the crystal and model structures, and an alternative catalytic mechanism is described. The fold of mPGES-2 is quite similar to those of GSH-dependent hematopoietic prostaglandin D synthase, except for the two large loop sections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号