首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Increased extracellular osmolarity ([Os]e) suppresses stimulated hormone secretion from anterior pituitary cells. Ca2+ influx may mediate this effect. We show that increase in [Os]e (by 18–125%) differentially suppresses L-type and T-type Ca2+ channel currents (IL and IT, respectively); IL was more sensitive than IT. Hyperosmotic suppression of IL depended on the magnitude of increase in [Os]e and was correlated with the percent decrease in pituitary cell volume, suggesting that pituitary cell shrinkage can modulate L-type currents. The hyperosmotic suppression of IL and IT persisted after incubation of pituitary cells either with the actin-disrupter cytochalasin D or with the actin stabilizer phalloidin, suggesting that the actin cytoskeleton is not involved in this modulation. The hyperosmotic suppression of Ca2+ influx was not correlated with changes in reversal potential, membrane capacitance, and access resistance. Together, these results suggest that the hyperosmotic suppression of Ca2+ influx involves Ca2+ channel proteins. We therefore recorded the activity of L-type Ca2+ channels from cell-attached patches while exposing the cell outside the patch pipette to hyperosmotic media. Increased [Os]e reduced the activity of Ca2+ channels but did not change single-channel conductance. This hyperosmotic suppression of Ca2+ currents may therefore contribute to the previously reported hyperosmotic suppression of hormone secretion. L-type Ca2+ channels; osmosensitivity; mechanosensitivity; osmolarity; hyperosmolarity  相似文献   

2.
The present study describes the first characterization of Ca2+-activated Cl currents (IClCa) in single smooth muscle cells from a murine vascular preparation (portal veins). IClCa was recorded using the perforated patch version of the whole cell voltage-clamp technique and was evoked using membrane depolarization. Generation of IClCa relied on Ca2+ entry through dihydropyridine-sensitive Ca2+ channels because IClCa was abolished by 1 µM nicardipine and enhanced by raising external Ca2+ concentration or by application of BAY K 8644. IClCa was characterized by the sensitivity to Cl channel blockers and the effect of altering the external anion on reversal potential. Activation of IClCa after membrane depolarization was dependent on Ca2+ release from intracellular stores. Thus the amplitude of IClCa was diminished by the SR-ATPase inhibitor cyclopiazonic acid, the inositol 1,4,5-trisphosphate receptor antagonist 2-aminoethoxydiphenyl borate (2-APB), and the ryanodine receptor blocker tetracaine. The degree of inhibition produced by the application of 2-APB and tetracaine together was significantly greater than the effect of each agent applied alone. In current-clamp mode, injection of depolarizing current elicited a biphasic action potential, with the later depolarization being sensitive to niflumic acid (NFA; 10 µM). In isometric tension recordings, NFA inhibited spontaneous contractions. These data support a role for this conductance in portal vein excitability.  相似文献   

3.
This study examines whether fluid pressure (FP) modulates the L-type Ca2+ channel in cardiomyocytes and investigates the underlying cellular mechanism(s) involved. A flow of pressurized (16 dyn/cm2) fluid, identical to that bathing the myocytes, was applied onto single rat ventricular myocytes using a microperfusion method. The Ca2+ current (ICa) and cytosolic Ca2+ signals were measured using a whole cell patch-clamp and confocal imaging, respectively. It was found that the FP reversibly suppressed ICa (by 25%) without altering the current-voltage relationships, and it accelerated the inactivation of ICa. The level of ICa suppression by FP depended on the level and duration of pressure. The Ba2+ current through the Ca2+ channel was only slightly decreased by the FP (5%), suggesting an indirect inhibition of the Ca2+ channel during FP stimulation. The cytosolic Ca2+ transients and the basal Ca2+ in field-stimulated ventricular myocytes were significantly increased by the FP. The effects of the FP on the ICa and on the Ca2+ transient were resistant to the stretch-activated channel inhibitors, GsMTx-4 and streptomycin. Dialysis of myocytes with high concentrations of BAPTA, the Ca2+ buffer, eliminated the FP-induced acceleration of ICa inactivation and reduced the inhibitory effect of the FP on ICa by 80%. Ryanodine and thapsigargin, abolishing sarcoplasmic reticulum Ca2+ release, eliminated the accelerating effect of FP on the ICa inactivation, and they reduced the inhibitory effect of FP on the ICa. These results suggest that the fluid pressure indirectly suppresses the Ca2+ channel by enhancing the Ca2+-induced intracellular Ca2+ release in rat ventricular myocytes. L-type Ca2+ current; fluid pressure; ventricular myocytes; cytosolic Ca2+ transient  相似文献   

4.
ATP is proposed to be a major inhibitory neurotransmitter in the gastrointestinal (GI) tract, causing hyperpolarization and smooth muscle relaxation. ATP activates small-conductance Ca2+-activated K+ channels that are involved in setting the resting membrane potential and causing inhibitory junction potentials. No reports are available examining the effects of ATP on voltage-dependent inward currents in GI smooth muscle cells. We previously reported two types of voltage-dependent inward currents in murine proximal colonic myocytes: a low-threshold voltage-activated, nonselective cation current (IVNSCC) and a relatively high-threshold voltage-activated (L-type) Ca2+ current (IL). Here we have investigated the effects of ATP on these currents. External application of ATP (1 mM) did not affect IVNSCC or IL in dialyzed cells. ATP (1 mM) increased IVNSCC and decreased IL in the perforated whole-cell configuration. UTP and UDP (1 mM) were more potent than ATP on IVNSCC. ADP decreased IL but had no effect on IVNSCC. The order of effectiveness was UTP = UDP > ATP > ADP. These effects were not blocked by pyridoxal phosphate-6-azo(benzene-2,4-disulfonic acid) (PPADS), but the phospholipase C inhibitor U-73122 reversed the effects of ATP on IVNSCC. ATP stimulation of IVNSCC was also reversed by protein kinase C (PKC) inhibitors chelerythrine chloride or bisindolylmaleimide I. Phorbol 12,13-dibutyrate mimicked the effects of ATP. RT-PCR showed that P2Y4 is expressed by murine colonic myocytes, and this receptor is relatively insensitive to PPADS. Our data suggest that ATP activates IVNSCC and depresses IL via binding of P2Y4 receptors and stimulation of the phospholipase C/PKC pathway. inhibitory junction potentials; smooth muscle; enteric nervous system  相似文献   

5.
The hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, or cardiac (If)/neuronal (Ih) time- and voltage-dependent inward cation current channels, are conventionally considered as monovalent-selective channels. Recently we discovered that calcium ions can permeate through HCN4 and Ih channels in neurons. This raises the possibility of Ca2+ permeation in If, the Ih counterpart in cardiac myocytes, because of their structural homology. We performed simultaneous measurement of fura-2 Ca2+ signals and whole cell currents produced by HCN2 and HCN4 channels (the 2 cardiac isoforms present in ventricles) expressed in HEK293 cells and by If in rat ventricular myocytes. We observed Ca2+ influx when HCN/If channels were activated. Ca2+ influx was increased with stronger hyperpolarization or longer pulse duration. Cesium, an If channel blocker, inhibited If and Ca2+ influx at the same time. Quantitative analysis revealed that Ca2+ flux contributed to 0.5% of current produced by the HCN2 channel or If. The associated increase in Ca2+ influx was also observed in spontaneously hypertensive rat (SHR) myocytes in which If current density is higher than that of normotensive rat ventricle. In the absence of EGTA (a Ca2+ chelator), preactivation of If channels significantly reduced the action potential duration, and the effect was blocked by another selective If channel blocker, ZD-7288. In the presence of EGTA, however, preactivation of If channels had no effects on action potential duration. Our data extend our previous discovery of Ca2+ influx in Ih channels in neurons to If channels in cardiac myocytes. calcium ion flux; hyperpolarization-activated, cyclic nucleotide-gated/cardiac time- and volume-dependent cation current channels  相似文献   

6.
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 µM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 µM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 µM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG. voltage-gated potassium channels; ether-à-go-go-related gene potassium channels; slow-inactivating outward currents; fast-inactivating outward currents  相似文献   

7.
Pulmonary vasoconstriction and vascularmedial hypertrophy greatly contribute to the elevated pulmonaryvascular resistance in patients with pulmonary hypertension. A rise incytosolic free Ca2+ ([Ca2+]cyt)in pulmonary artery smooth muscle cells (PASMC) triggers vasoconstriction and stimulates cell growth. Membrane potential (Em) regulates[Ca2+]cyt by governing Ca2+influx through voltage-dependent Ca2+ channels. Thusintracellular Ca2+ may serve as a shared signaltransduction element that leads to pulmonary vasoconstriction andvascular remodeling. In PASMC, activity of voltage-gated K+(Kv) channels regulates resting Em. In thisstudy, we investigated whether changes of Kv currents[IK(V)], Em, and[Ca2+]cyt affect cell growth by comparingthese parameters in proliferating and growth-arrested PASMC. Serumdeprivation induced growth arrest of PASMC, whereas chelation ofextracellular Ca2+ abolished PASMC growth. Resting[Ca2+]cyt was significantly higher, andresting Em was more depolarized, inproliferating PASMC than in growth-arrested cells. Consistently, wholecell IK(V) was significantly attenuated in PASMCduring proliferation. Furthermore, Emdepolarization significantly increased resting[Ca2+]cyt and augmented agonist-mediatedrises in [Ca2+]cyt in the absence ofextracellular Ca2+. These results demonstrate that reducedIK(V), depolarized Em, and elevated [Ca2+]cyt may play a criticalrole in stimulating PASMC proliferation. Pulmonary vascular medialhypertrophy in patients with pulmonary hypertension may be partlycaused by a membrane depolarization-mediated increase in[Ca2+]cyt in PASMC.

  相似文献   

8.
Voltage-clamp studies offreshly isolated smooth muscle cells from rabbit portal veinrevealed the existence of a time-dependent cation current evoked bymembrane hyperpolarization (termed Ih). Both therate of activation and the amplitude of Ih wereenhanced by membrane hyperpolarization. Half-maximal activation ofIh was about 105 mV with conventional wholecell and 80 mV when the perforated patch technique was used. Incurrent clamp, injection of hyperpolarizing current produced a markeddepolarizing "sag" followed by rebound depolarization. Activationof Ih was augmented by an increase in theextracellular K+ concentration and was blocked rapidly byexternally applied Cs+ (1-5 mM). The bradycardic agentZD-7288 (10 µM), a selective inhibitor of Ih,produced a characteristically slow inhibition of the portal veinIh. The depolarizing sag recorded in current clamp was also abolished by application of 5 mM Cs+.Cs+ significantly decreased the frequency of spontaneouscontractions in both whole rat portal vein and rabbit portal veinsegments. Multiplex RT-PCR of rabbit portal vein myocytes using primers derived from existing genes for hyperpolarization-activated cation channels (HCN1-4) revealed the existence of cDNA clonescorresponding to HCN2, 3, and 4. The present study shows that portalvein myocytes contain genes shown to encode forhyperpolarization-activated channels and exhibit an endogenous currentwith characteristics similar to Ih in other celltypes. This conductance appears to determine, in part, the rhythmicityof this vessel.

  相似文献   

9.
We have previously demonstrated that the sarcolemmalNa+-K+pump current(Ip) in cardiacmyocytes is stimulated by cell swelling induced by exposure tohyposmolar solutions. However, the underlying mechanism has not beenexamined. Because cell swelling activates stretch-sensitive ionchannels and intracellular messenger pathways, we examined their rolein mediating Ipstimulation during exposure of rabbit ventricular myocytes to ahyposmolar solution.Ip was measuredby the whole cell patch-clamp technique. Swelling-induced pumpstimulation altered the voltage dependence ofIp. Pumpstimulation persisted in the absence of extracellularNa+ and under conditions designedto minimize changes in intracellular Ca2+, excluding an indirectinfluence on Ipmediated via fluxes through stretch-activated channels. Pumpstimulation was protein kinase C independent. The tyrosine kinaseinhibitor tyrphostin A25, the phosphatidylinositol 3-kinase inhibitorLY-294002, and the protein phosphatase-1 and -2A inhibitor okadaic acidabolished Ipstimulation. Our findings suggest that swelling-induced pumpstimulation involves the activation of tyrosine kinase,phosphatidylinositol 3-kinase, and a serine/threonine proteinphosphatase. Activation of this messenger cascade maycause activation by the dephosphorylation of pump units.  相似文献   

10.
In mammalian cardiac myocytes, calcium released into the dyadic space rapidly inactivates calcium current (ICa). We used this Ca2+ release-dependent inactivation (RDI) of ICa as a local probe of sarcoplasmic reticulum Ca2+ release activation. In whole cell patch-clamped rat ventricular myocytes, Ca2+ entry induced by short prepulses from —50 mV to positive voltages caused suppression of peak ICa during a test pulse. The negative correlation between peak ICa suppression and ICa inactivation during the test pulse indicated that RDI evoked by the prepulse affected only calcium channels in those dyads in which calcium release was activated. Ca2+ ions injected during the prepulse and during the subsequent tail current suppressed peak ICa in the test pulse to a different extent. Quantitative analysis indicated that equal Ca2+ charge was 3.5 times less effective in inducing release when entering during the prepulse than when entering during the tail. Tail Ca2+ charge injected by the first voltage-dependent calcium channel (DHPR) openings was three times less effective than that injected by DHPR reopenings. These findings suggest that calcium release activation can be profoundly influenced by the recent history of L-type Ca2+ channel activity due to potentiation of ryanodine receptors (RyRs) by previous calcium influx. This conclusion was confirmed at the level of single RyRs in planar lipid bilayers: using flash photolysis of the calcium cage NP-EGTA to generate two sequential calcium stimuli, we showed that RyR activation in response to the second stimulus was four times higher than that in response to the first stimulus. excitation-contraction coupling  相似文献   

11.
We examined the effect of EGF on the proliferation of mouse embryonic stem (ES) cells and their related signal pathways. EGF increased [3H]thymidine and 5-bromo-2'-deoxyuridine incorporation in a time- and dose-dependent manner. EGF stimulated the phosphorylation of EGF receptor (EGFR). Inhibition of EGFR tyrosine kinase with AG-1478 or herbimycin A, inhibition of PLC with neomycin or U-73122, inhibition of PKC with bisindolylmaleimide I or staurosporine, and inhibition of L-type Ca2+ channels with nifedipine or methoxyverapamil prevented EGF-induced [3H]thymidine incorporation. PKC-, -I, -, -, and - were translocated to the membrane and intracellular Ca2+ concentration ([Ca2+]i) was increased in response to EGF. Moreover, inhibition of EGFR tyrosine kinase, PLC, and PKC completely prevented EGF-induced increases in [Ca2+]i. EGF also increased inositol phosphate levels, which were blocked by EGFR tyrosine kinase inhibitors. Furthermore, EGF rapidly increased formation of H2O2, and pretreatment with antioxidant (N-acetyl-L-cysteine) inhibited EGF-induced increase of [Ca2+]i. In addition, we observed that p44/42 MAPK phosphorylation by EGF and inhibition of EGFR tyrosine kinase, PLC, PKC, or Ca2+ channels blocked EGF-induced phosphorylation of p44/42 MAPKs. Inhibition of p44/42 MAPKs with PD-98059 (MEK inhibitor) attenuated EGF-induced increase of [3H]thymidine incorporation. Finally, inhibition of EGFR tyrosine kinase, PKC, Ca2+ channels, or p44/42 MAPKs attenuated EGF-stimulated cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, and CDK4, respectively. In conclusion, EGF partially stimulates proliferation of mouse ES cells via PLC/PKC, Ca2+ influx, and p44/42 MAPK signal pathways through EGFR tyrosine kinase phosphorylation. calcium; epidermal growth factor; mitogen-activated protein kinases; protein kinase C  相似文献   

12.
To clarifyinteractions between the cytoskeleton and activity of L-typeCa2+ (CaL) channels in vascular smooth muscle(VSM) cells, we investigated the effect of disruption of actinfilaments and microtubules on the L-type Ca2+ current[IBa(L)] of cultured VSM cells (A7r5 cellline) using whole cell voltage clamp. The cells were exposed to eachdisrupter for 1 h and then examined electrophysiologically andmorphologically. Results of immunostaining using anti--actin andanti--tubulin antibodies showed that colchicine disrupted both actinfilaments and microtubules, cytochalasin D disrupted only actinfilaments, and nocodazole disrupted only microtubules.IBa(L) was greatly reduced in cells that wereexposed to colchicine or cytochalasin D but not to nocodazole.Colchicine even inhibited IBa(L) by about 40%when the actin filaments were stabilized by phalloidin or when thecells were treated with phalloidin plus taxol to stabilize bothcytoskeletal components. These results suggest that colchicine mustalso cause some inhibition of IBa(L) due toanother unknown mechanism, e.g., a direct block of CaLchannels. In summary, actin filament disruption of VSM cells inhibitsCaL channel activity, whereas disrupting the microtubulesdoes not.

  相似文献   

13.
We previously reported thatlysoplasmenylcholine (LPlasC) altered the action potential (AP) andinduced afterdepolarizations in rabbit ventricular myocytes. In thisstudy, we investigated how LPlasC alters excitation-contractioncoupling using edge-motion detection, fura-PE3 fluorescent indicator,and perforated and whole cell patch-clamp techniques. LPlasC increasedcontraction, myofilament Ca2+ sensitivity, systolic anddiastolic free Ca2+ levels, and the magnitude ofCa2+ transients concomitant with increases in the maximumrates of shortening and relaxation of contraction and the rising anddeclining phases of Ca2+ transients. In some cells, LPlasCinduced arrhythmias in a pattern consistent with early and delayedaftercontractions. LPlasC also augmented the caffeine-inducedCa2+ transient with a reduction in the decay rate.Furthermore, LPlasC enhanced L-type Ca2+ channel current(ICa,L) and outward currents. LPlasC-induced alterations in contraction and ICa,L wereparalleled by its effect on the AP. Thus these results suggest thatLPlasC elicits distinct, potent positive inotropic, lusitropic, andarrhythmogenic effects, resulting from increases in Ca2+influx, Ca2+ sensitivity, sarcoplasmic reticular (SR)Ca2+ release and uptake, SR Ca2+ content, andprobably reduction in sarcolemmal Na+/Ca2+ exchange.

  相似文献   

14.
Stimulation of cardiac L-typeCa2+ channels by cAMP-dependentprotein kinase (PKA) requires anchoring of PKA to a specificsubcellular environment by A-kinase anchoring proteins (AKAP). Thisstudy evaluated the possible requirement of AKAP in PKA-dependentregulation of L-type Ca2+ channelsin vascular smooth muscle cells using the conventional whole cellpatch-clamp technique. Peak Ba2+current in freshly isolated rabbit portal vein myocytes wassignificantly increased by superfusion with either 0.5 µM isoproterenol (131 ± 3% of the control value,n = 11) or 10 µM 8-bromoadenosine3',5'-cyclic monophosphate (8-BrcAMP; 114 ± 1%,n = 8). The PKA-induced stimulatory effects ofboth isoproterenol and 8-BrcAMP were completely abolished by a specificPKA inhibitor KT-5720 (0.2 µM) or by dialyzing cells with Ht 31 (100 µM), a peptide that inhibits the binding of PKA to AKAP. In contrast,Ht 31 did not block the excitatory effect of the catalytic subunit ofPKA when dialyzed into the cells. These data suggest that stimulationof Ca2+ channels in vascularmyocytes by endogenous PKA requires localization of PKA through bindingto AKAP.

  相似文献   

15.
Functional ion channels in mouse bone marrow mesenchymal stem cells   总被引:1,自引:0,他引:1  
Bone marrow mesenchymal stem cells (MSCs) are used as a cell source for cardiomyoplasty; however, the cellular electrophysiological properties are not fully understood. The present study was to investigate the functional ionic channels in undifferentiated mouse bone marrow MSCs using whole cell patch-voltage clamp technique, RT-PCR, and Western immunoblotting analysis. We found that three types of ionic currents were present in mouse MSCs, including a Ca2+-activated K+ current (IKCa), an inwardly rectifying K+ current (IKir), and a chloride current (ICl). IKir was inhibited by Ba2+, and IKCa was activated by the Ca2+ ionophore A-23187 and inhibited by the intermediate-conductance IKCa channel blocker clotrimazole. ICl was activated by hyposmotic (0.8 T) conditions and inhibited by the chloride channel blockers DIDS and NPPB. The corresponding ion channel genes and proteins, KCa3.1 for IKCa, Kir2.1 for IKir, and Clcn3 for ICl, were confirmed by RT-PCR and Western immunoblotting analysis in mouse MSCs. These results demonstrate that three types of functional ion channel currents (i.e., IKir, IKCa, and ICl) are present in mouse bone marrow MSCs. inward rectifier potassium current; intermediate-conductance calcium-activated potassium current; volume-sensitive chloride current  相似文献   

16.
Activation of Gqprotein-coupled receptors usually causes a biphasic increase inintracellular calcium concentration ([Ca2+]i)that is crucial for secretion in nonexcitable cells. In gastric enterochromaffin-like (ECL) cells, stimulation with gastrin leads to aprompt biphasic calcium response followed by histamine secretion. Thisstudy investigates the underlying signaling events in this neuroendocrine cell type. In ECL cells, RT-PCR suggested the presence of inositol 1,4,5-trisphosphate receptor (IP3R) subtypes1-3. The IP3R antagonist 2-aminoethoxydiphenyl borateabolished both gastrin-induced elevation of[Ca2+]i and histamine release. Thapsigarginincreased [Ca2+]i, however, without inducinghistamine secretion. In thapsigargin-pretreated cells, gastrinincreased [Ca2+]i through calcium influxacross the plasma membrane. Both nimodipine and SKF-96365 inhibitedgastrin-induced histamine release. The protein kinase C (PKC) activatorphorbol 12-myristate 13-acetate induced histamine secretion, an effectthat was prevented by nimodipine. In summary, gastrin-stimulatedhistamine release depends on IP3R activation andplasmalemmal calcium entry. Gastrin-induced calcium influx wasmediated by dihydropyridine-sensitive calcium channels that appear tobe L-type channels activated through a pathway involving activation of PKC.

  相似文献   

17.
Previous studies have shown that inhibition of L-type Ca2+ current (ICa) by cytosolic free Mg2+ concentration ([Mg2+]i) is profoundly affected by activation of cAMP-dependent protein kinase pathways. To investigate the mechanism underlying this counterregulation of ICa, rat cardiac myocytes and tsA201 cells expressing L-type Ca2+ channels were whole cell voltage-clamped with patch pipettes in which [Mg2+] ([Mg2+]p) was buffered by citrate and ATP. In tsA201 cells expressing wild-type Ca2+ channels (1C/2A/2), increasing [Mg2+]p from 0.2 mM to 1.8 mM decreased peak ICa by 76 ± 4.5% (n = 7). Mg2+-dependent modulation of ICa was also observed in cells loaded with ATP--S. With 0.2 mM [Mg2+]p, manipulating phosphorylation conditions by pipette application of protein kinase A (PKA) or phosphatase 2A (PP2A) produced large changes in ICa amplitude; however, with 1.8 mM [Mg2+]p, these same manipulations had no significant effect on ICa. With mutant channels lacking principal PKA phosphorylation sites (1C/S1928A/2A/S478A/S479A/2), increasing [Mg2+]p had only small effects on ICa. However, when channel open probability was increased by 1C-subunit truncation (1C1905/2A/S478A/S479A/2), increasing [Mg2+]p greatly reduced peak ICa. Correspondingly, in myocytes voltage-clamped with pipette PP2A to minimize channel phosphorylation, increasing [Mg2+]p produced a much larger reduction in ICa when channel opening was promoted with BAY K8644. These data suggest that, around its physiological concentration range, cytosolic Mg2+ modulates the extent to which channel phosphorylation regulates ICa. This modulation does not necessarily involve changes in channel phosphorylation per se, but more generally appears to depend on the kinetics of gating induced by channel phosphorylation. voltage-gated Ca2+ channel; cardiac myocytes; human embryonic kidney cells; protein kinase A; protein phosphatase 2A  相似文献   

18.
The role of PKC in the regulation of store-operated Ca2+ entry (SOCE) is rather controversial. Here, we used Ca2+-imaging, biochemical, pharmacological, and molecular techniques to test if Ca2+-independent PLA2β (iPLA2β), one of the transducers of the signal from depleted stores to plasma membrane channels, may be a target for the complex regulation of SOCE by PKC and diacylglycerol (DAG) in rabbit aortic smooth muscle cells (SMCs). We found that the inhibition of PKC with chelerythrine resulted in significant inhibition of thapsigargin (TG)-induced SOCE in proliferating SMCs. Activation of PKC by the diacylglycerol analog 1-oleoyl-2-acetyl-sn-glycerol (OAG) caused a significant depletion of intracellular Ca2+ stores and triggered Ca2+ influx that was similar to TG-induced SOCE. OAG and TG both produced a PKC-dependent activation of iPLA2β and Ca2+ entry that were absent in SMCs in which iPLA2β was inhibited by a specific chiral enantiomer of bromoenol lactone (S-BEL). Moreover, we found that PKC regulates TG- and OAG-induced Ca2+ entry only in proliferating SMCs, which correlates with the expression of the specific PKC- isoform. Molecular downregulation of PKC- impaired TG- and OAG-induced Ca2+ influx in proliferating SMCs but had no effect in confluent SMCs. Our results demonstrate that DAG (or OAG) can affect SOCE via multiple mechanisms, which may involve the depletion of Ca2+ stores as well as direct PKC--dependent activation of iPLA2β, resulting in a complex regulation of SOCE in proliferating and confluent SMCs. protein kinase C-; Ca2+-independent phospholipase A2; diacylglycerol; smooth muscle cells  相似文献   

19.
To investigate the mechanisms regulating excitation-metabolic coupling in rabbit epicardial, midmyocardial, and endocardial ventricular myocytes we extended the LabHEART model (Puglisi JL and Bers DM. Am J Physiol Cell Physiol 281: C2049–C2060, 2001). We incorporated equations for Ca2+ and Mg2+ buffering by ATP and ADP, equations for nucleotide regulation of ATP-sensitive K+ channel and L-type Ca2+ channel, Na+-K+-ATPase, and sarcolemmal and sarcoplasmic Ca2+-ATPases, and equations describing the basic pathways (creatine and adenylate kinase reactions) known to communicate the flux changes generated by intracellular ATPases. Under normal conditions and during 20 min of ischemia, the three regions were characterized by different INa, Ito, IKr, IKs, and IKp channel properties. The results indicate that the ATP-sensitive K+ channel is activated by the smallest reduction in ATP in epicardial cells and largest in endocardial cells when cytosolic ADP, AMP, PCr, Cr, Pi, total Mg2+, Na+, K+, Ca2+, and pH diastolic levels are normal. The model predicts that only KATP ionophore (Kir6.2 subunit) and not the regulatory subunit (SUR2A) might differ from endocardium to epicardium. The analysis suggests that during ischemia, the inhomogeneous accumulation of the metabolites in the tissue sublayers may alter in a very irregular manner the KATP channel opening through metabolic interactions with the endogenous PI cascade (PIP2, PIP) that in turn may cause differential action potential shortening among the ventricular myocyte subtypes. The model predictions are in qualitative agreement with experimental data measured under normal and ischemic conditions in rabbit ventricular myocytes. ATP-sensitive K+ channel; creatine and adenylate kinase reactions; phosphatidylinositol phosphates; heart; mathematical model  相似文献   

20.
Phospholamban(PLB) ablation is associated with enhanced sarcoplasmic reticulum (SR)Ca2+ uptake and attenuation of thecardiac contractile responses to -adrenergic agonists. In thepresent study, we compared the effects of isoproterenol (Iso) on theCa2+ currents(ICa) ofventricular myocytes isolated from wild-type (WT) and PLB knockout(PLB-KO) mice. Current density and voltage dependence ofICa were similarbetween WT and PLB-KO cells. However, ICa recorded fromPLB-KO myocytes had significantly faster decay kinetics. Iso increasedICa amplitude inboth groups in a dose-dependent manner (50% effective concentration,57.1 nM). Iso did not alter the rate ofICa inactivationin WT cells but significantly prolonged the rate of inactivation inPLB-KO cells. When Ba2+ was usedas the charge carrier, Iso slowed the decay of the current in both WTand PLB-KO cells. Depletion of SRCa2+ by ryanodine also slowed therate of inactivation ofICa, and subsequent application of Iso further reduced the inactivation rate ofboth groups. These results suggest that enhancedCa2+ release from the SR offsetsthe slowing effects of -adrenergic receptor stimulation on the rateof inactivation ofICa.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号