共查询到20条相似文献,搜索用时 7 毫秒
1.
Crude extracts of wild-typeEscherichia coli contain two catalase species that separate on native polyacrylamide gels. The slow-migrating enzyme (HPII) has two pH optima of activity (at pH 6.8 and 10.5), is activated at 70°C, is sensitive to inhibitory by 3-amino-1,2,4-triazole and has Km values of 18.2 mM at pH 6.8 and of 10 mM at pH 10.5. The fast-migrating enzyme has a single pH optimum of 6.8 and is composed of two isozymes (HPI-A and HPI-B). Its activity is labile at 70°C, it is relatively resistant to inhibition by 3-amino-1,2,4-triazole and has a Km value of 3.7 mM. 相似文献
2.
Intracellular proteases from sporulating Bacillus cereus have been purified by ammonium sulfate fractionation, heat treatment and DEAE cellulose column chromatography. After the last purification step, two protease activities, with an activity ratio of about thirty to one are resolved. Both proteases are resistant to o-phenanthroline but sensitive to phenyl methyl sulfonyl fluoride. Their separation by polyacrylamide gel electrophoresis and DEAE cellulose column chromatography, their difference in heat sensitivity and a mutation affecting only the major intracellular protease (IP1) suggest that the two are products of distinct genes. An IP1 mutant previously shown to produce coat defective spores (4) also turnsover protein with a reduced rate during late sporulation stages. Correlated with the slower turnover rate in this mutant is the more rapid disappearance of IP1. A partial revertant of this mutant has a protein turnover rate intermediate between that of the original mutant and wild type. These correlations imply that IP1 has an important role in protein turnover during sporulation. 相似文献
3.
Wutipraditkul N Boonkomrat S Buaboocha T 《Bioscience, biotechnology, and biochemistry》2011,75(10):1900-1906
Catalase is the major H(2)O(2)-scavenging enzyme in all aerobic organisms. From the cDNA sequences of three rice (Oryza sativa L.) genes that encode for predicted catalases (OsCatA, OsCatB, and OsCatC), complete ORFs were subcloned into pET21a and expressed as (His)(6)-tagged proteins in Escherichia coli. The recombinant (His)(6)-polypeptides were enriched to apparent homogeneity and characterized. With H(2)O(2) as substrate, the highest catalase k(cat) value (20±1.71×10(-3) min(-1)) was found in recombinant OsCatB. The optimum temperatures for catalase activity were 30 °C for OsCatA and OsCatC and 25 °C for OsCatB, while the pH optima were 8.0, 7.5, and 7.0 for OsCatA, OsCatB, and OsCatC respectively. All the catalases were inhibited by sodium azide, β-mercaptoethanol, and potassium cyanide, but only weakly by 3-amino-1,2,4-triazole. The various catalases exhibited different catalase activities in the presence of different salts at different concentrations, OsCatC showing higher salt inhibitory effects than the two other OsCats. 相似文献
4.
5.
6.
7.
《The Journal of cell biology》1996,132(6):1053-1060
Acanthamoeba myosin-IA and myosin-IB are single-headed molecular motors that may play an important role in membrane-based motility. To better define the types of motility that myosin-IA and myosin IB can support, we determined the rate constants for key steps on the myosin-I ATPase pathway using fluorescence stopped-flow, cold-chase, and rapid-quench techniques. We determined the rate constants for ATP binding, ATP hydrolysis, actomyosin-I dissociation, phosphate release, and ADP release. We also determined equilibrium constants for myosin-I binding to actin filaments, ADP binding to actomyosin-I, and ATP hydrolysis. These rate constants define an ATPase mechanism in which (a) ATP rapidly dissociates actomyosin-I, (b) the predominant steady-state intermediates are in a rapid equilibrium between actin-bound and free states, (c) phosphate release is rate limiting and regulated by heavy- chain phosphorylation, and (d) ADP release is fast. Thus, during steady- state ATP hydrolysis, myosin-I is weakly bound to the actin filament like skeletal muscle myosin-II and unlike the microtubule-based motor kinesin. Therefore, for myosin-I to support processive motility or cortical contraction, multiple myosin-I molecules must be specifically localized to a small region on a membrane or in the actin-rich cell cortex. This conclusion has important implications for the regulation of myosin-I via localization through the unique myosin-I tails. This is the first complete transient kinetic characterization of a member of the myosin superfamily, other than myosin-II, providing the opportunity to obtain insights about the evolution of all myosin isoforms. 相似文献
8.
Diversity of properties among catalases 总被引:10,自引:0,他引:10
Catalases from 16 different organisms including representatives from all three phylogenetic clades were purified and characterized to provide a comparative picture of their respective properties. Collectively the enzymes presented a diverse range of activities and properties. Specific activities ranged from 20,700 to 273,800 units per milligram of protein and maximal turnover rates ranged from 54,000 to 833,000 per second. The effective concentrations of common catalase inhibitors, cyanide, azide, hydroxylamine, aminotriazole, and mercaptoethanol, varied over a 100- to 1000-fold concentration range, and a broad range of sensitivities to heat inactivation was observed. Michaelis-Menten kinetics were approximately followed only at the low substrate concentrations. At high H(2)O(2) concentrations, inactivation of small-subunit enzymes resulted in lower velocities than what were predicted, whereas large-subunit enzymes had velocities higher than predicted. Kinetic constants such as K(m) and V(max) for catalases must be labeled as "apparent." 相似文献
9.
《Biotechnology and bioengineering》2008,100(1):vii-vii
10.
Molecular evolution of maize catalases and their relationship to other eukaryotic and prokaryotic catalases 总被引:5,自引:0,他引:5
We have compared the nucleotide and protein sequences of the three maize catalase genes with other plant catalases to reconstruct
the evolutionary relationship among these catalases. These sequences were also compared with other eukaryotic and prokaryotic
catalases. Phylogenies based on distances and parsimony analysis show that all plant catalases derive from a common ancestral
catalase gene and can be divided into three distinct groups. The first, and major, group includes maizeCatl, barleyCat1, riceCatB and most of the dicot catalases. The second group is an apparent dicot-specific catalase group encompassing the tobaccoCat2 and tomatoCat. The third is a monocot-specific catalase class including the maize Cat3, barley Cat2, and riceCatA. The maize Cat2 gene is loosely related to the first group. The distinctive features of monocot-specific catalases are their
extreme high codon bias at the third position and low degree of sequence similarity to other plant catalases. Similarities
in the intron positions for several plant catalase genes support the conclusion of derivation from a common ancestral gene.
The similar intron position between bean catalases and human catalase implies that the animal and plant catalases might have
derived from a common progenitor gene sequence.
Correspondence to: J.G. Scandalios 相似文献
11.
12.
A recent development of kinetic light-scattering and -absorption photometry is described. Essential points are:
- In the scattering experiment, amplitude resolution of 2 · 10?5 (single flash) by application of a differential detector, stability of the same magnitude due to optical compensation, high intensity at the detector due to special optics for the scattered light and semiconductor sources.
- In the absorption measurement, elimination of scattering contributions by the dual wavelength-method and by high aperture optics.
- Simultaneous measurement of absorption and scattering. The application of the method is described in using signals from isolated bovine rod outer segments. A reliable procedure is described by the use of which the originally measured light-scattering effects can be split up into single signals.
13.
Steady-state and presteady-state kinetic parameters for plasmins derived from the two rabbit plasminogen isozymes have been determined. Steady-state kinetic experiments with N-α-tosyl-l-arginine methyl ester indicate that each isozyme has a similar V. Plasmin isozyme 2 has a higher Km value for this substrate as well as a higher Ki, for the competitive inhibitor, benzamidine-HCl. Presteady-state kinetic experiments, using the p-nitrophenyl esters of p-(methylethylsulfoniummethyl)benzoate, p-(pyridiniummethyl) benzoate, p-(thiouroniummethyl)benzoate and p-(guanidinium)benzoate, indicate that each plasmin has similar rate constants of acylation (k2). However, values of the dissociation constant (KS) indicate that plasmin isozyme 1 has a greater binding affinity for these substrates than does isozyme 2. The magnitude of this difference varies with the substrate and is the greatest for those containing analogs of the guanidino moiety of l-arginine. 相似文献
14.
M.N. Jones A.E. Wilkinson A. Finn 《International journal of biological macromolecules》1985,7(1):33-38
The dissociation of a series of bovine catalases, in which a proportion of the carboxylic acid groups of glutamic and aspartic acids have been chemically modified by coupling with glycine methyl ester (GME) or ethylenediamine (ED), has been investigated by sedimentation rate and equilibrium methods. Sedimentation equilibrium measurements on GME derivatives have been analysed in terms of a monomer-dimer-trimer- tetramer model. The results show that the association of monomeric (M1) catalase subunits is consistent with the equilibria 4M1?2M2?M4. The Gibbs energies of association at 284K of the monomeric subunit to dimes (M2) and tetramers (M4) were found to be in the range ? 28 to ? 30 kJ mol?1 and ? 91 to ? 97 kJ mol ?1, respectively. The Gibbs energy for association of dimer to tetramer is in the range ? 32 to ? 34 kJ mol?1. Chemical modification of bovine catalase markedly increases its susceptibility to dissociation by sodium n-dodecyl sulphate (SDS) and sedimentation rate measurements suggest that the initial event on addition of SDS is the dissociation of the whole molecule to half-molecules 相似文献
15.
16.
Protein tyrosine phosphatases (PTPs) play a central role in cellular signaling processes, resulting in an increased interest in modulating the activities of PTPs. We therefore decided to undertake a detailed enzyme kinetic evaluation of various transmembrane and cytosolic PTPs (PTPalpha, PTPbeta, PTPepsilon, CD45, LAR, PTP1B and SHP-1), using pNPP as substrate. Most noticeable is the increase in the turnover number for PTPbeta with increasing pH and the weak pH-dependence of the turnover number of CD45. The kinetic data for PTPalpha-D1 and PTPalpha-D1D2 suggest that D2 affects the catalysis of pNPP. PTPepsilon and the closely homologous PTPalpha behave differently. The K(m) data were lower for PTPepsilon than those for PTPalpha, while the inverse was observed for the catalytic efficiencies. 相似文献
17.
18.
Comparative analysis of the roles of catalases KatB and KatG in the physiological fitness and pathogenesis of fish pathogen Edwardsiella tarda 总被引:1,自引:0,他引:1
Aims: The aim of this study was to reveal functional redundancy and variation of the two catalases KatB and KatG in Edwardsiella tarda. Methods and Results: Genome sequencing of fish pathogen Edw. tarda EIB202 reveals that it contains two genes putatively encoding catalases, katB (ETAE_1368) and katG (ETAE_0889). Under free‐living conditions, single disruption in katB or katG resulted in no growth impairment, whereas double mutation of the two genes led to moderate decrease in growth, indicating that these two catalases were together essential for the physiological fitness by dissipating the endogenous H2O2. katG mutant exhibited much more elevated sensitivity to exogenous H2O2 than katB mutant did, indicating that KatG was quasi‐essential in detoxifying external reactive oxygen species (ROS) in Edw. tarda EIB202. Further comparative analysis indicated that katB or katG disruption showed different effects on the virulence‐related processes of Edw. tarda such as haemolysin production, bile and serum resistance, as well as the internalization within fish epithelial cells. Moreover, both of the katB and katG mutants exhibited incapacity to replicate in murine macrophage J774 cell model, although the deficiency was seen much severe for ΔkatB/katG mutant. With regard to in vivo virulence, katB and katG mutants displayed delayed lethality and increased LD50 values for zebrafish. Conclusions: KatB and KatG in Edw. tarda serve for the physiological fitness, and pathogenesis related the bacterial survival in macrophage and in vivo of fish. Significance and Impact of the Study: Counteracting ROS for systemic infection, Edw. tarda catalase KatG and KatB merits as potential targets for attenuated live vaccine construction. 相似文献
19.
We optimized the conditions for isolation of extracellular catalases from Penicillium piceum F-648 and P. piceum A3 by means of volume chromatography with cadmium hydroxide gel. Our study showed that 55–57 mg wet gel are sufficient for the maximum sorption of catalase from 1 ml of culture fluid. This gel was formed in 1 ml 70 mM Cd(NO3)2 after addition of NaOH (Cd(NO3)2/NaOH molar ratio 1: 2.2). The eluting solution contained 50 mM NaH2PO4(pH 7.0), 5.0 mM dithiothreitol, and 0.3% sodium cholate and was potent in desorbing catalase from the gel. Subsequent ultrafiltration of the eluate on the membrane with a retention limit of 50 kDa allowed us to concentrate and purify the sample from low-molecular-weight protein impurities. NH4Cl (1.0 M) containing 0.3% sodium cholate was used to wash the sample from low-molecular-weight aromatic metabolites. Purified catalases included 33–34% antiparallel β-structures and 9%-spirals. Under optimal conditions in the medium of 10 mM phosphate buffered saline (pH 7.0) at 30°C, catalases from P. piceum F-648 were characterized by the following parameters: K M, 158.8 mM; catalytic constant, 2.83 × 106 s?1; enzyme inactivation rate constant in H2O2 decomposition, 3.5 × 10?2 s?1; and constant of the interaction between catalase complex I and second molecule of H2O2, 1.8 × 107M?1 s?1. 相似文献
20.
Plant catalases: peroxisomal redox guardians 总被引:1,自引:0,他引:1
While genomics and post-genomics studies have revealed that plant cell redox state is controlled by a complex genetic network, available data mean that catalase must continue to be counted among the most important of antioxidative enzymes. Plants species analyzed to date contain three catalase genes, and comparison of expression patterns and information from studies on mutants suggests that the encoded proteins have relatively specific roles in determining accumulation of H(2)O(2) produced through various metabolic pathways. This review provides an update on the different catalases and discusses their established or likely physiological functions. Particular attention is paid to regulation of catalase expression and activity, intracellular trafficking of the protein from cytosol to peroxisome, and the integration of catalase function into the peroxisomal antioxidative network. We discuss how plants deficient in catalase are not only key tools to identify catalase functions, but are also generating new insight into H(2)O(2) signalling in plants and the potential importance of peroxisomal and other intracellular processes in this signalling. 相似文献