首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Lysenin is a self-assembling, pore-forming toxin which specifically recognizes sphingomyelin. Mutation of tryptophan 20 abolishes lysenin oligomerization and cytolytic activity. We studied the interaction of lysenin WT and W20A with sphingomyelin in membranes of various lipid compositions which, according to atomic force microscopy studies, generated either homo- or heterogeneous sphingomyelin distribution. Liposomes composed of SM/DOPC, SM/DOPC/cholesterol and SM/DPPC/cholesterol could bind the highest amounts of GST-lysenin WT, as shown by surface plasmon resonance analysis. These lipid compositions enhanced the release of carboxyfluorescein from liposomes induced by lysenin WT, pointing to the importance of heterogeneous sphingomyelin distribution for lysenin WT binding and oligomerization. Lysenin W20A bound more weakly to sphingomyelin-containing liposomes than did lysenin WT. The same amounts of lysenin W20A bound to sphingomyelin mixed with either DOPC or DPPC, indicating that the binding was not affected by sphingomyelin distribution in the membranes. The mutant lysenin had a limited ability to penetrate hydrophobic region of the membrane as indicated by measurements of surface pressure changes. When applied to detect sphingomyelin on the cell surface, lysenin W20A formed large conglomerates on the membrane, different from small and regular clusters of lysenin WT. Only lysenin WT recognized sphingomyelin pool affected by formation of raft-based signaling platforms. During fractionation of Triton X-100 cell lysates, SDS-resistant oligomers of lysenin WT associated with membrane fragments insoluble in Triton X-100 while monomers of lysenin W20A partitioned to Triton X-100-soluble membrane fractions. Altogether, the data suggest that oligomerization of lysenin WT is a prerequisite for its docking in raft-related domains.  相似文献   

3.
Sphingomyelin plays complex structural and signaling functions in the plasma membrane. Of special interest is that hydrolysis of sphingomyelin to ceramide can modulate dynamics of membrane rafts, which serve as signaling platforms for various receptors. This review is focused on a recently discovered sphingomyelin-binding protein, lysenin, which can be used as a unique probe to trace distribution and turnover of sphingomyelin in cellular membranes. We analyze the primary and secondary structures of lysenin with respect to its interaction with the plasma membrane. The specificity of lysenin binding to sphingomyelin, revealed by both biochemical and cytochemical approaches, is discussed.  相似文献   

4.
Lysenin is 297 amino acid long toxin derived from the earthworm Eisenia foetida which specifically recognizes sphingomyelin and induces cell lysis. We synthesized lysenin gene supplemented with a polyhistidine tag, subcloned it into the pT7RS plasmid and the recombinant protein was produced in Escherichia coli. In order to obtain lysenin devoid of its lytic activity, the protein was mutated by substitution of tryptophan 20 by alanine. The recombinant mutant lysenin-His did not evoke cell lysis, although it retained the ability to specifically interact with sphingomyelin, as demonstrated by immunofluorescence microscopy and by dot blot lipid overlay and liposome binding assays. We found that the lytic activity of wild-type lysenin-His was correlated with the protein oligomerization during interaction with sphingomyelin-containing membranes and the amount of oligomers was increased with an elevation of sphingomyelin/lysenin ratio. Blue native gel electrophoresis indicated that trimers can be functional units of the protein, however, lysenin hexamers and nanomers were stabilized by chemical cross-linking of the protein and by sodium dodecyl sulfate. When incorporated into planar lipid bilayers, wild type lysenin-His formed cation-selective channels in a sphingomyelin-dependent manner. We characterized the channel activity by establishing its various open/closed states. In contrast, the mutant lysenin-His did not form channels and its correct oligomerization was strongly impaired. Based on these results we suggest that lysenin oligomerizes upon interaction with sphingomyelin in the plasma membrane, forming cation-selective channels. Their activity disturbs the ion balance of the cell, leading eventually to cell lysis.  相似文献   

5.
Skeletal muscle progenitor cells and the role of Pax genes   总被引:4,自引:0,他引:4  
Satellite cells, which lie under the basal lamina of muscle fibres, are marked by the expression of Pax7, and in many muscles of Pax3 also. A pure population of satellite cells, isolated from a Pax3(GFP/+) mouse line by flow cytometry, contribute very efficiently to skeletal muscle regeneration and also self-renew, thus demonstrating their role as muscle stem cells. Pax3/7 regulates the entry of these cells into the myogenic programme via the activation of the myogenic determination gene, MyoD. Pax7 is also essential for the survival of satellite cells. This dual role underlines the importance of ensuring that a tissue stem cell that has lost its myogenic instruction should not be left to run amok, with the potential risk of tissue deregulation and cancer. A somite-derived population of Pax3/Pax7 positive cells is responsible for muscle growth during development and gives rise to the satellite cells of postnatal muscles. In the absence of both Pax3 and Pax7, these cells die or assume other cell fates. Pax3/7 lies genetically upstream of both MyoD and Myf5, which determine the skeletal muscle fate of these cells. To cite this article: M. Buckingham, C. R. Biologies 330 (2007).  相似文献   

6.
Ishitsuka R  Kobayashi T 《Biochemistry》2007,46(6):1495-1502
Lysenin is a pore-forming toxin that specifically binds sphingomyelin (SM). The binding of the toxin to the membrane is accompanied by the oligomerization of the protein, leading to pore formation. The interaction of lysenin with SM is affected by the presence of other lipids found in the plasma membrane. Although a previous study showed that SM/cholesterol liposomes were 10,000 times more effective than SM liposomes in inhibiting lysenin-induced hemolysis (Yamaji, A., Sekizawa, Y., Emoto, K., Sakuraba, H., Inoue, K., Kobayashi, H., and Umeda, M. (1998) J. Biol. Chem. 273, 5300-5306), the role of cholesterol is not precisely clarified. In the present study, we examined the effects of the presence of cholesterol in the SM membrane on the inhibition of hemolysis, the binding of lysenin to SM, and the oligomerization of lysenin. The addition of cholesterol to SM liposomes dramatically inhibited lysenin-induced hemolysis as described previously. However, the presence of cholesterol did not affect the binding of lysenin to SM liposomes. The oligomerization of lysenin was facilitated by the presence of cholesterol in SM liposomes. The oligomerization of lysenin was also dependent on the SM/lysenin ratio, that is, the amount of lysenin oligomer was increased with the decrease in the SM/lysenin ratio. When the SM/lysenin molar ratio was high, lysenin associated with the membrane as a monomer, which was able to transfer to the erythrocyte membrane. Our results indicate that both cholesterol and the SM/lysenin ratio control the amount of lysenin monomer via altering the state of protein oligomerization, thus affecting hemolysis.  相似文献   

7.
The growth and repair of skeletal muscle after birth depends on satellite cells that are characterized by the expression of Pax7. We show that Pax3, the paralogue of Pax7, is also present in both quiescent and activated satellite cells in many skeletal muscles. Dominant-negative forms of both Pax3 and -7 repress MyoD, but do not interfere with the expression of the other myogenic determination factor, Myf5, which, together with Pax3/7, regulates the myogenic differentiation of these cells. In Pax7 mutants, satellite cells are progressively lost in both Pax3-expressing and -nonexpressing muscles. We show that this is caused by satellite cell death, with effects on the cell cycle. Manipulation of the dominant-negative forms of these factors in satellite cell cultures demonstrates that Pax3 cannot replace the antiapoptotic function of Pax7. These findings underline the importance of cell survival in controlling the stem cell populations of adult tissues and demonstrate a role for upstream factors in this context.  相似文献   

8.
9.
10.
Satellite cells are well known as a postnatal skeletal muscle stem cell reservoir that under injury conditions participate in repair. However, mechanisms controlling satellite cell quiescence and activation are the topic of ongoing inquiry by many laboratories. In this study, we investigated whether loss of the cell cycle regulatory factor, pRb, is associated with the re-entry of quiescent satellite cells into replication and subsequent stem cell expansion. By ablation of Rb1 using a Pax7CreER,Rb1 conditional mouse line, satellite cell number was increased 5-fold over 6 months. Furthermore, myoblasts originating from satellite cells lacking Rb1 were also increased 3-fold over 6 months, while terminal differentiation was greatly diminished. Similarly, Pax7CreER,Rb1 mice exhibited muscle fiber hypotrophy in vivo under steady state conditions as well as a delay of muscle regeneration following cardiotoxin-mediated injury. These results suggest that cell cycle re-entry of quiescent satellite cells is accelerated by lack of Rb1, resulting in the expansion of both satellite cells and their progeny in adolescent muscle. Conversely, that sustained Rb1 loss in the satellite cell lineage causes a deficit of muscle fiber formation. However, we also show that pharmacological inhibition of protein phosphatase 1 activity, which will result in pRb inactivation accelerates satellite cell activation and/or expansion in a transient manner. Together, our results raise the possibility that reversible pRb inactivation in satellite cells and inhibition of protein phosphorylation may provide a new therapeutic tool for muscle atrophy by short term expansion of the muscle stem cells and myoblast pool.  相似文献   

11.
Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis   总被引:9,自引:0,他引:9       下载免费PDF全文
We assessed viable Pax7(-/-) mice in 129Sv/J background and observed reduced growth and marked muscle wasting together with a complete absence of functional satellite cells. Acute injury resulted in an extreme deficit in muscle regeneration. However, a small number of regenerated myofibers were detected, suggesting the presence of residual myogenic cells in Pax7-deficient muscle. Rare Pax3(+)/MyoD+ myoblasts were recovered from Pax7(-/-) muscle homogenates and cultures of myofiber bundles but not from single myofibers free of interstitial tissues. Finally, we identified Pax3+ cells in the muscle interstitial environment and demonstrated that they coexpressed MyoD during regeneration. Sublaminar satellite cells in hind limb muscle did not express detectable levels of Pax3 protein or messenger RNA. Therefore, we conclude that interstitial Pax3+ cells represent a novel myogenic population that is distinct from the sublaminar satellite cell lineage and that Pax7 is essential for the formation of functional myogenic progenitors from sublaminar satellite cells.  相似文献   

12.
We recently reported that trace insertion of exogenous fluorescent (green BODIPY) analogs of sphingomyelin (SM) into living red blood cells (RBCs), partially spread onto coverslips, labels submicrometric domains, visible by confocal microscopy. We here extend this feature to endogenous SM, upon binding of a SM-specific nontoxic (NT) fragment of the earthworm toxin, lysenin, fused to the red monomeric fluorescent protein, mCherry [construct named His-mCherry-NT-lysenin (lysenin*)]. Specificity of lysenin* binding was verified with composition-defined liposomes and by loss of 125I-lysenin* binding to erythrocytes upon SM depletion by SMase. The 125I-lysenin* binding isotherm indicated saturation at 3.5 × 106 molecules/RBC, i.e., ∼3% of SM coverage. Nonsaturating lysenin* concentration also labeled sub­micrometric domains on the plasma membrane of partially spread erythrocytes, colocalizing with inserted green BODIPY-SM, and abrogated by SMase. Lysenin*-labeled domains were stable in time and space and were regulated by temperature and cholesterol. The abundance, size, positioning, and segregation of lysenin*-labeled domains from other lipids (BODIPY-phosphatidylcholine or -glycosphingolipids) depended on membrane tension. Similar lysenin*-labeled domains were evidenced in RBCs gently suspended in 3D-gel. Taken together, these data demonstrate submicrometric compartmentation of endogenous SM at the membrane of a living cell in vitro, and suggest it may be a genuine feature of erythrocytes in vivo.  相似文献   

13.
Pax7 is required for the specification of myogenic satellite cells   总被引:55,自引:0,他引:55  
  相似文献   

14.
Lysenin is a novel protein derived from coelomic fluid of the earthworm Eisenia foetida, which specifically recognizes sphingomyelin and induces cytolysis. The mechanism underlying lysenin-induced cell lysis has not been clarified. In this report we studied the interaction of lysenin with red blood cells as well as artificial liposomes. Our results showed that lysenin bound membranes and assembled to SDS-resistant oligomers in a sphingomyelin-dependent manner, leading to the formation of pores with a hydrodynamic diameter of approximately 3 nm. Antibody scanning analysis suggested that the C-terminal region of lysenin was exposed, whereas the N-terminal was hidden in the isolated oligomer complex. Differential scanning calorimetry revealed that lysenin interacted with both hydrophilic head group and hydrophobic hydrocarbon tails of sphingomyelin. Oligomerization but not binding was affected by the amide-linked fatty acid composition of sphingomyelin, suggesting the role of membrane fluidity in the oligomerization step.  相似文献   

15.
Little is known about the organization of lipids in biomembranes. Lipid rafts are defined as sphingolipid- and cholesterol-rich clusters in the membrane. Details of the lipid distribution of lipid rafts are not well characterized mainly because of a lack of appropriate probes. Ganglioside GM1-specific protein, cholera toxin, has long been the only lipid probe of lipid rafts. Recently it was shown that earthworm toxin, lysenin, specifically recognizes sphingomyelin-rich membrane domains. Binding of lysenin to sphingomyelin is accompanied by the oligomerization of the toxin that leads to pore formation in the target membrane. In this study, we generated a truncated lysenin mutant that does not oligomerize and thus is non-toxic. Using this mutant lysenin, we showed that plasma membrane sphingomyelin-rich domains are spatially distinct from ganglioside GM1-rich membrane domains in Jurkat T cells. Like T cell receptor activation and cross-linking of GM1, cross-linking of sphingomyelin induced calcium influx and ERK phosphorylation in the cell. However, unlike CD3 or GM1, cross-linking of sphingomyelin did not induce significant protein tyrosine phosphorylation. Combination of lysenin and sphingomyelinase treatment suggested the involvement of G-protein-coupled receptor in sphingomyelin-mediated signal transduction. These results thus suggest that the sphingomyelin-rich domain provides a functional signal cascade platform that is distinct from those provided by T cell receptor or GM1. Our study therefore elucidates the spatial and functional heterogeneity of lipid rafts.  相似文献   

16.
17.
Little is known about the heterogenous organization of lipids in biological membranes. Sphingomyelin (SM) is a major plasma membrane lipid that forms lipid domains together with cholesterol and glycolipids. Using SM-specific toxin, lysenin, we showed that in cultured epithelial cells the accessibility of the toxin to SM is different between apical and basolateral membranes. Apical membranes are highly enriched with glycolipids. The inhibitory role of glycolipids in the binding of lysenin to SM was confirmed by comparing the glycolipid-deficient mutant melanoma cell line with its parent cell. Model membrane experiments indicated that glycolipid altered the local density of SM so that the affinity of the lipid for lysenin was decreased. Our results indicate that lysenin recognizes the heterogenous organization of SM in biomembranes and that the organization of SM differs between different cell types and between different membrane domains within the same cell. Isothermal titration calorimetry suggests that lysenin binding to SM is presumably the result of a SM-lysenin complex formation of specific stoichiometry, thus supporting the idea of the existence of small condensed lipid complexes consisting of just a few lipid molecules in living cells.  相似文献   

18.
19.
In this report, we focused on Pax3 and Pax7 expression in vitro during myoblast differentiation and in vivo during skeletal muscle regeneration. We showed that Pax3 and Pax7 were present in EDL (extensor digitorum longus) and Soleus muscle derived cells. These cells express in vitro a similar level of Pax3 mRNA, however, differ in the levels of mRNA encoding Pax7. Analysis of Pax3 and Pax7 proteins showed that Soleus and EDL satellite cells differ in the level of Pax3/7 proteins and also in the number of Pax3/7 positive cells. Moreover, Pax3/7 expression was restricted to undifferentiated cells, and both proteins were absent at further stages of myoblast differentiation, indicating that Pax3 and Pax7 are down-regulated during myoblast differentiation. However, we noted that the population of undifferentiated Pax3/7 positive cells was constantly present in both in vitro cultured satellite cells of EDL and Soleus. In contrast, there was no significant difference in Pax3 and Pax7 during in vivo differentiation accompanying regeneration of EDL and Soleus muscle. We demonstrated that Pax3 and Pax7, both in vitro and in vivo, participated in the differentiation and regeneration events of muscle and detected differences in the Pax7 expression pattern during in vitro differentiation of myoblasts isolated from fast and slow muscles.  相似文献   

20.
Satellite cells, muscle-specific stem cells, are anatomically identified as the mononuclear cells residing external to the myofiber plasma membrane and beneath the basal lamina. Skeletal muscle has great regenerative potential, and the regeneration process depends absolutely on satellite cells. In uninjured muscle, satellite cells are maintained in a quiescent state, and some genes are expressed in a quiescent-specific manner. Here we show that Odz4/Ten-m4, a mouse homolog of the Drosophila pair-rule gene odd Oz (odz or Ten-m), is expressed in quiescent satellite cells on the protein level, but not in activated/proliferating myoblasts. Intriguingly, the timing of the reappearance of Odz4 and calcitonin receptor (another quiescence molecule) on Pax7-positive cells was different during the regeneration process. In addition, almost all neonatal satellite cells express Odz4, but only some of them express calcitonin receptor. These results indicate that Odz4 may be useful as a new marker of satellite cells and that quiescence molecules are differently expressed in regenerating and neonatal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号