首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I R Tsaneva  B Müller  S C West 《Cell》1992,69(7):1171-1180
The RuvA and RuvB proteins of E. coli, which are induced as part of the cellular response to DNA damage, act together to promote the branch migration of Holliday junctions. Addition of purified RuvA and RuvB to a RecA-mediated recombination reaction stimulates the rate of strand exchange and the formation of hetero-duplex DNA. Stimulation does not occur via interaction with RecA; instead, RuvA and RuvB act directly upon recombination intermediates (Holliday junctions) made by RecA. We show that RuvAB-mediated branch migration requires ATP and can bypass UV-induced DNA lesions. At high RuvB concentrations, the requirement for RuvA is overcome, indicating that the RuvB ATPase provides the motor force for branch migration. RuvA protein provides specificity by binding to the Holliday junction, thereby reducing the requirement for RuvB by 50-fold. The newly discovered biochemical properties of RuvA, RuvB, and RuvC are incorporated into a model for the postreplicational repair of DNA following UV irradiation.  相似文献   

2.
The Escherichia coli RuvB protein is a motor protein that forms a complex with RuvA and promotes branch migration of Holliday junctions during homologous recombination. This study describes the characteristics of two RuvB mutants, I148T and I150T, that do not promote branch migration in the presence of RuvA. These RuvB mutants hydrolyzed ATP and bound duplex DNA with the same efficiency as wild-type RuvB, but the mutants did not form a complex with RuvA and were defective in loading onto junction DNA in a RuvA-assisted manner. A recent crystallographic study revealed that Ile(148) and Ile(150) are in a unique beta-hairpin that protrudes from the AAA(+) ATPase domain of RuvB. We propose that this beta-hairpin interacts with hydrophobic residues in the mobile third domain of RuvA and that this interaction is vital for the RuvA-assisted loading of RuvB onto Holliday junction DNA.  相似文献   

3.
Summary Escherichia coli RuvA and RuvB proteins are encoded by an SOS-regulated operon, which is involved in DNA repair and recombination. RuvB has weak ATPase activity, which is enhanced by the addition of RuvA and DNA, and RuvA and RuvB in the presence of ATP promote branch migration at Holliday junctions. In this work, the physical states of RuvA and RuvB and their interactions with DNA were studied by sedimentation analysis and gel filtration chromatography. RuvA formed a stable tetramer in solution, which resisted dissociation by SDS at room temperature. RuvB formed a dimer in solution. When RuvA and RuvB were mixed, an oligomer complex was formed consisting of a tetrameric form of RuvA and a dimeric form of RuvB, and this complex bound to DNA. The maximal enhancement of the RuvB ATPase activity by RuvA was achieved at this stoichiometry in the presence of excess DNA.  相似文献   

4.
In Escherichia coli, the RuvA and RuvB proteins interact at Holliday junctions to promote branch migration leading to the formation of heteroduplex DNA. RuvA provides junction-binding specificity and RuvB drives ATP-dependent branch migration. Since RuvB contains sequence motifs characteristic of a DNA helicase and RuvAB exhibit helicase activity in vitro, we have analysed the role of DNA unwinding in relation to branch migration. A mutant RuvB protein, RuvB(D113E), mutated in helicase motif II (the DExx box), has been purified to homogeneity. The mutant protein forms hexameric rings on DNA similar to those formed by wild-type protein and promotes branch migration in the presence of RuvA. However, RuvB(D113E) exhibits reduced ATPase activity and is severely compromised in its DNA helicase activity. Models for RuvAB-mediated branch migration that invoke only limited DNA unwinding activity are proposed.  相似文献   

5.
The RuvABC proteins of Escherichia coli process recombination intermediates during genetic recombination and DNA repair. RuvA and RuvB promote branch migration of Holliday junctions, a process that extends heteroduplex DNA. Together with RuvC, they form a RuvABC complex capable of Holliday junction resolution. Branch migration by RuvAB is mediated by RuvB, a hexameric ring protein that acts as an ATP-driven molecular pump. To gain insight into the mechanism of branch migration, random mutations were introduced into the ruvB gene by PCR and a collection of mutant alleles were obtained. Mutation of leucine 268 to serine resulted in a severe UV-sensitive phenotype, characteristic of a ruv defect. Here, we report a biochemical analysis of the mutant protein RuvBL268S. Unexpectedly, the purified protein is fully active in vitro with regard to its ATPase, DNA binding and DNA unwinding activities. It also promotes efficient branch migration in combination with RuvA, and forms functional RuvABC-Holliday junction resolvase complexes. These results indicate that RuvB may perform some additional, and as yet undefined, function that is necessary for cell survival after UV-irradiation.  相似文献   

6.
The Escherichia coli ruvA and ruvB genes constitute an SOS-regulated operon. The products of these genes form a protein complex that promotes branch migration of the Holliday junction, an intermediate of homologous recombination. RuvA protein binds specifically to the Holliday junction and recruits RuvB protein to the junction. RuvB is an ATP-driven motor protein involved in branch migration. We previously cloned the ruvB gene of the thermophilic bacterium Thermus thermophilus HB8 (Tth) and found that, in contrast to the operon structure in most mesothermic bacteria, the ruvA gene is absent from the vicinity of ruvB. In this work, we cloned the ruvA gene from T. thermophilus HB8 and analyzed its nucleotide sequence. Tth RuvA is a protein of 20,414 Da consisting of 191 amino acid residues, and is 37% identical in amino acid sequence to E. coli RuvA. Tth ruvA complemented the DNA repair defect of E. coli deltaruvA mutants. The purified Tth RuvA protein stimulated Tth RuvB activities, such as hydrolysis of ATP and promotion of branch migration of the Holliday junction, in a manner similar to the RuvA-RuvB interactions observed in E. coli. In addition, Tth RuvA stimulated the E. coli RuvB activities in vitro, which was well consistent with the results of in vivo hetero-complementation experiments.  相似文献   

7.
Branch migration of Holliday junctions, which are central DNA intermediates in homologous recombination, is promoted by the RuvA-RuvB protein complex, and the junctions are resolved by the action of the RuvC protein in Escherichia coli. We report here the cloning of the ruvB gene from a thermophilic eubacterium, Thermus thermophilus HB8 (Tth), and the biochemical characterization of the gene product expressed in E. coli. The Tth ruvB gene could not complement the UV sensitivity of an E. coli ruvB deletion mutant and made the wild-type strain more sensitive to UV. In contrast to E. coli RuvB, whose ATPase activity is strongly enhanced by supercoiled DNA but only weakly enhanced by linear duplex DNA, the ATPase activity of Tth RuvB was efficiently and equally enhanced by supercoiled and linear duplex DNA. Tth RuvB hydrolyzed a broader range of nucleoside triphosphates than E. coli RuvB. In addition, Tth RuvB, in the absence of RuvA protein, promoted branch migration of a synthetic Holliday junction at 60° C in an ATP-dependent manner. The protein, as judged by its ATPase activity, required ATP for thermostability. Since a RuvA protein has not yet been identified in T. thermophilus, we used E. coli RuvA to examine the effects of RuvA on the activities of Tth RuvB. E. coli RuvA greatly enhanced the ability of Tth RuvB to hydrolyze ATP in the presence of DNA and to promote branch migration of a synthetic Holliday junction at 37° C. These results indicate the conservation of the RuvA-RuvB interaction in different bacterial species, and suggest the existence of a ruvA homolog in T. thermophilus. Although GTP and dGTP were efficiently hydrolyzed by Tth RuvB, these nucleoside triphosphates could not be utilized for branch migration in vitro, implying that the conformational change in RuvB brought about by ATP hydrolysis, which is necessary for driving the Holliday junction branch migration, cannot be accomplished by the hydrolysis of these nucleoside triphosphates. Received: 26 November 1998 / Accepted: 19 April 1999  相似文献   

8.
The ruvA and ruvB genes constitute an operon, which is regulated by the SOS system and involved in DNA repair, recombination and mutagenesis. RuvA protein binds to both single-stranded and double-stranded DNA. RuvB protein has weak ATPase activity. RuvA bound to DNA greatly enhances ATPase activity of RuvB. UV-irradiation to supercoiled DNA further enhances the stimulatory effect of RuvA on the RuvB ATPase activity. In the presence of ATP the RuvA-RuvB complex has an activity that renatures cruciform structures formed by heating and gradually cooling supercoiled DNA with an inverted repeat. These findings suggest that the RuvA-RuvB complex interacts with an irregular conformation in damaged DNA and induces conformational changes in DNA using energy provided by ATP hydrolysis, so that it facilitates DNA repair, recombination and error prone replication.  相似文献   

9.
The DNA recombination and repair machineries of Mycoplasma genitalium and Mycoplasma pneumoniae differ considerably from those of gram-positive and gram-negative bacteria. Most notably, M. pneumoniae is unable to express a functional RecU Holliday junction (HJ) resolvase. In addition, the RuvB homologues from both M. pneumoniae and M. genitalium only exhibit DNA helicase activity but not HJ branch migration activity in vitro. To identify a putative role of the RuvA homologues of these mycoplasmas in DNA recombination, both proteins (RuvA(Mpn) and RuvA(Mge), respectively) were studied for their ability to bind DNA and to interact with RuvB and RecU. In spite of a high level of sequence conservation between RuvA(Mpn) and RuvA(Mge) (68.8% identity), substantial differences were found between these proteins in their activities. First, RuvA(Mge) was found to preferentially bind to HJs, whereas RuvA(Mpn) displayed similar affinities for both HJs and single-stranded DNA. Second, while RuvA(Mpn) is able to form two distinct complexes with HJs, RuvA(Mge) only produced a single HJ complex. Third, RuvA(Mge) stimulated the DNA helicase and ATPase activities of RuvB(Mge), whereas RuvA(Mpn) did not augment RuvB activity. Finally, while both RuvA(Mge) and RecU(Mge) efficiently bind to HJs, they did not compete with each other for HJ binding, but formed stable complexes with HJs over a wide protein concentration range. This interaction, however, resulted in inhibition of the HJ resolution activity of RecU(Mge).  相似文献   

10.
In Escherichia coli, the ruvA, ruvB and ruvC gene products are required for genetic recombination and the recombinational repair of DNA damage. New studies suggest that these three proteins function late in recombination and process Holliday junctions made by RecA protein-mediated strand exchange. In vitro, RuvA protein binds a Holliday junction with high affinity and, together with RuvB (an ATPase), promotes ATP-dependent branch migration of the junction leading to the formation of heteroduplex DNA. The third protein, RuvC, which acts independently of RuvA and RuvB, resolves recombination intermediates by specific endonucleolytic cleavage of the Holliday junction.  相似文献   

11.
Dissociation of synthetic Holliday junctions by E. coli RecG protein.   总被引:28,自引:6,他引:22       下载免费PDF全文
The RecG protein of Escherichia coli is needed for normal levels of recombination and for repair of DNA damaged by ultraviolet light, mitomycin C and ionizing radiation. The true extent of its involvement in these processes is masked to a large degree by what appears to be a functional overlap with the products of the three ruv genes. RuvA and RuvB act together to promote branch migration of Holliday junctions, while RuvC catalyses the resolution of these recombination intermediates into viable products by endonuclease cleavage. In this paper, we describe the overproduction and purification of RecG and demonstrate that the overlap extends to the biochemistry. We show that the 76 kDa RecG protein is a DNA-dependent ATPase, like RuvB. Using gel retardation assays we demonstrate that it binds specifically to a synthetic Holliday junction, like RuvA and RuvC. Finally, we show that in the presence of ATP and Mg2+, RecG dissociates these junctions to duplex products, like RuvAB. We suggest that RecG and RuvAB provide alternative activities than can promote branch migration of Holliday junctions in recombination and DNA repair.  相似文献   

12.
In bacteria, RuvABC is required for the resolution of Holliday junctions (HJ) made during homologous recombination. The RuvAB complex catalyzes HJ branch migration and replication fork reversal (RFR). During RFR, a stalled fork is reversed to form a HJ adjacent to a DNA double strand end, a reaction that requires RuvAB in certain Escherichia coli replication mutants. The exact structure of active RuvAB complexes remains elusive as it is still unknown whether one or two tetramers of RuvA support RuvB during branch migration and during RFR. We designed an E. coli RuvA mutant, RuvA2(KaP), specifically impaired for RuvA tetramer-tetramer interactions. As expected, the mutant protein is impaired for complex II (two tetramers) formation on HJs, although the binding efficiency of complex I (a single tetramer) is as wild type. We show that although RuvA complex II formation is required for efficient HJ branch migration in vitro, RuvA2(KaP) is fully active for homologous recombination in vivo. RuvA2(KaP) is also deficient at forming complex II on synthetic replication forks, and the binding affinity of RuvA2(KaP) for forks is decreased compared with wild type. Accordingly, RuvA2(KaP) is inefficient at processing forks in vitro and in vivo. These data indicate that RuvA2(KaP) is a separation-of-function mutant, capable of homologous recombination but impaired for RFR. RuvA2(KaP) is defective for stimulation of RuvB activity and stability of HJ·RuvA·RuvB tripartite complexes. This work demonstrates that the need for RuvA tetramer-tetramer interactions for full RuvAB activity in vitro causes specifically an RFR defect in vivo.  相似文献   

13.
The Escherichia coli RuvA and RuvB proteins promote the branch migration of Holliday junctions during the late stages of homologous recombination and DNA repair (reviewed in [1]). Biochemical and structural studies of the RuvAB-Holliday junction complex have shown that RuvA binds directly to the Holliday junction [2] [3] [4] [5] [6] and acts as a specificity factor that promotes the targeting of RuvB [7] [8], a hexameric ring protein that drives branch migration [9] [10] [11]. Electron microscopic visualisation of the RuvAB complex revealed that RuvA is flanked by two RuvB hexamers, which bind DNA arms that lie diametrically opposed across the junction [8]. ATP-dependent branch migration occurs as duplex DNA is pumped out through the centre of each ring. Because RuvB possesses well-conserved helicase motifs and RuvAB exhibits a 5'-3' DNA helicase activity in vitro [12], the mechanism of branch migration is thought to involve DNA opening within the RuvB ring, which provides a single strand for the unidirectional translocation of the protein along DNA. We have investigated whether the RuvB ring can translocate along duplex DNA containing a site-directed interstrand psoralen crosslink. Surprisingly, we found that the crosslink failed to inhibit branch migration. We interpret these data as evidence against a base-by-base tracking model and suggest that extensive DNA opening within the RuvB ring is not required for DNA translocation by RuvB.  相似文献   

14.
Branch migration of Holliday junctions, which are central DNA intermediates in homologous recombination, is promoted by the RuvA-RuvB protein complex, and the junctions are resolved by the action of the RuvC protein in Escherichia coli. We report here the cloning of the ruvB gene from a thermophilic eubacterium, Thermus thermophilus HB8 (Tth), and the biochemical characterization of the gene product expressed in E. coli. The Tth ruvB gene could not complement the UV sensitivity of an E. coli ruvB deletion mutant and made the wild-type strain more sensitive to UV. In contrast to E. coli RuvB, whose ATPase activity is strongly enhanced by supercoiled DNA but only weakly enhanced by linear duplex DNA, the ATPase activity of Tth RuvB was efficiently and equally enhanced by supercoiled and linear duplex DNA. Tth RuvB hydrolyzed a broader range of nucleoside triphosphates than E. coli RuvB. In addition, Tth RuvB, in the absence of RuvA protein, promoted branch migration of a synthetic Holliday junction at 60°?C in an ATP-dependent manner. The protein, as judged by its ATPase activity, required ATP for thermostability. Since a RuvA protein has not yet been identified in T. thermophilus, we used E. coli RuvA to examine the effects of RuvA on the activities of Tth RuvB. E. coli RuvA greatly enhanced the ability of Tth RuvB to hydrolyze ATP in the presence of DNA and to promote branch migration of a synthetic Holliday junction at 37°?C. These results indicate the conservation of the RuvA-RuvB interaction in different bacterial species, and suggest the existence of a ruvA homolog in T. thermophilus. Although GTP and dGTP were efficiently hydrolyzed by Tth RuvB, these nucleoside triphosphates could not be utilized for branch migration in vitro, implying that the conformational change in RuvB brought about by ATP hydrolysis, which is necessary for driving the Holliday junction branch migration, cannot be accomplished by the hydrolysis of these nucleoside triphosphates.  相似文献   

15.
K Hiom  S C West 《Nucleic acids research》1995,23(18):3621-3626
The Escherichia coli RuvA and RuvB proteins interact specifically with Holliday junctions to promote ATP-dependent branch migration during genetic recombination and DNA repair. In the work described here, glycerol gradient centrifugation was used to investigate the requirements for the formation of pre-branch migration complexes. Since gradient centrifugation provides a simple and gentle method to analyse relatively unstable protein-DNA complexes, we were able to detect RuvA- and RuvAB-Holliday junction complexes without the need for chemical fixation. Using 35S-labelled RuvA protein and 3H-labelled Holliday junctions, we show that RuvA acts as a helicase accessory factor that loads the RuvB helicase onto the Holliday junction by structure-specific interactions. The resulting complex contained both RuvA and RuvB, as detected by Western blotting using serum raised against RuvA and RuvB. The stoichiometry of binding was estimated to be approximately four RuvA tetramers per junction. Formation of the RuvAB-Holliday junction complex required the presence of divalent metal ions and occurred without the need for ATP. However, the stability of the complex was enhanced by the presence of ATP gamma S, a non-hydrolysable ATP analogue. The data support a model for branch migration in which structure-specific binding of Holliday junctions by RuvA targets the assembly of hexameric RuvB rings on DNA. Specific loading of the RuvB ring helicase by RuvA is likely to be the initial step towards ATP-dependent branch migration.  相似文献   

16.
Escherichia coli RuvB protein, together with RuvA, promotes branch migration of Holliday junctions during homologous recombination and recombination repair. The RuvB molecular motor is an intrinsic ATP-dependent DNA helicase with a hexameric ring structure and its architecture has been suggested to be related to those of the members of the AAA+ protein class. In this study, we isolated a large number of plasmids carrying ruvB mutant genes and identified amino acid residues important for the RuvB functions by examining the in vivo DNA repair activities of the mutant proteins. Based on these mutational studies and amino acid conservation among various RuvBs, we identified 10 RuvB motifs that agreed well with the features of the AAA+ protein class and that distinguished the primary structure of RuvB from that of typical DNA/RNA helicases with seven conserved helicase motifs.  相似文献   

17.
The major albumin, a polypeptide of 21 kilodaltons (kDa), from the seeds of cocoa (Theobroma cacao L.), has been identified and partially purified by preparative gel electrophoresis. Some N-terminal sequence was obtained, permitting the construction of an oligonucleotide probe. This probe was used to isolate the corresponding copy DNA (cDNA) clone from a library made from poly(A)+ RNA from immature cocoa beans. The cDNA sequence has a single major open reading frame, that translates to give a 221-amino-acid polypeptide of Mr 24003. The existence of a precursor to the 21-kDa polypeptide of this size was confirmed by immunoprecipitation from total poly(A)+ RNA translation products. The polypeptide has a hydrophobic signal sequence of 26 amino acids before the mature start, and the mature polypeptide would have an Mr of 21223. The protein sequence is homologous with sequences of the Kunitz protease and -amylase inhibitor family, and the protein probably functions to defend the seed's protein reserves from the digestive enzymes of invading pests. However because the protein comprises 25–30% of the total seed protein it may itself also function as a storage protein. Electron micrographs of immunogold-labelled embryo sections show that the protein is located in membrane-enclosed organelles.Abbreviations cDNA copy DNA - IgG immunoglobulin G - kb kilobase pairs - kDa kilodaltons - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulphate-polyacylamide gel electrophoresis The authors are very grateful to Dr R. Jennings of the Virology Department, Sheffield University Medical School, for help in raising antibodies, and to Dr G. Cope, of the Biological Sciences Electron Microscopy Unit, Sheffield University, for taking the electron micrographs.To whom correspondence should be addressed.  相似文献   

18.
The RuvABC resolvasome of Escherichia coli typifies nucleoprotein complexes involved in genetic transactions. This molecular assembly catalyses the resolution of Holliday junctions that arise during genetic recombination and DNA repair. This process involves two key steps: branch migration, catalysed by the RuvB protein that is targeted to the Holliday junction by the structure specific RuvA protein, and resolution, which is catalysed by the RuvC endonuclease. We have used matrix-assisted laser desorption/ionisation time of flight mass spectrometry (MALDI-TOF MS) to rapidly identify the binding of RuvA to an immobilised synthetic Holliday junction; unambiguous identification was verified using tryptic digest of the bound protein. In conjunction with a novel fluorescent-based technique incorporating ion pair reverse phase liquid chromatography, a "footprint" of the RuvA:Holliday complex was obtained. These two complementary techniques offer a generic approach to the analysis of nucleoprotein complexes.  相似文献   

19.
The RuvAB, RuvC and RecG proteins of Escherichia coli process intermediates in recombination and DNA repair into mature products. RuvAB and RecG catalyse branch migration of Holliday junctions, while RuvC resolves these structures by nuclease cleavage around the point of strand exchange. The overlap between RuvAB and RecG was investigated using synthetic X- and Y-junctions. RuvAB is a complex of RuvA and RuvB, with RuvA providing the DNA binding subunit and RuvB the ATPase activity that drives branch migration. Both RuvA and RecG form defined complexes with each of the junctions. The gel mobilities of these complexes suggests that the X-junction attracts two tetramers of RuvA, but mainly monomers of RecG. Dissociation of the junction in the presence of ATP requires high levels of RuvAB. RecG is shown to have a much higher specific activity to the extent that very little of this protein would be required to match RuvAB in vivo. Both proteins also dissociate a Y-junction, which is consistent with helicase activity. However, RecG shows no ability to unwind more conventional substrates and the suggestion is made that its helicase activity is directed towards specific DNA structures such as junctions.  相似文献   

20.
During the late stage of homologous recombination in prokaryotes, RuvA binds to the Holliday junction intermediate and executes branch migration in association with RuvB. The RuvA subunits form two distinct complexes with the Holliday junction: complex I with the single RuvA tetramer on one side of the four way junction DNA, and complex II with two tetramers on both sides. To investigate the functional roles of complexes I and II, we mutated two residues of RuvA (L125D and E126K) to prevent octamer formation. An electron microscopic analysis indicated that the mutant RuvA/RuvB/Holliday junction DNA complex formed the characteristic tripartite structure, with only one RuvA tetramer bound to one side of the Holliday junction, demonstrating the unexpected stability of this complex. The novel bent images of the complex revealed an intriguing morphological similarity to the structure of SV40 large T antigen, which belongs to the same AAA+ family as RuvB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号