首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Angiotensin I-converting enzyme was purified to electrophoretic homogeneity (12 units/mg) from bovine lung tissue and from human serum using an affinity gel described previously (Harris et al., (1981) Anal. Biochem. 111, 227-234). The isoelectric point (4.5), molecular weight (145 000), S20,W (8.1), amino acid composition and carbohydrate content of the lung enzyme are all similar to the values obtained for the human serum enzyme. The NH2-terminus of the lung enzyme (Ala) is different from that of the serum enzyme (Tyr) but the COOH-terminal sequences are identical (-Leu-Ser-OH). Pure bovine lung enzyme was reduced and carboxyamidomethylated with iodo (14C1) acetamide to the extent predicted by the number of cysteine residues. Since no radioactivity was incorporated into denatured enzyme that was not reduced, all of the cysteine residues must be in the form of disulfide bonds. Reverse-phase HPLC was used to separate peptides obtained from the lung enzyme after degradation with either trypsin or cyanogen bromide. The number of peptides resolved (42 after trypsin, 31 after cyanogen bromide), were only 20% fewer than the number predicted from the amino acid analysis and therefore the possibility that the converting enzyme (a single polypeptide chain) might be a fused dimer is excluded.  相似文献   

2.
The mRNA encoding angiotensin I-converting enzyme, a zinc-metallo dipeptidyl carboxyhydrolase, has been identified in extracts prepared from bovine lung tissue. Bovine lung poly(A) + mRNAs were subjected to electrophoresis and northern blot hybridization analysis using a radiolabeled synthetic 24-deoxyoligonucleotide probe complementary to eight codons for amino acids at the active-site of the enzyme (Harris, R.B. & Wilson, I.B., J. Biol. Chem. 260, 2208-2211, 1985). This amino acid sequence contains the catalytic glutamic acid residue. A single RNA species (approximately equal to 4 kb) was detected which is 1 kb larger than predicted from the molecular weight of the enzyme. The excess nucleic acid composition may be due to leader and/or trailer sequences or the RNA may encode a high molecular weight precursor form of the enzyme. We have cloned an EcoR1-HindIII digest fragment (1400 bp) of the duplex cDNA derived from the bovine lung converting enzyme poly(A) + mRNA and also Bal31 deletion fragments generated from the 1400 bp clone. Several of the Bal31 clones contain the active-site sequence codons of the enzyme and the complete cDNA sequence of one of these (72 bp) has been determined. We found the amino acid sequence at the active site to be -Phe-Thr-Glu-Leu-Ala-Asn-Ser-, containing the catalytic Glu residue. This sequence is identical with the sequence that we previously determined by manual Edman degradation analysis of the appropriate active-site peptide except that we now find Asn instead of Asp. We have sequenced 670 bp of the 1400 bp clone but have not yet overlapped the active-site sequence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Angiotensin I-converting enzyme (peptidyl dipeptide hydrolase, EC 3.4.15.1) was solubilized from the membrane fraction of human lung using trypsin treatment and purfied using columns of DE 52-cellulose, hydroxyapatite and Sephadex G-200. The purified enzyme was shown to convert angiotensin I to angiotensin II and also to inactivate bradykinin. The specific activity of the enzyme was 9.5 units/mg protein for Hippuryl-His-Leu-OH and 0.665 mumol/min per mg protein for angiotensin I. The enzymic activity obtained after trypsin treatment (1 mg/200 mg protein) for 2 h could be divided into three components: (i) an enzyme of molecular weight 290 000 (peak I), (ii) an enzyme of molecular weight 180 000 (peak II) and (iii) an enzyme of molecular weight 98 000 (peak III), by columns of DE 52-cellulose and Sephadex G-200. Km values of peak I, II and III fraction for Hippuryl-His-Leu-OH were identical at 1.1 mM. pH optimum of the enzyme was 8.3 for Hippuryl-His-Leu-OH.  相似文献   

4.
We purified angiotensin I-converting enzyme (ACE) from pig and human lung and plasma for comparison of some physicochemical properties between the endothelial membrane-bound form and the soluble form of the enzyme. After affinity chromatography on Sepharose CL-4B/lisinopril, gel-filtration HPLC on Superose 12 achieved homogeneity for both forms as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Whatever the source of ACE, the molecular weight was 300 +/- 40 kDa after calibration of Superose 12 with standard globular proteins and 172 +/- 4 kDa by SDS-PAGE, with or without reduction, a result suggesting interactions between the glycopolypeptide chain and the chromatographic gel possibly related to the overall shape and sugar content of the enzyme. Ion-exchange HPLC analysis on TSK-DEAE showed that the membrane-bound and soluble forms of ACE are not isoenzymes, although isoelectrofocusing did show that the isoelectric point of soluble ACE was lower than those of tissue ACE, suggesting a different glycosylation. No significant difference between porcine and human ACE appeared. HPLC methods seem to be of particular interest for the purification of ACE with a high yield and for the analysis of its putative differently glycosylated isoforms.  相似文献   

5.
Approximately 50-fold purification of angiotensin I-converting enzyme (Peptidyldipeptide hydrolase, EC 3.4.15.1) from rabbit lung was achieved by affinity chromatography using the synthetic substrate Hippuryl-His-Leu-OH. The specific activity of the enzyme was increased from 0.044 units/mg protein to 1.911 units/mg protein for Hippuryl-His-Leu-OH and from 0.33 nmol/min per mg protein to 13.8 nmol/min per mg protein for angiotensin I.  相似文献   

6.
1. Angiotensin I-converting enzyme (EC 3.4.15.1) has been purified to electrophoretic homogeneity from chicken lung by using a facile two-step protocol which included affinity chromatography on Sepharose-bound captopril. 2. Captopril was a potent inhibitor of chicken lung angiotensin I-converting enzyme with Ki values of 2.0 nmol/l and 1.6 nmol/l for detergent-extracted and trypsin-extracted angiotensin I-converting enzymes, respectively. 3. Molecular weight comparison of trypsin-extracted (M(r)270,000) and detergent-extracted (M(r)690,000) angiotensin I-converting enzyme indicated that membrane-binding sequence contributed to a large extent to the enzyme molecule. 4. Kinetic properties of both forms of the enzyme suggested that the membrane-bound sequence contributed to an increase of the enzyme-substrate affinity.  相似文献   

7.
The purpose of this study was to determine whether angiotensin I-converting enzyme (ACE) is present in cultured bovine bronchial epithelial cells (BBECs) and whether its activity can be modulated. We found that extracts of confluent monolayers of cultured BBECs degraded [glycine-1-14C]hippuryl-L -histidyl-L -leucine at a rate of 843 ± 66 pmol/hr/mg protein (mean ± SEM, n = 5). In addition, we found that the enzyme was shed into the culture medium. ACE activity in BBECs was inhibited by three selective, but structurally different, ACE inhibitors (captopril, quinapril, and cisalaprilat) with an IC50 of approximately 2 nM. Increasing chloride concentration in the assay buffer resulted in an increase in BBECs ACE activity of 63%. Enzyme activity was also modulated by the presence of zinc cation in the assay buffer. Addition of dexamethasone to the culture medium was associated with a significant increase in BBECs ACE activity (P < 0.05), which was inhibited by the steroid receptor antagonist RU 38486. Western blot analysis of BBECs, tracheal and bronchial mucosal strips utilizing a cross-reacting rabbit anti-mouse ACE antibody, showed a faint 175 kDa band and additional strong 52 kDa and 47 kDa band. The mechanism of generation of the low M.W. bands is unknown. Our data indicate the presence of ACE in cultured BBECs and that enzyme activity can be modulated.  相似文献   

8.
9.
Angiotensin I-converting enzyme (ACE) activity was measured in lysates of cloned and uncloned cultures of bovine fetal aortic endothelial cells. The expression of ACE activity in these cells was complex, and influenced by subcultivation, cell density, serum, cumulative population doublings, and clonal heterogeneity. The ACE specific activity at any point in the in vitro lifespan was determined, at least in part, by interaction of these culture variables. After subcultivation to subconfluent densities, cellular ACE specific activity decreased markedly and did not reach detectable levels until cells attained confluent densities. The use of different suppliers' lots of serum in the growth medium resulted in different cellular ACE specific activities. The ACE specific activity decreased as cultures were serially subcultivated, but remained detectable throughout the lifespan, suggesting a linkage between the proliferative history of an endothelial cell and its remaining capacity to express ACE. Increased ACE activity was observed when cells at the end of their lifespan were cultured at high densities. Cloned strains behaved similarly to the uncloned parent culture, except that they exhibited a wide range of ACE specific activities.  相似文献   

10.
Human angiotensin I-converting enzyme gene and endurance performance.   总被引:15,自引:0,他引:15  
Human physical performance is strongly influenced by genetic factors. A variation in the structure of the human angiotensin I-converting enzyme (ACE) gene has been reported in which the insertion (I) variant is associated with lower ACE levels than the deletion (D) gene. We have previously reported that the I variant was associated with improved endurance performance in high-altitude mountaineers and British Army recruits. We now examine this genotype distribution in 91 British Olympic-standard runners (79 Caucasians). DNA was extracted from the buccal cells contained in 10 ml of saline mouthwash donated by the subjects, and the I and D variants of the ACE gene were identified by PCR amplification of the polymorphic region. There was an increasing frequency of the I allele with distance run [0.35, 0.53, and 0.62 for /=5,000 m (n = 34), respectively; P = 0.009 for linear trend]. Among 404 Olympic-standard athletes from 19 other mixed sporting disciplines (in which endurance performance was not necessarily a key factor), the I allele did not differ significantly from that found in control subjects: 0.50 vs. 0.49 (P = 0.526). These results support a positive association of the I allele with elite endurance performance.  相似文献   

11.
The angiotensin-converting enzyme from bovine lung was isolated by chromatography with a 25-30% yield and purified 2200-2600-fold. The active molecule concentration in the enzyme preparations was 70-100% as could be judged from titration by inhibitor SQ 20,881. The molecular mass of the enzyme according to electrophoretic data is about 132 kDa; the maximal radius of the enzyme molecule as determined by electron microscopy is 68 +/- 9 A. Five enzyme isoforms with pI of 4.85, 4.7, 4.54, 4.38 and 4.3, respectively, were identified. The kinetic parameters of hydrolysis of three synthetic peptide substrates and the constants of activation of the substrate (Z-Phe-His-Leu) hydrolysis by chloride anions were determined.  相似文献   

12.
13.
Angiotensin III is formed from des-Asp1 -angiotensin I by angiotensin-converting enzyme. The Km (11 muM) of the reaction is one-third of that for the conversion of angiotensin I into angiotensin II. As suggested by the Km values, bradykinin, peptide BPP9a and angiotensins II and III are better inhibitors of the formation of angiotensin II than of the formation of angiotensin III.  相似文献   

14.
15.
Polymerase chain amplification experiments indicate that the germinal specific promoter of the angiotensin I-converting enzyme (ACE) is completely extinguished in somatic tissues. Despite this very strict specificity of expression, the germinal ACE promoter is active in transient transfection experiments in two somatic cell lines and one cell line of germinal origin. The analysis of the promoter shows the existence two regulatory elements within the first 350 bp: a proximal positive element and a distal negative element.  相似文献   

16.
Testicular angiotensin I-converting enzyme (E.C. 3.4.15.1)   总被引:4,自引:0,他引:4  
P A Velletri 《Life sciences》1985,36(17):1597-1608
In the two mammalian species (i.e., rabbit and rat) in which it has been studied to date, testicular angiotensin I-converting enzyme possesses distinct physicochemical and immunological properties, and a susceptibility to hormonal regulation that makes it a unique isozyme of the converting enzyme ordinarily distributed throughout the body. The testicular isozyme appears to be a lower molecular weight version of the pulmonary enzyme, with similar, although not identical, catalytic properties. The testicular isozyme is under androgenic control and is associated with germinal cells. Although its function has yet to be elaborated, the testicular isozyme provides an excellent model for the study of tissue-specific regulation of carboxypeptidases.  相似文献   

17.
Angiotensin converting enzyme (ACE) plays a critical role in the circulating or endocrine renin-angiotensin system (RAS) as well as the local regulation that exists in tissues such as the myocardium and skeletal muscle. Here we report the high-resolution crystal structures of testis ACE (tACE) in complex with the first successfully designed ACE inhibitor captopril and enalaprilat, the Phe-Ala-Pro analogue. We have compared these structures with the recently reported structure of a tACE-lisinopril complex [Natesh et al. (2003) Nature 421, 551-554]. The analyses reveal that all three inhibitors make direct interactions with the catalytic Zn(2+) ion at the active site of the enzyme: the thiol group of captopril and the carboxylate group of enalaprilat and lisinopril. Subtle differences are also observed at other regions of the binding pocket. These are compared with N-domain models and discussed with reference to published biochemical data. The chloride coordination geometries of the three structures are discussed and compared with other ACE analogues. It is anticipated that the molecular details provided by these structures will be used to improve the binding and/or the design of new, more potent domain-specific inhibitors of ACE that could serve as new generation antihypertensive drugs.  相似文献   

18.
The purpose of this study was to measure angiotensin I-converting activity in heart, kidney, lung and cheek pouch tissue homogenates of spontaneously hypertensive and normotensive hamsters. We also determined inhibitor sensitivity and the effects of chloride anion concentration on kidney angiotensin I-converting activity in these animals. We found no significant differences in angiotensin I-converting activity between hypertensive and normotensive hamsters in all tissues tested. Inhibitor sensitivity of kidney angiotensin I-converting activity with captopril and lisonopril was similar in both groups. Finally, kidney angiotensin I-converting activity increased significantly in both groups as chloride anion concentration in the assay buffer increased. Substituting chloride anion for citrate abrogated the increase in angiotensin I-converting enzyme activity.  相似文献   

19.
The latent production of angiotensin I-converting enzyme (ACE) Inhibitors from tartary buckwheat (BW) was investigated, and the peptides responsible for ACE inhibition characterized. Intact buckwheat was found to exhibit ACE inhibitory activity having an IC50 value of 3.0 mg/ml. The activity of the protein fraction (IC50: 0.36 mg protein/ml) was not enhanced by pepsin treatment. Pepsin, followed by chymotrypsin and trypsin hydrolysis, resulted in a significant increase in the ACE inhibitory activity (IC50: 0.14 mg protein/ml). The rutin contained in the buckwheat did not exhibit any ACE inhibition. A single oral administration of BW digest lowered the systolic blood pressure of a spontaneously hypertensive rat. Thus, BW proteins offer a potential resource for producing ACE inhibitory peptides during the digestion process. From the di-/tri-peptide fraction (DTPF) of the BW digest, inhibitory peptides were identified. The magnitude (%) of the total ACE inhibitory contribution of each identified peptide, relative to the overall inhibition of the DTPF, was about 41%.  相似文献   

20.
Angiotensin I-converting enzyme (ACE) assays are commonly used for measuring enzymatic activity in clinical and biological samples. The fluorimetric procedure described is sensitive, rapid and involves unsophisticated procedures and inexpensive reagents. It uses the substrate hippuryl-L-histidyl-L-leucine, and the fluorescent adduct of the enzyme-catalyzed product L-histidyl-L-leucine is quantified fluorimetrically. This assay has been adapted for a 96-well plate format that produces comparable data to previously described assays and has the advantage of greater efficiency with respect to both time and reagents. The protocol can be used for routine purposes or for more detailed kinetic analyses. The apparent Km and kcat values for purified testis ACE determined from a double reciprocal plot were 3.0 mM and 195.7 s(-1), respectively. The protocol can be completed within 4 h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号