首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 921 毫秒
1.
食品蛋白质中血管紧张素转化酶抑制肽的研究   总被引:7,自引:0,他引:7  
血管紧张素转化酶Ⅰ (angiotensinIconvertingenzyme ,简称ACE)在人体血压调节过程中起重要的生理作用。源于食品蛋白质中的血管紧张素转化酶抑制肽 (angiotensinIconvertingenzymeinhibitorypeptides ,简称ACEIP)有明显的降血压作用 ,这些肽是通过抑制ACE的活性起降血压作用。文章中综述了来源于各种食品蛋白质的ACEIP的最新研究进展以及两种主要制备方法和评价方法 ,并对食品蛋白质中ACEIP的应用前景进行了展望  相似文献   

2.
血管紧张素转换酶的结构功能及相关抑制剂   总被引:2,自引:0,他引:2  
血管紧张素转化酶(angiotensin converting enzyme, ACE, EC 3.4.15.1)是一种位于细胞膜上, 依赖锌离子的羧二肽酶, 催化水解十肽血管紧张素I羧基末端两个氨基酸, 生成具有血管收缩作用的八肽血管紧张素II。ACE在血压调节系统renin - angiotensin system (RAS系统)中具有重要作用, 从ACE的结构功能、基因多态性及其抑制剂等方面进行了详细综述。发现体细胞ACE两个活性中心催化血管紧张素I和缓激肽的机制不同, 因此以体细胞ACE单个活性中心为靶点的研究, 将会为研制开发副作用更少, 安全性更高的ACE抑制剂提供新的途径。  相似文献   

3.
肾素-血管紧张素系统的新调节分子:ACE2   总被引:2,自引:0,他引:2  
Li YT  Cheng GF 《生理科学进展》2006,37(2):179-181
血管紧张素转化酶(angiotensin—converting enzyme,ACE)为含锌的金属蛋白酶,是肾素-血管紧张素系统(renin—angiotensin system,RAS)重要的调节分子。血管紧张素转化酶2(angiotensin—con—verting enzyme2,ACE2)是迄今发现的唯一的ACE同系物(homologue),它主要分布于睾丸、肾脏和心脏。ACE2可水解血管紧张素Ⅰ(angiotensinⅠ,AngⅠ)和血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)羧基端的1个氨基酸残基,分别形成Ang1-9和有血管舒张作用的Ang1-7。ACE2的生理病理作用还不甚明了,传统的ACE抑制剂不能抑制ACE2的活性。ACE2在心血管、肾脏系统的作用可能与ACE相反.与ACE共同调节心脏、肾脏等脏器的正常功能。  相似文献   

4.
研究了新型乳酪蛋白源抗高血压活性肽GAP-A的分子量与一级结构,并检测了其对体外血管紧张素转化酶(ACE)的抑制活性及体内降血压效果。结果显示:抗高血压活性肽GAP-A分子量为M2,氨基酸序列为B1-B2-B3;GAP-A在体外对ACE有很强的抑制活性,抑制率为79.6%;GAP-A对自发性高血压大鼠(spontaneously hypertensive rats,SHR)有显著的降血压作用,而对血压正常的SD大鼠的血压没有影响。  相似文献   

5.
螺旋藻源血管紧张素转化酶抑制肽的纯化和鉴定   总被引:2,自引:0,他引:2  
血管紧张素转化酶(ACE)抑制剂通过影响肾素-血管紧张素系统,对减缓和抑制高血压具有重要的作用.该研究通过超滤、凝胶过滤色谱、反相高效液相色谱等方法,从钝顶螺旋藻的木瓜蛋白酶水解液中分离、纯化得到一种血管紧张素转化酶(ACE)抑制肽,并利用基质辅助激光解吸电离-飞行时间质谱(MALDI-TOF-MS)和氨基酸测序对纯化肽进行鉴定.此外,对其抑制类型和体外模拟消化环境稳定性也进行了研究.结果表明,分子质量范围为0~3000ku的酶解液ACE抑制活性最高,IC50值为(1.03±0.04)g/L.该部分酶解液通过纯化获得ACE抑制肽,IC50值为(0.0094±0.0002)g/L,相当于(27.36±0.14)μmol/L,序列经鉴定为Val-Glu-Pro.Lineweaver-Burk图和Dixon图表明该ACE抑制肽为非竞争性抑制剂,Ki值为(23.59±0.54)μmol/L.体外稳定性实验显示,该抑制肽在胃蛋白酶、胰凝乳蛋白酶、胰蛋白酶等胃肠蛋白酶的消化下能够保持良好的抑制活性,表明螺旋藻源ACE抑制肽可以用于降血压功能食品和药剂方面,具有很好的发展前景.  相似文献   

6.
庹康秀  廖共山  雷丹青 《蛇志》2012,(4):349-351
目的利用高效液相色谱法测定可口革囊星虫酶解物中具有抑制血管紧张素转化酶(ACE)活性的活性肽。方法用HPLC测定血管紧张素转换酶抑制肽活性,在该色谱条件下,可通过测定由ACE水解马尿酰组氨酰亮氨酸后产生的马尿酸峰面积或含量得到酶解液的活性。结果酶解物在质量浓度为0.48mg/ml时对ACE的抑制率为17.62%。结论可口革囊星虫蛋白经碱性蛋白酶水解后得到的酶解物活性较高。  相似文献   

7.
血管紧张素转换酶2作为肾素—血管紧张素系统的新成员,对心脏功能及心脏节律发挥着重要的调节作用。缺乏ACE2会造成心功能的下降,原因可能是心肌慢性缺氧、血管紧张素Ⅱ水平的提高、血管紧张素(1-7)对心脏保护作用的缺失以及其他肽类底物的增加。但同时ACE2的过度表达又会引起心脏传导紊乱和致死性的心律失常。因此,ACE2精确的生理作用有待进一步明确,但调节ACE2的活性可能为心血管疾病的治疗提出了新的思路。本文主要介绍了ACE2的分布与特性,及其对心功能及心脏节律的影响。  相似文献   

8.
血管紧张素转换酶2(ACE2)和Mas受体的发现使人们对肾素-血管紧张素(RAS)有了更全面的认识。ACE2可水解血管紧张素Ⅰ和血管紧张素Ⅱ直接或间接生成血管紧张素1-7(Ang 1-7),并与高血压的形成密切相关。Ang 1-7主要通过Mas受体引起血管舒张、抑制细胞增殖。ACE2-Ang1-7-Mas轴的发现为RAS的研究、高血压等心血管疾病的防治和新药开发提供了新的思路和方向。  相似文献   

9.
血管紧张肽转化酶2与肾素-血管紧张肽系统的研究进展   总被引:2,自引:0,他引:2  
肾素-血管紧张肽系统(RAS)在维持血压稳态、水盐平衡,及局部组织器官的正常功能等方面具有重要的作用。局部RAS的失衡将导致这些器官的疾病。血管紧张肽转化酶2(ACE2)是ACE的同源物,作为RAS的重要负调节因子,平衡血管紧张肽Ⅱ的产生,维持循环系统和局部组织中RAS的稳态。本文综述了在心血管、肺、肾、肝等器官的多种急、慢性疾病患者或动物模型中,RAS与ACE2所发挥的重要作用。  相似文献   

10.
血管紧张素转换酶(angiotensin converting enzyme,ACE)通过作用于维持血压正常的肾素-血管紧张系统(rennin-angiotensin system, RAS)和激肽释放酶 激肽系统(kallikrein-kinin system, KKS),使其失衡导致血压升高.而ACE活性抑制肽可以竞争性地与ACE的活性中心结合,从而抑制ACE的活性,使血压降低.天然来源的ACE抑制肽与传统的降压药物相比效果较好,无毒副作用,对正常血压没有影响,对于高血压的治疗和人类健康具有重要意义. 本文以酪蛋白中提取的ACE活性抑制肽KVLPVP为先导肽,根据ACE抑制肽的结构特点,设计合成一系列的类ACE肽(similar ACE-like peptides). 利用反相高效液相色谱法(RP-HPLC)直接测定其体外ACE抑制活性. 结果表明,当芳香性的氨基酸残基Phe、Tyr、His和疏水性Val残基位于C-端时会提高多肽的ACE抑制活性,尤其是His位于C 端时,ACE抑制活性更强. 通过对比先导肽与所合成的类ACE肽的ACE活性抑制率,可以发现,类ACE肽的ACE活性抑制率均高于先导肽.基于不同氨基酸残基位于C-端时对多肽的ACE抑制活性的研究,可以为降血压药物分子设计和筛选提供基础.  相似文献   

11.
Bioactive ACE inhibiting peptides are gaining interest in hypertension treatment. We have designed and screened six synthetic heptapeptides (PACEI48 to PACEI53) based on two hexapeptide leads (PACEI32 and PACEI34) to improve ACE inhibitory properties and assess their antihypertensive effects. ACE activity was assayed in vitro and ex vivo. Selected peptides were administered to spontaneously hypertensive rats (SHRs) and normotensive Wistar-Kyoto (WKY) rats. In vitro cytotoxicity was assessed with the MTT reduction test. The six heptapeptides at low micromolar concentration produced different degrees of in vitro inhibition of ACE activity using the synthetic substrate HHL or the natural substrate angiotensin I; and ex vivo inhibition of ACE-dependent, angiotensin I-induced vasoconstriction, but not angiotensin II-induced vasoconstriction. Oral administration of the hexapeptide PACEI32L, and the heptapeptides PACEI50L and PACEI52L, induced reductions in systolic blood pressure lasting up to 3 h in SHRs but not in WKY rats. Intravenous injection of PACEI32L and PACEI50L, but not PACEI52L, induced acute transient reductions in mean blood pressure of SHRs. d-Amino acid peptides showed five-fold less ACE inhibitory potency, no inhibitory effect on angiotensin I-induced vasoconstriction, and antihypertensive effect in SHRs after i.v. injection, but not after oral administration. The toxicity of peptides to reduce the viability of cultured cells was in the millimolar range. In conclusion, we have obtained novel rationally designed heptapeptides with improved ACE inhibitory properties when compared to lead hexapeptides. One selected hexapeptide and two heptapeptides show oral antihypertensive effects in SHRs and appear safe in cytotoxicity assays.  相似文献   

12.
Acetes chinensis is an underutilized shrimp species thriving in the Bo Hai Gulf of China. In a previous study, we had used the protease from Bacillus sp. SM98011 to digest this kind of shrimp and found that the oligopeptide-enriched hydrolysate possessed antioxidant activity and high angiotensin I-converting enzyme (ACE) inhibitory activity with an IC50 value of 0.97 mg/ml. In this paper, by ultrafiltration, gel permeation chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC), five peptides with high ACE inhibitory activity were purified from the shrimp hydrolysates and their sequences were identified by amino acid composition analysis and molecular weight (MW) analysis. Three of them, FCVLRP (a), IFVPAF (f) and KPPETV (j), were novel ACE inhibitory peptides. Their IC50 values were 12.3 microM, 3.4 microM and 24.1 microM, respectively, and their recoveries were 30 mg/100 g (solid basis of shrimp), 19 mg/100 g and 33 mg/100 g, respectively. Lineweaver-Burk plots for the three novel peptides showed that they are all competitive inhibitors. To test the ACE inhibitory activity of peptide a, f, j after they were digested by digestive enzymes in vivo, 12 derived peptides from FCVLRP and IFVPAF were synthesized based on their amino acid sequences and the cleavage sites of digestive enzymes. No digestive enzyme cleavage site was found in KPPETV. The IC50 values of the derived peptides were determined and the result showed that except for VPAF, FC and FCVL, the ACE inhibitory activity of the other nine derived peptides did not significantly change when compared with their original peptides. Surprisingly, five peptides had lower IC50 values than their original peptides, particularly for RP (IC50 value = 0.39 microM), which is about 30 times lower than its original peptide and almost the lowest IC50 value for ACE inhibitory peptides reported. Therefore, the novel peptides identified from A. chinensis hydrolysates probably still maintain a high ACE inhibitory activity even if they are digested in vivo. This is the first report about novel ACE inhibitory peptides from hydrolysates of marine shrimp A. chinensis. The novel peptides from hydrolysate of A. chinensis and some of their derived peptides with high ACE inhibitory activity probably have potential in the treatment of hypertension or in clinical nutrition.  相似文献   

13.
ACE inhibitory peptides are biologically active peptides that play a role in blood pressure regulation. When derived from food proteins during food processing or gastrointestinal digestion, these peptides could function as efficient agents in treating and preventing hypertension. However, in order to exert an antihypertensive effect by inhibition of the ACE enzyme, they have to reach the bloodstream intact. The aim of this research was to assess if the known ACE inhibitory peptide Ala-Leu-Pro-Met-His-Ile-Arg, derived from a tryptic digest of beta-lactoglobulin, could be absorbed through a Caco-2 Bbe cell monolayer in an Ussing chamber and reach the serosal side undegraded. Samples of the mucosal compartment showed high ACE inhibitory activity. No or only little ACE inhibitory activity was detected in the serosal compartment. However, when the serosal sample was concentrated three-fold, a substantial ACE inhibitory activity was registered. Concomitantly, HPLC and MS clearly showed the presence of Ala-Leu-Pro-Met-His-Ile-Arg in the mucosal compartment, whereas in the serosal compartment only MS was able to detect the heptapeptide. In conclusion. under the observed experimental conditions, the ACE inhibitory peptide Ala-Leu-Pro-Met-His-Ile-Arg was transported intact through the Caco-2 Bbe monolayer, but in concentrations too low to exert an ACE inhibitory activity.  相似文献   

14.
Proteolytic digestion of gelatin extracts from Alaska Pollack (Theragra chalcogramma) skin brings about a high angiotensin I converting enzyme (ACE) inhibitory activity. Gelatin extracts were hydrolyzed by serial protease-treatments in the order of Alcalase, pronase E, and collagenase using a three-step recycling membrane reactor. Fragments arising from the third step were composed of peptides ranging from 0.9 to 1.9 kDa and responsible for ACE inhibitory activity. Catalytically active two peptides were separated by the consecutive chromatographic methods including gel filtration, ion-exchange chromatography, and reverse-phase high performance liquid chromatography. The isolated peptides were composed of Gly-Pro-Leu and Gly-Pro-Met and showed IC50 values of 2.6 and 17.13 μM, respectively. These results suggested that Gly-Pro-Leu would be useful as a new antihypertensive agent.  相似文献   

15.
Peptides with angiotensin‐converting enzyme (ACE)‐inhibitory and antihypertensive effects are suggested as innovative food additives to prevent or treat hypertension. Currently, these substances are isolated from food proteins following nonselective hydrolysis as a mixture of ACE‐inhibitory peptides and other protein fragments. This study presents an innovative biotechnological method, based on recombinant DNA technology that was established to specifically produce the ACE‐inhibitory dipeptide isoleucine‐tryptophan. In a first step, a repetitive isoleucine‐tryptophan construct fused to the maltose‐binding protein was generated and expressed in Escherichia coli BL21 cells. The chromatographically purified recombinant fusion protein was enzymatically hydrolyzed using α‐chymotrypsin to liberate the dipeptide isoleucine‐tryptophan. The identity of the liberated isoleucine‐tryptophan was confirmed by MS and derivatization of its N‐terminus. The ACE‐inhibitory effect of the recombinant dipeptide on soluble and membrane bound ACE was found to be indistinguishable from the inhibitory potential of the chemically produced commercially available dipeptide. The established experimental strategy represents a promising approach to the biotechnical production of sufficient amounts of recombinant peptide‐based ACE‐inhibitory and antihypertensive substances that are applicable as functional food additives to delay or even prevent hypertension.  相似文献   

16.
N^+注入Lactobacillus bulgarius诱变选育高产ACE抑制剂的研究   总被引:1,自引:0,他引:1  
采用N^+注入技术对实验室保存的4株保加利亚杆菌L601、L602、L603、L606进行诱变处理,旨在选育出高产血管紧张素转换酶(angiotensin converting enzyme,ACE)抑制剂菌株。结果表明,在离子注入能量为20keV,剂量为3.0×0.5×10^15 ions/cm^2条件下,诱变效果较好。从正突变菌株中反复筛选,获得1株对ACE抑制活性较高的菌株M602,其ACE抑制率为82.49%。经过培养条件优化,其对ACE抑制率进一步提高为85.12%,经连续传代实验,其性状遗传稳定。  相似文献   

17.
This study describes the characterization of a new angiotensin I-converting enzyme (ACE) inhibitory peptide from a Korean traditional rice wine. After purification of the ACE inhibitor peptides with ultrafiltration, Sephadex G-25 column chromatography, and successively C?? and SCX solid-phase extraction, reverse-phase HPLC, and size exculsion chromatography, two types of the purified ACE inhibitors with IC?? values of 0.34 mg/ml and 1.23 mg/ml were finally obtained. The two purified ACE inhibitors (F-1 and F-2) were found to have two kinds of novel oligopeptides, showing very little similarity to other ACE inhibitory peptide sequences. The amino acid sequences of the two purified oligopeptides were found to be Gln- Phe-Tyr-Ala-Val (F-1) and Ala-Gly-Pro-Val-Leu-Leu (F-2), and their molecular masses were estimated to be 468.7 Da (F-1) and 357.7 Da (F-2), respectively. They all showed a clear antihypertensive effect on spontaneously hypertensive rats at a dosage of 500 mg/kg.  相似文献   

18.
Angiotensin I-converting enzyme (ACE) inhibitory activity was generated from elastin and collagen by hydrolyzing with thermolysin. The IC50 value of 531.6 µg/mL for ACE inhibition by the elastin hydrolysate was five times less than 2885.1 µg/mL by the collagen hydrolysate. We confirmed the antihypertensive activity of the elastin hydrolysate in vivo by feeding spontaneously hypertensive rats (male) on a diet containing 1% of the elastin hydrolysate for 9 weeks. About 4 week later, the systolic blood pressure of the rats in the elastin hydrolysate group had become significantly lower than that of the control group. We identified novel ACE inhibitory peptides, VGHyp, VVPG and VYPGG, in the elastin hydrolysate by using a protein sequencer and quadrupole linear ion trap (QIT)-LC/MS/MS. VYPGG had the highest IC50 value of 244 µM against ACE and may have potential use as a functional food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号