首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.

   

CD4+CD25+Foxp3+ regulatory T (Treg) cells are believed to play an important role in suppressing autoimmunity and maintaining peripheral tolerance. How their survival is regulated in the periphery is less clear. Here we show that Treg cells express receptors for gamma chain cytokines and are dependent on an exogenous supply of these cytokines to overcome cytokine withdrawal apoptosis in vitro. This result was validated in vivo by the accumulation of Treg cells in Bim-/- and Bcl-2 tg mice which have arrested cytokine deprivation apoptosis. We also found that CD25 and Foxp3 expression were down-regulated in the absence of these cytokines. CD25+ cells from Scurfy mice do not depend on cytokines for survival demonstrating that Foxp3 increases their dependence on cytokines by suppressing cytokine production in Treg cells. Our study reveals that the survival of Treg cells is strictly dependent on cytokines and cytokine producing cells because they do not produce cytokines. Our study thus, demonstrates that different gamma chain cytokines regulate Treg homeostasis in the periphery by differentially regulating survival and proliferation. These findings may shed light on ways to manipulate Treg cells that could be utilized for their therapeutic applications.  相似文献   

2.

Background  

Ferredoxin-NADP(H) reductases (FNRs) are flavoenzymes that catalyze the electron transfer between NADP(H) and the proteins ferredoxin or flavodoxin. A number of structural features distinguish plant and bacterial FNRs, one of which is the mode of the cofactor FAD binding. Leptospira interrogans is a spirochaete parasitic bacterium capable of infecting humans and mammals in general. Leptospira interrogans FNR (LepFNR) displays low sequence identity with plant (34% with Zea mays) and bacterial (31% with Escherichia coli) FNRs. However, LepFNR contains all consensus sequences that define the plastidic class FNRs.  相似文献   

3.

Background  

The virulence of Candida species depends on many environmental conditions. Extracellular pH and concentration of alkali metal cations belong among important factors. Nevertheless, the contribution of transporters mediating the exchange of alkali metal cations for protons across the plasma membrane to the cell salt tolerance and other physiological properties of various Candida species has not been studied so far.  相似文献   

4.
5.

Background

In acute myeloid leukemia (AML), the leukemia initiating cells (LICs) or leukemia stem cells (LSCs) is found within the CD34+CD38- cell compartment. The LICs subpopulation survives chemotherapy and is most probable the cause of minimal residual disease (MRD), which in turn is thought to cause relapse. The aim of this study was to determine the prognostic value of the percentage of LICs in blasts at diagnosis.

Design and methods

The percentage of LICs in the blast population was determined at diagnosis using a unique Flow-FISH analysis, which applies fluorescent in situ hybridization (FISH) analysis on flow cytometry sorted cells to distinguish LICs within the CD34+CD38- cell compartment. Fourty-five AML patients with FISH-detectable cytogenetic abnormalities treated with standardized treatment program were retrospectively included in the study. Correlations with overall survival (OS), events-free survival (EFS) and cumulative incidence of relapse (CIR) were evaluated with univariate and multivariate analysis.

Results

The percentage of LICs is highly variable in patients with acute myeloid leukemia, ranged from 0.01% to 52.8% (median, 2.1%). High LIC load (≥1%) negatively affected overall survival (2-year OS: 72.57% vs. 16.75%; P?=?0.0037) and events-free survival (2-year EFS: 67.23% vs. 16.33%; P?=?0.0018), which was due to an increased cumulative incidence of relapse (2-year CIR: 56.7% vs. 18.0%; P?=?0.021). By multivariate analysis, high LIC load retained prognostic significance for OS and EFS.

Conclusions

In the present study, we established the Flow-FISH protocol as a useful method to distinguish normal and leukemic cells within the CD34+CD38- cell subpopulation. The high percentage of LICs at diagnosis was significantly correlated with increased risk of poor clinical outcome.
  相似文献   

6.

Background

Although hepatitis C virus (HCV) is primarily hepatotropic, markers of HCV replication were detected in peripheral blood mononuclear cells (PBMC) as well as in ex vivo collected tissues and organs. Specific strains of HCV were found to be capable to infect cells of the immune system: T and B cells and monocytes/macrophages as well as cell lines in vitro. The direct invasion of cells of the immune system by the virus may be responsible for extrahepatic consequences of HCV infection: cryoglobulinemia and non-Hodgkin’s lymphoma.The aim of the present study was to determine the prevalence of markers of HCV infection: negative strand HCV RNA and non-structural NS3 protein in PBMC subpopulations: CD3+, CD14+ and CD19+. The presence of virus and the proportion of affected cells within a particular PBMC fraction could indicate a principal target cell susceptible for HCV.

Methods

PBMC samples were collected from 26 treatment-free patients chronically infected with HCV. PBMC subpopulations: CD3+, CD14+, CD19+ were obtained using positive magnetic separation. The presence of negative strand RNA HCV and viral NS3 protein were analyzed by strand-specific RT-PCR and NS3 immunocytochemistry staining.

Results

Negative strand HCV RNA was detectable in 7/26 (27%), whereas NS3 protein in 15/26 (57.6%) of PBMC samples. At least one replication marker was found in 13/26 (50%) of CD3+ cells then in 8/26 (30.8%) of CD14+ and CD19+ cells. The highest percentage of cells harboring viral markers in single specimen was also observed in CD3+ (2.4%), then in CD19+ (1.2%), and much lower in CD14+ (0.4%) cells.

Conclusions

Our results indicate that CD3+ cells are a dominant site for extrahepatic HCV replication, although other PBMC subpopulations may also support virus replication.
  相似文献   

7.

Introduction  

Rheumatoid arthritis (RA) is a chronic autoimmune disease with episodic flares in affected joints. However, how arthritic flare occurs only in select joints during a systemic autoimmune disease remains an enigma. To better understand these observations, we developed longitudinal imaging outcomes of synovitis and lymphatic flow in mouse models of RA, and identified that asymmetric knee flare is associated with ipsilateral popliteal lymph node (PLN) collapse and the translocation of CD23+/CD21hi B-cells (B-in) into the paracortical sinus space of the node. In order to understand the relationship between this B-in translocation and lymph drainage from flaring joints, we tested the hypothesis that asymmetric tumor necrosis factor (TNF)-induced knee arthritis is associated with ipsilateral PLN and iliac lymph node (ILN) collapse, B-in translocation, and decreased afferent lymphatic flow.  相似文献   

8.

Background

Administration of recombinant G-CSF following cytoreductive therapy enhances the recovery of myeloid cells, minimizing the risk of opportunistic infection. Free G-CSF, however, is expensive, exhibits a short half-life, and has poor biological activity in vivo.

Methods

We evaluated whether the biological activity of G-CSF could be improved by pre-association with anti-G-CSF mAb prior to injection into mice.

Results

We find that the efficacy of G-CSF therapy can be enhanced more than 100-fold by pre-association of G-CSF with an anti-G-CSF monoclonal antibody (mAb). Compared with G-CSF alone, administration of G-CSF/anti-G-CSF mAb complexes induced the potent expansion of CD11b+Gr-1+ myeloid cells in mice with or without concomitant cytoreductive treatment including radiation or chemotherapy. Despite driving the dramatic expansion of myeloid cells, in vivo antigen-specific CD8+ T cell immune responses were not compromised. Furthermore, injection of G-CSF/anti-G-CSF mAb complexes heightened protective immunity to bacterial infection. As a measure of clinical value, we also found that antibody complexes improved G-CSF biological activity much more significantly than pegylation.

Conclusions

Our findings provide the first evidence that antibody cytokine complexes can effectively expand myeloid cells, and furthermore, that G-CSF/anti-G-CSF mAb complexes may provide an improved method for the administration of recombinant G-CSF.
  相似文献   

9.

Aims

Hydro-biogeochemical processes in the rhizosphere regulate nutrient and water availability, and thus ecosystem productivity. We hypothesized that two such processes often neglected in rhizosphere models — diel plant water use and competitive cation exchange — could interact to enhance availability of K+ and NH4 +, both high-demand nutrients.

Methods

A rhizosphere model with competitive cation exchange was used to investigate how diel plant water use (i.e., daytime transpiration coupled with no nighttime water use, with nighttime root water release, and with nighttime transpiration) affects competitive ion interactions and availability of K+ and NH4 +.

Results

Competitive cation exchange enabled low-demand cations that accumulate against roots (Ca2+, Mg2+, Na+) to desorb NH4 + and K+ from soil, generating non-monotonic dissolved concentration profiles (i.e. ‘hotspots’ 0.1–1 cm from the root). Cation accumulation and competitive desorption increased with net root water uptake. Daytime transpiration rate controlled diel variation in NH4 + and K+ aqueous mass, nighttime water use controlled spatial locations of ‘hotspots’, and day-to-night differences in water use controlled diel differences in ‘hotspot’ concentrations.

Conclusions

Diel plant water use and competitive cation exchange enhanced NH4 + and K+ availability and influenced rhizosphere concentration dynamics. Demonstrated responses have implications for understanding rhizosphere nutrient cycling and plant nutrient uptake.
  相似文献   

10.
The expression of Na+, K+-ATPase α3 subunit and synaptosomal membrane Na+, K+-ATPase activity were analyzed after administration of ouabain and endobain E, respectively commercial and endogenous Na+, K+-ATPase inhibitors. Wistar rats received intracerebroventricularly ouabain or endobain E dissolved in saline solution or Tris–HCl, respectively or the vehicles (controls). Two days later, animals were decapitated, cerebral cortex and hippocampus removed and crude and synaptosomal membrane fractions were isolated. Western blot analysis showed that Na+, K+-ATPase α3 subunit expression increased roughly 40% after administration of 10 or 100 nmoles ouabain in cerebral cortex but remained unaltered in hippocampus. After administration of 10 μl endobain E (1 μl = 28 mg tissue) Na+, K+-ATPase α3 subunit enhanced 130% in cerebral cortex and 103% in hippocampus. The activity of Na+, K+-ATPase in cortical synaptosomal membranes diminished or increased after administration of ouabain or endobain E, respectively. It is concluded that Na+, K+-ATPase inhibitors modify differentially the expression of Na+, K+-ATPase α3 subunit and enzyme activity, most likely involving compensatory mechanisms.  相似文献   

11.
12.

Background  

K+ channels are diverse; both in terms of their function and their molecular composition. Shal subunits were first described in Drosophila. There are three mammalian orthologs, which are members of the Kv4 subfamily. They are involved in neuronal firing patterns as well as control of the cardiac action potential duration.  相似文献   

13.

Background

Experimental autoimmune neuritis (EAN) is a well-known animal model of human demyelinating polyneuropathies and is characterized by inflammation and demyelination in the peripheral nervous system. Fascin is an evolutionarily highly conserved cytoskeletal protein of 55 kDa containing two actin binding domains that cross-link filamentous actin to hexagonal bundles.

Methods

Here we have studied by immunohistochemistry the spatiotemporal accumulation of Fascin?+?cells in sciatic nerves of EAN rats.

Results

A robust accumulation of Fascin?+?cell was observed in the peripheral nervous system of EAN which was correlated with the severity of neurological signs in EAN.

Conclusion

Our results suggest a pathological role of Fascin in EAN.

Virtual slides

The virtual slides for this article can be found here: http://www.diagnosticphatology.diagnomx.eu/vs/6734593451114811
  相似文献   

14.
The tonoplast and plasma membrane localized sodium (potassium)/proton antiporters have been shown to play an important role in plant resistance to salt stress. In this study, AtNHX1 and AtNHX3, two tonoplast Na+(K+)/H+ antiporter encoding genes from Arabidopsis thaliana, were expressed in poplar to investigate their biological functions in the resistance to abiotic stresses in woody plants. Transgenic poplar plants expressing either gene exhibited increased resistance to both salt and water-deficit stresses. Compared to the wild type (WT) plants, transgenic plants accumulated more sodium and potassium ions in the presence of 100 mM NaCl and showed reduced electrolyte leakage in the leaves under water stress. Furthermore, the proton-translocating and cation-dependent H+ (Na+/H+ or K+/H+) exchange activities in the tonoplast vesicles isolated from the leaves of transgenic plants were higher than in those isolated from WT plants. Therefore, constitutive expression of either AtNHX1 or AtNHX3 genetically modified the salt and water stress tolerance of transgenic poplar plants, providing a potential tool for engineering tree species with enhanced resistance to multiple abitotic stresses.  相似文献   

15.
Na+, K+-ATPase is inhibited by neurotensin, an effect which involves the peptide high affinity receptor (NTS1). Neurotensin effect on cerebral cortex synaptosomal membrane Na+, K+-ATPase activity of rats injected i.p. with antipsychotic clozapine was studied. Whereas 3.5 × 10−6 M neurotensin decreased 44% Na+, K+-ATPase activity in the controls, the peptide failed to modify enzyme activity 30 min after a single 3.0, 10.0 and 30.0 mg/kg clozapine dose. Neurotensin decreased Na+, K+-ATPase activity 40 or 20% 18 h after 3.0 or 5.6 mg/kg clozapine administration, respectively, and lacked inhibitory effect 18 h after 17.8 and 30.0 mg/kg clozapine doses. Results indicated that the clozapine treatment differentially modifies the further effect of neurotensin on synaptosomal membrane Na+, K+-ATPase activity according to time and dose conditions employed. Taken into account that clozapine blocks the dopaminergic D2 receptor, findings obtained favor the view of an interplay among neurotensinergic receptor, dopaminergic D2 receptor and Na+, K+-ATPase at synaptic membranes.  相似文献   

16.
17.

Background

T lymphocytes play an indispensably important role in clearing virus and tumor antigen. There is little knowledge about impacts of inhibitory molecules with cytokine on tumor-infiltrating CD4+ T-cells in the presence of gastric cancer (GC). This study investigated the distribution of tumor-infiltrating T-cells subset and the differentiation as well as inhibitory phenotype of T-cells from blood and tissues of GC patients.

Materials and methods

Patients with GC diagnosed on the basis of pre-operative staging and laparotomy findings were approached for enrollment between 2014 and 2015 at the Affiliated Cancer Hospital of Zhengzhou University, China. Phenotypic analysis based on isolation of tumor-infiltrating lymphocytes and intracellular IFN-γ staining assay is conducted. Statistical analysis is performed to show significance.

Results

The results showed that the percentage of CD4+ T-cells among CD3+ cells in tumors was significantly higher than that in the matched paraneoplastic tissue. CD4+ CD25high CD127low regulatory T-cells (Tregs), PD-1+, Tim-3+, and PD-1+ Tim-3+ cells were up-regulated on tumor infiltrating T-cells from patients with GC compared to their expressions on corresponding peripheral blood and peritumoral T-cells. Blockades of PD-1+ and Tim-3+ were effective in restoring tumor infiltrating T-cells’ production of interferon-gamma (IFN-γ). Combined PD-1+ and Tim-3+ inhibition had a synergistic effect on IFN-γ secretion by CD4+ T-cells.

Conclusion

The results suggested that the composition, inhibitors, and location of the immune infiltrate should be considered when evaluating antitumor immunotherapy. A new insight into the mechanisms underlying T cell dysfunction is provided.
  相似文献   

18.

Introduction

Meningitis, a morbidly infectious central nervous system pathology is accompanied by acute inflammation of the meninges, causing raised intracranial pressure linked with serious neurological sequelae.

Objective

To observe the variation in the metabolic profile, that may occur in serum and urine along with CSF in adults using 1H NMR spectroscopy, with an attempt of appropriate and timely treatment regimen.

Methods

The 1H NMR-based metabolomics has been performed in 115 adult subjects for differentiating bacterial meningitis (BM) and tubercular meningitis (TBM).

Results

The discriminant function analysis (DFA) of the three bio-fluids collectively identified 3-hydroxyisovalerate, lactate, glucose, formate, valine, alanine, ketonic bodies, malonate and choline containing compounds (choline and GPC) as significant metabolites among cases versus control group. The differentiation of bacterial meningitis and tuberculous meningitis (BM vs. TBM) can be done on the basis of identification of 3-hydroxyisovalerate, isobutyrate and formate in case of CSF (with a correct classification of 78 %), alanine in serum (correct classification 60 %), valine and acetone in case of urine (correct classification 89.1 %). The NMR spectral bins based orthogonal signal correction principal component analysis score plots of significant metabolites obtained from DFA also provided group classification among cases versus control group in CSF, serum and urine samples. The variable importance in projection scores also identified similar significant metabolites as obtained from DFA, collectively in CSF, serum and urine samples, responsible for differentiation of meningitis.

Conclusion

The CSF contained metabolites which are formed during infection and inflammation, and these were also found in significant quantity in serum and urine samples.
  相似文献   

19.
Two barley cultivars (Hordeum vulgare L., cvs. Elo and Belogorskii) differing in salt tolerance were used to study 22Na+ uptake, expression of three isoforms of the Na+/H+ antiporter HvNHX1-3, and the cellular localization of these isoforms in the elongation zone of seedling roots. During short (1 h) incubation, seedling roots of both cultivars accumulated approximately equal quantities of 22Na+. However, after 24-h incubation the content of 22Na+ in roots of a salt-tolerant variety Elo was 40% lower than in roots of the susceptible variety Belogorskii. The content of 22Na+ accumulated in shoots of cv. Elo after 24-h incubation was 6.5 times lower than in shoots of cv. Belogorskii and it was 4 times lower after the salt stress treatment. The cytochemical examination revealed that three proteins HvNHX1-3 are co-localized in the same cells of almost all root tissues; these proteins were present in the tonoplast and prevacuolar vesicles. Western blot analysis of HvNHX1-3 has shown that the content of isoforms in vacuolar membranes increased in response to salt stress in seedling roots and shoots of both cultivars, although the increase was more pronounced in the tolerant cultivar. The content of HvNHX1 in the seedlings increased in parallel with the enhanced expression of HvNHX1, whereas the increase in HvNHX2 and HvNHX3 protein content was accompanied by only slight changes in expression of respective genes. The results provide evidence that salt tolerance of barley depends on plant ability to restrict Na+ transport from the root to the shoot and relies on regulatory pathways of HvNHX1-3 expression in roots and shoots during salt stress.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号