首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Larval epidermal cells from a day-1 penultimate instar Galleria larva on implantation into day-5 last instar larva metamorphose and deposit a pupal cuticle at the same time as the host pupates. DNA synthesis in the implanted larval cell was monitored with 3-H-thymidine. Various regimens of 3-H-thymidine application were used and under no conditions did the larval cells incorporate label during the period from implantation to deposition of pupal cuticle. This suggests that a wax moth larval ectoderm cell can reprogram its genome to secrete a pupal cuticle without a precedent cell division.  相似文献   

2.
3.
Bernardo Nadal-Ginard 《Cell》1978,15(3):855-864
L6E9 rat myoblasts derived from the L6 cell line can be induced to differentiate to a very high percentage by manipulating the culture conditions. Under standard differentiating conditions, L6E9 cells divide an average of 2.5 times before differentiating and >99% of them incorporate 3H-TdR before fusing. By inhibiting DNA replication by a variety of means, data have been obtained which demonstrate that this DNa synthesis is not required to switch from growth to differentiation. After every cell division, L6E9 cells have the option either to fuse or to proliferate without intervening DNA synthesis.Cell cloning and DNA labeling experiments show a direct correlation between the time of culture in differentiating medium and a progressive loss of proliferative capacity of mononucleated L6E9 cells, demonstrating that these cells become irreversibly committed to differentiation and withdraw from the cell cycle prior to and not as a consequence of cell fusion. The commitment step occurs during the G1 phase prior to fusion. This G1 phase has a latent period during which no irreversible step toward differentiation occurs and the cells remain ambivalent toward growth or differentiation. Under proper conditions, this period is followed by an irreversible commitment toward differentiation and a loss of proliferative capacity. The kinetics of this commitment step strongly suggest that L6E9 cells become irreversibly committed in a stochastic manner. Once the cells have become committed, with or without DNA synthesis, they will fuse to form myotubes and biochemically differentiate in a deterministic fashion.The data presented are consistent with a stochastic model of differentiation for L6E9 cells and demonstrate that the switch from a proliferating to a differentiating genetic program can occur in the absence of DNA synthesis.  相似文献   

4.
5.
Experimental tumor cell lines were used to show that in the presence of 5-fluorodeoxyuridine (FdUrd), the rate of DNA synthesis remains unaltered as long as a saturating concentration of thymidine is present. This unimpeded rate of DNA synthesis in combination with FdUrd-blocked de novo thymidylate synthesis makes it possible to accurately measure the total rate of increase of DNA using tritiated thymidine of known specific activity. The observed amount of incorporated tritiated thymidine is in excellent agreement with the calculated theoretical maximal incorporation in cultures with exponentially increasing DNA and cell number.  相似文献   

6.
Induction of teratocarcinoma cell (F9) differentiation was studied by using inhibitors of DNA synthesis and several agents known to be differentiation inducers. Inhibition of DNA synthesis induced changes in cell surface marker F9 and stimulated the production of plasminogen activator (PA) in a manner that is dependent upon de novo synthesis of RNA and protein. The results thus indicate close association between inhibition of DNA synthesis and induction of cell differentiation. This approach will be useful in investigating the mechanism of teratocarcinoma cell differentiation.  相似文献   

7.
The induction of mutations by the alkylating agent ethyl methanesulfonate (EMS) was determined with Chinese hamster ovary cells maintained in serum-free medium to arrest DNA synthesis and cell division. The arrested cultures were treated with EMS and maintained in serum-free medium for various time intervals post-treatment before serum containing medium was added to initiate DNA synthesis and cell division. The concentration-dependent increase in 6-thioguanine-resistant mutants in the arrested cultures was similar to that found with exponentially dividing cultures when serum was added to the arrested cultures immediately after the EMS treatment; the time course of phenotypic expression was also similar with both cultures. In addition, maintenance of the arrested cultures in serum-free medium for up to 18 days post-treatment resulted in no change in the mutant frequency. This suggests that the mutagenic damage is not removed in these arrested cultures. Furthermore, maintenance of the arrested state for increasing time intervals before serum addition results in decreases in the time necessary for maximum phenotypic expression. Cultures maintained in serum-free medium for 16 days after mutation treatment show complete expression of the mutations with no need for subculture. This last result suggests that the mutagenic damage induced by EMS in Chinese hamster ovary cells is not removed and that this damage results in both the induction and expression of mutation in the absence of DNA replication.  相似文献   

8.
9.
The acid extraction of the adenovirus type 5 core proteins V, VII, and pVII (the precursor to VII) from infected cells and the subsequent electrophoresis on a 15% acrylamide-2.5 M urea-0.9 N acetic acid (pH 2.7) gel, revealed that peptide VII has a similar electrophoretic mobility to that of histone H1. The core proteins, which are coded by late adenovirus mRNA, continued to be synthesized late in infection when viral DNA synthesis was inhibited either by cytosine arabinoside in wild-type infections or by shifting adenovirus H5 ts 125-infected cells to the nonpermissive temperature (40 degree C). Only the initiation, not the continuation, of viral DNA replication was essential for core protein synthesis. The synthesis of viral core proteins continued for over 8 h after the cassation of DNA synthesis. This was in contrast to the rapid shutdown of cellular histone synthesis in the absence of cellular DNA synthesis.  相似文献   

10.
11.
12.
The capacity of any portion of the murine mammary gland to produce a complete functional mammary outgrowth upon transplantation to an epithelium-divested fat pad is unaffected by the age or reproductive history of the donor. Likewise, through serial transplantations, no loss of potency is detected when compared to similar transplantations of the youngest mammary tissue tested. This demonstrates that stem cell activity is maintained intact throughout the lifetime of the animal despite aging and the repeated expansion and depletion of the mammary epithelium through multiple rounds of pregnancy, lactation and involution. These facts support the contention that mammary stem cells reside in protected tissue locales (niches), where their reproductive potency remains essentially unchanged through life. Disruption of the tissue, to produce dispersed cells results in the desecration of the protection afforded by the “niche” and leads to a reduced capacity of dispersed epithelial cells (in terms of the number transplanted) to recapitulate complete functional mammary structures. Our studies demonstrate that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary cells may be sequestered and reprogrammed to perform mammary epithelial cell functions including those ascribed to mammary stem/progenitor cells.  相似文献   

13.
Visna virus synthesized in absence of host-cell division and DNA synthesis   总被引:2,自引:0,他引:2  
Visna virus is similar to the avian and the murine oncornaviruses. Oncornavirus replication is dependent upon the provirus being integrated into the host cell's DNA but integration and subsequent oncornavirus synthesis is blocked when the host cells are prevented from synthesizing cellular DNA or dividing. The synthesis of visna virus is restricted in vivo and may be dependent upon the host cell's ability to synthesize cellular DNA or divide. Treatment of sheep choroid plexus (SCP) cells with ultraviolet light or with mitomycin C prior to infection irreversibly inhibited plexus (ScP) cells with ultraviolet light or with mitomycin C prior to infection irreversibly inhibited both cell division and cellular nucleic acid synthesis but did not inhibit visna virus synthesis. Similarly, the synthesis of visna virus in cultures of SCP cells which had been prevented from dividing by being deprived of serum and in cultures of SCP cells which were incapable of synthesizing host cell nucleic acids by being treated with miracil D or sodium hexachloroiridate was equivalent to the synthesis of visna virus in cultures of SCP cells which were allowed to both synthesize cellular nucleic acids and divide. The synthesis of visna virus in the presence of ethidium bromide further demonstrated that integration of the visna provirus into the host cell's DNA is not required for visna virus synthesis to occur.  相似文献   

14.
15.
16.
17.
After inhibiting DNA synthesis in Escherichia coli, repeated cycles of chromosome replication can occur in the absence of protein synthesis. This “stable” replication requires the products of all of the known dna genes.Stable replication results from inhibiting DNA synthesis by treatment with naladixic acid, cytosine arabinoside or hydroxyurea; or by placing dnaB, dnaE or dnaG mutants at non-permissive temperatures. It also follows a “shift-up” into rich medium in which RNA and protein are synthesized more rapidly than DNA. Paradoxically, stable replication is induced also by treatment with concentrations of streptolydigin which do not inhibit DNA replication but temporarily and partially inhibit RNA and protein synthesis. During all of these treatments, some protein synthesis must occur.Stable replication is not immediately expressed after a short period of thymine starvation or streptolydigin treatment, but requires a subsequent period of protein synthesis. Once established, however, the stable replication state is permanent and will persist in the absence of protein synthesis or during normal growth.After stable replication has been determined by a period of DNA inhibition, it is possible to inactivate replication by heating dnaA, B, C, E and G temperature-sensitive mutants. However, resynthesis of these gene products in the presence of thymine and at the permissive temperature restores stable replication activity. Since restoration of activity can occur under normal growth conditions which do not induce stable replication, it was concluded that the dnaA, B, C, E and G gene products do not directly determine the stabilized character of the replication fork.A model is presented which attempts to explain the ability of different treatments to induce stable replication.  相似文献   

18.
19.
20.
RNA synthesis during lens cell differentiation   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号