首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Glycogen synthase kinase-3beta (GSK-3beta) has been described as a proline-directed kinase which phosphorylates tau protein at several sites that are elevated in Alzheimer paired helical filaments. However, it has been claimed that GSK-3beta can also phosphorylate the non-proline-directed KXGS motifs in the presence of heparin, including Ser262 in the repeat domain of tau, which could induce the detachment of tau from microtubules. We have analyzed the activity of recombinant GSK-3beta and of GSK-3beta preparations purified from tissue, using two-dimensional phosphopeptide mapping, immunoblotting with phosphorylation-sensitive antibodies, and phosphopeptide sequencing. The most prominent phosphorylation sites on tau are Ser396 and Ser404 (PHF-1 epitope), Ser46 and Thr50 in the first insert, followed by a less efficient phosphorylation of other Alzheimer phosphoepitopes (antibodies AT-8, AT-270, etc). We also show that the non-proline-directed activity at KXGS motifs is not due to GSK-3beta itself, but to kinase contaminations in common GSK-3beta preparations from tissues which are activated upon addition of heparin.  相似文献   

2.
Tau protein, a neuronal microtubule-associated protein, is phosphorylated in situ and hyperphosphorylated when aggregated into the paired helical filaments of Alzheimer's disease. To study the phosphorylation of tau protein in vivo, we have stably transfected htau40, the largest human tau isoform, into Chinese hamster ovary cells. The distribution and phosphorylation of tau was monitored by gel shift, autoradiography, immunofluorescence, and immunoblotting, using the antibodies Tau-1, AT8, AT180, and PHF-1, which are sensitive to the phosphorylation of Ser202, Thr205, Thr231, Ser235, Ser396, and Ser404 and are used in the diagnosis of Alzheimer tau. In interphase cells, tau becomes phosphorylated to some extent, partly at these sites; most of the tau is associated with microtubules. In mitosis, the above Ser/Thr-Pro sites become almost completely phosphorylated, causing a pronounced shift in M(r) and an antibody reactivity similar to that of Alzheimer tau. Moreover, a substantial fraction of tau is found in the cytoplasm detached from microtubules. Autoradiographs of metabolically labeled Chinese hamster ovary cells in interphase and mitosis confirmed that tau protein is more highly phosphorylated during mitosis. The understanding of tau phosphorylation under physiological conditions might help elucidate possible mechanisms for the hyperphosphorylation in Alzheimer's disease.  相似文献   

3.
The microtubule-associated protein tau is a major component of the paired helical filaments (PHFs) observed in Alzheimer's disease brains. The pathological tau is distinguished from normal tau by its state of phosphorylation, higher apparent M(r) and reaction with certain antibodies. However, the protein kinase(s) have not been characterized so far. Here we describe a protein kinase from brain which specifically induces the Alzheimer-like state in tau protein. The 42 kDa protein belongs to the family of mitogen activated protein kinases (MAPKs) and is activated by tyrosine phosphorylation. It is capable of phosphorylating Ser-Pro and Thr-Pro motifs in tau protein (approximately 14-16 P1 per tau molecule). By contrast, other proline directed Ser/Thr kinases such as p34(cdc2) combined with cyclin A or B have only minor effects on tau phosphorylation. We propose that MAP kinase is abnormally active in Alzheimer brain tissue, or that the corresponding phosphatases are abnormally passive, due to a breakdown of the normal regulatory mechanisms.  相似文献   

4.
Site-specific phosphorylation of tau negatively regulates its ability to bind and stabilize microtubule structure. Although tau is a substrate of glycogen synthase kinase 3beta (GSK3beta), the exact sites on tau that are phosphorylated by this kinase in situ have not yet been established, and the effect of these phosphorylation events on tau-microtubule interactions have not been fully elucidated. GSK3beta phosphorylates both primed and unprimed sites on tau, but only primed phosphorylation events significantly decrease the ability of tau to bind microtubules. The focus of the present study is on determining the importance of the GSK3beta-mediated phosphorylation of a specific primed site, Thr231, in regulating tau's function. Pre-phosphorylation of Ser235 primes tau for phosphorylation by GSK3beta at Thr231. Phosphorylation by GSK3beta of wild-type tau or tau with Ser235 mutated to Ala decreases tau-microtubule interactions. However, when Thr231 alone or Thr231 and Ser235 in tau were mutated to Ala, phosphorylation by GSK3beta did not decrease the association of tau with the cytoskeleton. Further, T231A tau was still able to efficiently bind microtubules after phosphorylation by GSK3beta. Expression of each tau construct alone increased tubulin acetylation, a marker of microtubule stability. However, when cells were cotransfected with wild-type tau and GSK3beta, the level of tubulin acetylation was decreased to vector-transfected levels. In contrast, coexpression of GSK3beta with mutated tau (T231A/S235A) did not significantly decrease the levels of acetylated tubulin. These results strongly indicate that phosphorylation of Thr231 in tau by GSK3beta plays a critical role in regulating tau's ability to bind and stabilize microtubules.  相似文献   

5.
Protein kinases of the microtubule affinity-regulating kinase (MARK) family were originally discovered because of their ability to phosphorylate certain sites in tau protein (KXGS motifs in the repeat domain). This type of phosphorylation is enhanced in abnormal tau from Alzheimer brain tissue and causes the detachment of tau from microtubules. MARK-related kinases (PAR-1 and KIN1) occur in various organisms and are involved in establishing and maintaining cell polarity. Herein, we report the ability of MARK2 to affect the differentiation and outgrowth of cell processes from neuroblastoma and other cell models. MARK2 phosphorylates tau protein at the KXGS motifs; this results in the detachment of tau from microtubules and their destabilization. The formation of neurites in N2a cells is blocked if MARK2 is inactivated, either by transfecting a dominant negative mutant, or by MARK2 inhibitors such as hymenialdisine. Alternatively, neurites are blocked if the target KXGS motifs on tau are rendered nonphosphorylatable by point mutations. The results suggest that MARK2 contributes to the plasticity of microtubules needed for neuronal polarity and the growth of neurites.  相似文献   

6.
The microtubule associated protein tau is a major component of neurofibrillary tangles in Alzheimer disease brain, however the neuropathological processes behind the formation of neurofibrillary tangles are still unclear. Previously, 14-3-3 proteins were reported to bind with tau. 14-3-3 Proteins usually bind their targets through specific serine/threonine –phosphorylated motifs. Therefore, the interaction of tau with 14-3-3 mediated by phosphorylation was investigated. In this study, we show that the phosphorylation of tau by either protein kinase A (PKA) or protein kinase B (PKB) enhances the binding of tau with 14-3-3 in vitro . The affinity between tau and 14-3-3 is increased 12- to 14-fold by phosphorylation as determined by real time surface plasmon resonance studies. Mutational analyses revealed that Ser214 is critical for the phosphorylation-mediated interaction of tau with 14-3-3. Finally, in vitro aggregation assays demonstrated that phosphorylation by PKA/PKB inhibits the formation of aggregates/filaments of tau induced by 14-3-3. As the phosphorylation at Ser214 is up-regulated in fetal brain, tau's interaction with 14-3-3 may have a significant role in the organization of the microtubule cytoskeleton in development. Also as the phosphorylation at Ser214 is up-regulated in Alzheimer's disease brain, tau's interaction with 14-3-3 might be involved in the pathology of this disease.  相似文献   

7.
Tau protein can be transformed into an Alzheimer-like state by phosphorylation with a kinase activity from brain [Biernat et al. (1992) EMBO J. 11, 1593-1597]. Here we show that the phosphorylation at Ser-Pro motifs strongly decreases tau's affinity for microtubules. The major reduction occurs during the first of the three main stages of phosphorylation. The data explain the lower stability of microtubules resulting from the pathological tau phosphorylation.  相似文献   

8.
MARK/Par-1, a kinase family with diverse functions particularly in inducing cell polarity, can phosphorylate microtubule-associated proteins in their repeat domain and cause their detachment from microtubules, and thereby microtubule destabilization. Because of its role in abnormal phosphorylation of the Tau protein in Alzheimer disease, we searched for regulatory kinases. MARK family kinases can be activated by phosphorylation of a conserved threonine (Thr-208 in MARK2), and inactivated by phosphorylation of a serine (Ser-212), both in the activation loop of the catalytic domain. Activation is achieved by the kinases MARKK/TAO1 or LKB1, although the inactivating kinase was unknown. We show here that GSK3beta serves the role of the inhibitory kinase. Because GSK3beta can also phosphorylate Tau at sites outside the repeat domain, the activation of GSK3beta, and concomitant inactivation of MARK can shift the pattern of pathological phosphorylation of Tau protein in Alzheimer disease.  相似文献   

9.
Pinning down phosphorylated tau and tauopathies   总被引:4,自引:0,他引:4  
Neurofibrillary tangles (NFTs) are prominent neuronal lesions in a large subset of neurodegenerative diseases, including Alzheimer's disease (AD). NFTs are mainly composed of insoluble Tau that is hyperphosphorylated on many serine or threonine residues preceding proline (pSer/Thr-Pro). Tau hyperphosphorylation abolishes its biological function to bind microtubules and promotes microtubule assembly and precedes neurodegeneration. Not much is known about how tau is further regulated following phosphorylation. Notably, we have recently shown that phosphorylated Ser/Thr-Pro motifs exist in two distinct conformations. The conversion between two conformations in some proteins is catalyzed by the prolyl isomerase Pin1. Pin1 binds to tau phosphorylated specifically on the Thr231-Pro site and probably catalyzes cis/trans isomerization of pSer/Thr-Pro motif(s), thereby inducing conformational changes in tau. Such conformational changes can directly restore the ability of phosphorylated Tau to bind microtubules and promote microtubule assembly and/or facilitate tau dephosphorylation by its phosphatase PP2A, as PP2A activity is conformation-specific. Furthermore, Pin1 expression inversely correlates with the predicted neuronal vulnerability in normally aged brain and also with actual neurofibrillary degeneration in AD brain. Moreover, deletion of the gene encoding Pin1 in mice causes progressive age-dependent neuropathy characterized by motor and behavioral deficits, tau hyperphosphorylation, tau filament formation and neuronal degeneration. Distinct from all other mouse models where transgenic overexpression of specific proteins elicits tau-related pathologies, Pin1 is the first protein whose depletion causes age-dependent neurodegeneration and tau pathologies. Thus, Pin1 is pivotal in maintaining normal neuronal function and preventing age-dependent neurodegeneration. This could represent a promising interventive target to prevent neurodegenerative diseases.  相似文献   

10.
The axonal microtubule-associated phosphoprotein tau interacts with neural plasma membrane (PM) components during neuronal development (Brandt, R., Léger, J., and Lee, G. (1995) J. Cell Biol. 131, 1327-1340). To analyze the mechanism and potential regulation of tau's PM association, a method was developed to isolate PM-associated tau using microsphere separation of surface-biotinylated cells. We show that tau's PM association requires an intact membrane cortex and that PM-associated tau and cytosolic tau are differentially phosphorylated at sites detected by several Alzheimer's disease (AD) diagnostic antibodies (Ser(199)/Ser(202), Thr(231), and Ser(396)/Ser(404)). In polar neurons, the association of endogenous tau phosphoisoforms with the membrane cortex correlates with an enrichment in the axonal compartment. To test for a direct effect of AD-specific tau modifications in determining tau's interactions, a phosphomutant that simulates an AD-like hyperphosphorylation of tau was produced by site-directed mutagenesis of Ser/Thr residues to negatively charged amino acids (Glu). These mutations completely abolish tau's association with the membrane cortex; however, the construct retains its capability to bind to microtubules. The data suggest that a loss of tau's association with the membrane cortex as a result of phosphorylation at sites that are modified during disease contributes to somatodendritic tau accumulation, axonal microtubule disintegration, and neuronal death characteristic for AD.  相似文献   

11.
Tau is a microtubule-stabilizing protein that is functionally modulated by alterations in its phosphorylation state. Because phosphorylation regulates both normal and pathological tau functioning, it is of importance to identify the signaling pathways that regulate tau phosphorylation in vivo. The present study examined changes in tau phosphorylation and function in response to modulation of cellular thiol content. Treatment of cells with phenylarsine oxide, which reacts with vicinal thiols, selectively increased tau phosphorylation within its microtubule-binding domain, at the non-Ser/Thr-Pro sites Ser262/356, while decreasing tau phosphorylation at Ser/ Thr-Pro sites outside this region. This increase in tau phosphorylation correlated with a decrease in the amount of tau associated with the cytoskeleton and decreased microtubule stability. Phenylarsine oxide-induced tau phosphorylation was inhibited by oxidants and by the protein kinase inhibitor staurosporine. Although staurosporine completely eliminated the increase in tau phosphorylation at Ser262/356, as detected by immunostaining with 12E8, it had a comparatively minor effect on the changes in tau localization induced by phenylarsine oxide. The results suggest that regulation of cellular thiols is important for modulating tau phosphorylation and function in situ. Additionally, although phosphorylation of Ser262/356 decreases tau's interaction with the cytoskeleton, phosphorylation of these residues alone is not sufficient for the phenylarsine oxide-induced changes in tau localization.  相似文献   

12.
Hyperphosphorylation of the microtubule-associated protein tau is a characteristic feature of neurodegenerative tauopathies including Alzheimer disease. Over-activation of proline-directed kinases, such as cyclin-dependent kinase 5 (Cdk5) and glycogen synthase kinase 3 (GSK3), has been implicated in the aberrant phosphorylation of tau at proline-directed sites. In this study we tested the roles of Cdk5 and GSK3 in tau hyperphosphorylation in vivo using transgenic mice with p25-induced Cdk5 over-activation. We found that over-activation of Cdk5 in young transgenic animals does not induce tau hyperphosphorylation at sites recognized by the antibodies AT8, AT100, PHF-1, and TG3. In fact, we observed that Cdk5 over-activation leads to inhibition of GSK3. However, in old transgenic animals the inhibition of GSK3 is lost and results in increased GSK3 activity, which coincides with tau hyperphosphorylation at the AT8 and PHF-1 sites. Pharmacological inhibition of GSK3 in old transgenic mice by chronic treatment with lithium leads to a reduction of the age-dependent increase in tau hyperphosphorylation. Furthermore, we found that Cdk5, GSK3, and PP2A co-immunoprecipitate, suggesting a functional association of these molecules. Together, these results reveal the role of GSK3 as a key mediator of tau hyperphosphorylation, whereas Cdk5 acts as a modulator of tau hyperphosphorylation via the inhibitory regulation of GSK3. Furthermore, these findings suggest that disruption of regulation of GSK3 activity underlies tau hyperphosphorylation in neurodegenerative tauopathies. Hence, GSK3 may be a prime target for therapeutic intervention in tauopathies including Alzheimer disease.  相似文献   

13.
The Alzheimer-like state of tau protein includes phosphorylation by a proline-directed Ser/Thr kinase present in normal or pathological human brain. Extending earlier results on MAP kinase, we show here that the proline-directed kinase, GSK3, can induce an Alzheimer-like immune response involving several distinct and phosphorylatable epitopes at Ser-Pro motifs, as well as a gel mobility shift, similar to MAP kinase. Both kinases behave like microtubule-associated proteins in that they co-purify through cycles of assembly and disassembly, and both kinases are directly associated with paired helical filaments.  相似文献   

14.
Aggregation of abnormally phosphorylated tau in the form of tangs of paired helical filaments (PHFs) is one of the hallmarks of Alzheimer's disease (AD) and other tauopathies. It is of fundamental importance to study the mechanism of PHF formation and its modulation by phosphorylation. In this work, we have focused on the first microtubule-binding repeat of tau encompassing an abnormal phosphorylation site Ser262. The assembly propensities of this repeat and its corresponding phosphorylated form were investigated by turbidity and electron microscopy. Additionally, conformation of the two peptides is also analyzed through circular dichroism (CD) and NMR spectroscopy. Our results reveal that both of them are capable of self-assembly and phosphorylation at Ser262 could speed up the process of assembly. A possible mechanism of PHF formation is proposed and enhancing effect of phosphorylation on assembly provides an explanation to its toxicity in Alzheimer's disease.  相似文献   

15.
Glycogen synthase kinase 3beta (GSK3beta) phosphorylates substrates, including the microtubule-associated protein tau, at both primed and unprimed epitopes. GSK3beta phosphorylation of tau negatively regulates tau-microtubule interactions; however the differential effects of phosphorylation at primed and unprimed epitopes on tau is unknown. To examine the phosphorylation of tau at primed and unprimed epitopes and how this impacts tau function, the R96A mutant of GSK3beta was used, a mutation that prevents phosphorylation of substrates at primed sites. Both GSK3beta and GSK3beta-R96A phosphorylated tau efficiently in situ. However, expression of GSK3beta-R96A resulted in significantly less phosphorylation of tau at primed sites compared with GSK3beta. Conversely, GSK3beta-R96A phosphorylated unprimed tau sites to a significantly greater extent than GSK3beta. Prephosphorylating tau with cdk5/p25 impaired the ability of GSK3beta-R96A to phosphorylate tau, whereas GSK3beta-R96A phosphorylated recombinant tau to a significantly greater extent than GSK3beta. Moreover, the amount of tau associated with microtubules was reduced by overexpression of GSK3beta but only when tau was phosphorylated at primed sites, as phosphorylation of tau by GSK3beta-R96A did not negatively regulate the association of tau with microtubules. These results demonstrate that GSK3beta-mediated phosphorylation of tau at primed sites plays a more significant role in regulating the interaction of tau with microtubules than phosphorylation at unprimed epitopes.  相似文献   

16.
The differentiation of neurons and the outgrowth of neurites depends on microtubule-associated proteins such as tau protein. To study this process, we have used the model of Sf9 cells, which allows efficient transfection with microtubule-associated proteins (via baculovirus vectors) and observation of the resulting neurite-like extensions. We compared the phosphorylation of tau23 (the embryonic form of human tau) with mutants in which critical phosphorylation sites were deleted by mutating Ser or Thr residues into Ala. One can broadly distinguish two types of sites, the KXGS motifs in the repeats (which regulate the affinity of tau to microtubules) and the SP or TP motifs in the domains flanking the repeats (which contain epitopes for antibodies diagnostic of Alzheimer's disease). Here we report that both types of sites can be phosphorylated by endogenous kinases of Sf9 cells, and that the phosphorylation pattern of the transfected tau is very similar to that of neurons, showing that Sf9 cells can be regarded as an approximate model for the neuronal balance between kinases and phosphatases. We show that mutations in the repeat domain and in the flanking domains have opposite effects. Mutations of KXGS motifs in the repeats (Ser262, 324, and 356) strongly inhibit the outgrowth of cell extensions induced by tau, even though this type of phosphorylation accounts for only a minor fraction of the total phosphate. This argues that the temporary detachment of tau from microtubules (by phosphorylation at KXGS motifs) is a necessary condition for establishing cell polarity at a critical point in space or time. Conversely, the phosphorylation at SP or TP motifs represents the majority of phosphate (>80%); mutations in these motifs cause an increase in cell extensions, indicating that this type of phosphorylation retards the differentiation of the cells.  相似文献   

17.
The stress-activated kinases c-Jun N-terminal kinase (JNK) and p38 are members of the mitogen-activated protein (MAP) kinase family and take part in signalling cascades initiated by various forms of stress. Their targets include the microtubule-associated protein tau, which becomes hyperphosphorylated in Alzheimer's disease. It is necessary, as a forerunner for in vivo studies, to identify the protein kinases and phosphatases that are responsible for phosphate turnover at individual sites. Using nanoelectrospray mass spectrometry, we have undertaken an extensive comparison of phosphorylation in vitro by several candidate tau kinases, namely, JNK, p38, ERK2, and glycogen synthase kinase 3beta (GSK3beta). Between 10 and 15 sites were identified for each kinase. The three MAP kinases phosphorylated Ser202 and Thr205 but not detectably Ser199, whereas conversely GSK3beta phosphorylated Ser199 but not detectably Ser202 or Thr205. Phosphorylated Ser404 was found with all of these kinases except JNK. The MAP kinases may not be strictly proline specific: p38 phosphorylated the nonproline sites Ser185, Thr245, Ser305, and Ser356, whereas ERK2 was the most strict. All of the sites detected except Thr245 and Ser305 are known or suspected phosphorylation sites in paired helical filament-tau extracted from Alzheimer brains. Thus, the three MAP kinases and GSK3beta are importantly all strong candidates as tau kinases that may be involved in the pathogenic hyperphosphorylation of tau in Alzheimer's disease.  相似文献   

18.
By using tryptophan scanning mutagenesis, we observed the kinetics and structure of the polymerization of tau into paired helical filaments (PHFs) independently of exogenous reporter dyes. The fluorescence exhibits pronounced blue shifts due to burial of the residue inside PHFs, depending on Trp position. The effect is greatest near the center of the repeat domain, showing that the packing is tightest near the beta-structure inducing hexapeptide motifs. The tryptophan response allows measurement of PHF stability made by different tau isoforms and mutants. Unexpectedly, the stability of PHFs is quite low (denaturation half-points approximately 1.0 m GdnHCl), implying that incipient aggregation should be reversible and that the observed high stability of Alzheimer PHFs is due to other factors. The stability increases with the number of repeats and with tau mutants promoting beta-structure, arguing for a gain of toxic function in frontotemporal dementias. Fluorescence resonance energy transfer (FRET) was used to analyze the distances of Tyr(310) to tryptophans in different positions. The degree of FRET in the soluble protein was position-dependent, with highest signals within the second and third repeats but low or no signals further away. In PHFs most mutants showed FRET, indicating that tight packing results from assembly of tau into PHFs.  相似文献   

19.
In Alzheimer disease (AD), the microtubule-associated protein tau is found hyperphosphorylated in paired helical filaments. Among many phosphorylated sites in tau, Ser-262 is the major site for abnormal phosphorylation of tau in AD brain. The kinase known to phosphorylate this particular site is MARK2, whose activation mechanism is yet to be studied. Our first finding that treatment of cells with LiCl, a selective inhibitor of another major tau kinase, glycogen synthase kinase-3beta (GSK-3beta), inhibits phosphorylation of Ser-262 of tau led us to investigate the possible involvement of GSK-3beta in MARK2 activation. In vitro kinase reaction revealed that recombinant GSK-3beta indeed phosphorylates MARK2, whereas it failed to phosphorylate Ser-262 of tau. Our further findings led us to conclude that GSK-3beta phosphorylates MARK2 on Ser-212, one of the two reported phosphorylation sites (Thr-208 and Ser-212) found in the activation loop of MARK2. Down-regulation of either GSK-3beta or MARK2 by small interfering RNAs suppressed the level of phosphorylation on Ser-262. These results, respectively, indicated that GSK-3beta is responsible for phosphorylating Ser-262 of tau through phosphorylation and activation of MARK2 and that the phosphorylation of tau at this particular site is predominantly mediated by a GSK-3beta-MARK2 pathway. These findings are of interest in the context of the pathogenesis of AD.  相似文献   

20.
In Alzheimer disease brain the activities of protein phosphatase (PP)-2A and PP-1 are decreased and the microtubule-associated protein tau is abnormally hyperphosphorylated at several sites at serine/threonine. Employing rat forebrain slices kept metabolically active in oxygenated artificial CSF as a model system, we investigated the role of PP-2A/PP-1 in the regulation of some of the major abnormally hyperphosphorylated sites of tau and the protein kinases involved. Treatment of the brain slices with 1.0 microM okadaic acid inhibited approximately 65% of PP-2A and produced hyperphosphorylation of tau at Ser 198/199/202, Ser 396/404 and Ser 422. No significant changes in the activities of glycogen synthase kinase-3 (GSK-3) and cyclin dependent protein kinases cdk5 and cdc2 were observed. Calyculin A (0.1 microM) inhibited approximately 50% PP-1, approximately 20% PP-2A, 50% GSK-3 and approximately 30% cdk5 but neither inhibited the activity of cyclin AMP dependent protein kinase A (PKA) nor resulted in the hyperphosphorylation of tau at any of the above sites. Treatment of brain slices with 1 microM okadaic acid plus 0.1 microM calyculin A inhibited approximately 100% of both PP-2A and PP-1, approximately 80% of GSK-3, approximately 50% of cdk5 and approximately 30% of cdc2 but neither inhibited PKA nor resulted in the hyperphosphorylation of tau at any of the above sites. These studies suggest (i) that PP-1 upregulates the phosphorylation of tau at Ser 198/199/202 and Ser 396/404 indirectly by regulating the activities of GSK-3, cdk5 and cdc2 whereas PP-2A regulates the phosphorylation of tau directly by dephosphorylation at the above sites, and (ii) that a decrease in the PP-2A activity leads to abnormal hyperphosphorylation of tau at Ser 198/199/202, Ser 396/404 and Ser 422.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号