首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bacterial degradation of polychlorinated biphenyls depends on the ability of the enzyme biphenyl 2,3-dioxygenase (BPDO) to catalyze their oxygenation. Analysis of hybrid BPDOs obtained using common restriction sites to exchange large DNA fragments between LB400 bphA and B-356 bphA showed that the C-terminal portion of LB400 alpha subunit can withstand extensive structural modifications, and that these modifications can change the catalytic properties of the enzyme. On the other hand, exchanging the C-terminal portion of B-356 BPDO alpha subunit with that of LB400 alpha subunit generated inactive chimeras. Data encourage an enzyme engineering approach, consisting of introducing extensive modifications of the C-terminal portion of LB400 bphA to extend BPDO catalytic properties toward polychlorinated biphenyls.  相似文献   

2.
Biphenyl dioxygenase (BPDO) catalyzes the aerobic transformation of biphenyl and various polychlorinated biphenyls (PCBs). In three different assays, BPDO(B356) from Pandoraea pnomenusa B-356 was a more potent PCB-degrading enzyme than BPDO(LB400) from Burkholderia xenovorans LB400 (75% amino acid sequence identity), transforming nine congeners in the following order of preference: 2,3',4-trichloro approximately 2,3,4'-trichloro > 3,3'-dichloro > 2,4,4'-trichloro > 4,4'-dichloro approximately 2,2'-dichloro > 2,6-dichloro > 2,2',3,3'-tetrachloro approximately 2,2',5,5'-tetrachloro. Except for 2,2',5,5'-tetrachlorobiphenyl, BPDO(B356) transformed each congener at a higher rate than BPDO(LB400). The assays used either whole cells or purified enzymes and either individual congeners or mixtures of congeners. Product analyses established previously unrecognized BPDO(B356) activities, including the 3,4-dihydroxylation of 2,6-dichlorobiphenyl. BPDO(LB400) had a greater apparent specificity for biphenyl than BPDO(B356) (k(cat)/K(m) = 2.4 x 10(6) +/- 0.7 x 10(6) M(-1) s(-1) versus k(cat)/K(m) = 0.21 x 10(6) +/- 0.04 x 10(6) M(-1) s(-1)). However, the latter transformed biphenyl at a higher maximal rate (k(cat) = 4.1 +/- 0.2 s(-1) versus k(cat) = 0.4 +/- 0.1 s(-1)). A variant of BPDO(LB400) containing four active site residues of BPDO(B356) transformed para-substituted congeners better than BPDO(LB400). Interestingly, a substitution remote from the active site, A267S, increased the enzyme's preference for meta-substituted congeners. Moreover, this substitution had a greater effect on the kinetics of biphenyl utilization than substitutions in the substrate-binding pocket. In all variants, the degree of coupling between congener depletion and O(2) consumption was approximately proportional to congener depletion. At 2.4-A resolution, the crystal structure of the BPDO(B356)-2,6-dichlorobiphenyl complex, the first crystal structure of a BPDO-PCB complex, provided additional insight into the reactivity of this isozyme with this congener, as well as into the differences in congener preferences of the BPDOs.  相似文献   

3.
A series of experiments was conducted to examine the effects of chemical pretreatment on biodegradation of14C-labeled PCB congeners in aqueous systems. Fenton's reagent was used to generate hydroxyl radicals (OH) which were successful in partially oxidizing/transforming otherwise recalcitrant molecules of tetrachlorinated PCB, but had little or no impact on the biodegradation of a monochlorinated congener. Application of Fenton's reagent (1% H2O2, 1 mM FeSO4) followed by inoculation with pure culturesPseudomonas sp, strain LB 400 andAlcaligenes eutrophus, strain H850 resulted in the removal of approximately 38% of 2-chlorobiphenyl and 51% of 2,2, 4,4-tetrachlorobiphenyl in the form of14CO2. Comparison of the rate and extent of biodegradation of 2,2, 4,4-tetrachlorobiphenyl after the application of Fenton's reagent with the dynamic and final level of radioactivity in the aqueous phase of experimental system suggests two possible means of microbial utilization of tetrachlorinated PCB congener altered by chemical oxidation: (a) consumption of the partially oxidized chemical dissolved in the aqueous phase, and (b) direct microbial attack on the transformed compound, which may still be adhered to the solid surface.  相似文献   

4.
In this work we used a new strategy designed to reduce the size of the library that needs to be explored in family shuffling to evolve new biphenyl dioxygenases (BPDOs). Instead of shuffling the whole gene, we have targeted a fragment of bphA that is critical for enzyme specificity. We also describe a new protocol to screen for more potent BPDOs that is based on the detection of catechol metabolites from chlorobiphenyls. Several BphA variants with extended potency to degrade polychlorinated biphenyls (PCBs) were obtained by shuffling critical segments of bphA genes from Burkholderia sp. strain LB400, Comamonas testosteroni B-356, and Rhodococcus globerulus P6. Unlike all parents, these variants exhibited high activity toward 2,2'-, 3,3'-, and 4,4'-dichlorobiphenyls and were able to oxygenate the very persistent 2,6-dichlorobiphenyl. The data showed that the replacement of a short segment (335TFNNIRI341) of LB400 BphA by the corresponding segment (333GINTIRT339) of B-356 BphA or P6 BphA contributes to relax the enzyme toward PCB substrates.  相似文献   

5.
It is now established that several amino acids of region III of the biphenyl dioxygenase (BPDO) alpha subunit are involved in substrate recognition and regiospecificity toward chlorobiphenyls. However, the sequence pattern of the amino acids of that segment of seven amino acids located in the C-terminal portion of the alpha subunit is rather limited in BPDOs of natural occurrence. In this work, we have randomly mutated simultaneously four residues (Thr(335)-Phe(336)-Ile(338)-Ile(341)) of region III of Burkholderia xenovorans LB400 BphA. The library was screened for variants able to oxygenate 2,2'-dichlorobiphenyl (2,2'-CB). Replacement of Phe(336) with Met or Ile with a concomitant change of Thr(335) to Ala created new variants that transformed 2,2'-CB into 3,4-dihydro-3,4-dihydroxy-2,2'-dichlorobiphenyl, which is a dead end metabolite that was not cleaved by BphC. Replacement of Thr(335)-Phe(336) with Ala(335)-Leu(336) did not cause this type of phenotypic change. Regiospecificity toward congeners other than 2,2'-CB that were oxygenated more efficiently by variant Ala(335)-Met(336) than by LB400 BPDO was similar for both enzymes. Thus structural changes that altered the regiospecificity toward 2,2'-CB did not affect the metabolite profile of other congeners, although it affected the rate of conversion of these congeners. It was especially noteworthy that both LB400 BPDO and the Ala(335)-Met(336) variant generated 2,3-dihydroxy-2',4,4'-trichlorobiphenyl as the sole metabolite from 2,4,2',4'-CB and 4,5-dihydro-4,5-dihydroxy-2,3,2',3'-tetrachlorobiphenyl as the major metabolite from 2,3,2',3'-CB. This shows that 2,4,2',4'-CB is oxygenated principally onto vicinal ortho-meta carbons 2 and 3 and that 2,3,2',3'-CB is oxygenated onto meta-para carbons 4 and 5 by both enzymes. The data suggest that interactions between the chlorine substitutes on the phenyl ring and specific amino acid residues of the protein influence the orientation of the phenyl ring inside the catalytic pocket.  相似文献   

6.
Previous work has shown that the C-terminal portion of BphA, especially two amino acid segments designated region III and region IV, influence the regiospecificity of the biphenyl dioxygenase (BPDO) toward 2,2'-dichlorobiphenyl (2,2'-CB). In this work, we evolved BPDO by shuffling bphA genes amplified from polychlorinated biphenyl-contaminated soil DNA. Sets of approximately 1-kb DNA fragments were amplified with degenerate primers designed to amplify the C-terminal portion of bphA. These fragments were shuffled, and the resulting library was used to replace the corresponding fragment of Burkholderia xenovorans LB400 bphA. Variants were screened for their ability to oxygenate 2,2'-CB onto carbons 5 and 6, which are positions that LB400 BPDO is unable to attack. Variants S100, S149, and S151 were obtained and exhibited this feature. Variant S100 BPDO produced exclusively cis-5,6-dihydro-5,6-dihydroxy-2,2'-dichlorobiphenyl from 2,2'-CB. Moreover, unlike LB400 BPDO, S100 BphA catalyzed the oxygenation of 2,2',3,3'-tetrachlorobiphenyl onto carbons 5 and 6 exclusively and it was unable to oxygenate 2,2',5,5'-tetrachlorobiphenyl. Based on oxygen consumption measurements, variant S100 oxygenated 2,2'-CB at a rate of 16 +/- 1 nmol min(-1) per nmol enzyme, which was similar to the value observed for LB400 BPDO. cis-5,6-Dihydro-5,6-dihydroxy-2,2'-dichlorobiphenyl was further oxidized by 2,3-dihydro-2,3-dihydroxybiphenyl dehydrogenase (BphB) and 2,3-dihydroxybiphenyl dioxygenase (BphC). Variant S100 was, in addition, able to oxygenate benzene, toluene, and ethyl benzene. Sequence analysis identified amino acid residues M237 S238 and S283 outside regions III and IV that influence the activity toward doubly ortho-substituted chlorobiphenyls.  相似文献   

7.
Summary Soluble lead salts and a number of lead-containing minerals catalyze the formation of oligonucleotides from nucleoside 5-phosphorimidazolides. The effectiveness of lead compounds correlates strongly with their solubility. Under optimal conditions we were able to obtain 18% of pentamer and higher oligomers from ImpA. Reactions involving ImpU gave smaller yields.Abbreviations A adenosine - U uridine - Im imidazole - MeIm 1-methyl-imidazole - EDTA ethylenediaminetetraacetic acid - pA adenosine 5-phosphate - pU uridine 5-phosphate - Ap adenosine cyclic 2:3-phosphate - ATP adenosine 5-triphosphate - AppA P1,P2-diadenosine 5-diphosphate - pNp (N = A,U) nucleotide 2(3), 5-diphosphate - ImpA adenosine 5-phosphoreimidazolide - ImpU uridine 5-phosphorimidazolide - A 2pA adenylyl-[25]-adenosine - A 3pA adenylyl-[35]-adenosine - pA 2pA 5-phospho-adenylyl-[25]-adenosine - pA 3pA 5-phospho-adenylyl-[35]-adenosine - pUpU 5-phospho-uridylyl-uridine - pApU 5-phospho-adenylyl-uridine - pUpA 5-phospho-uridylyladenine - (pA)n (n, 2,3,4,) oligoadenylates with 5 terminal phosphate - ImpApA 5-phosphorimidazolide of adenylyl adenosine - (pA) 5+ pentamer and higher oligoadenylates with 5 terminal phosphate - (Ap)nA (n = 2,3,4) oligoadenylates without terminal phosphates In the following we do not specify the nature of the internucleotide linkageIn the following we do not specify the nature of the internucleotide linkage  相似文献   

8.
The effects of a commercial polychlorinated biphenyl (PCB) mixture (Aroclor 1248) and two individual PCB congeners were evaluated on rat renal proximal tubule culture cell viability and internucleosomal DNA fragmentation (DNA ladder) characteristic of apoptosis. Treatment with Aroclor 1248 caused the loss of cell viability and promoted apoptosis in a concentration- and time-dependent manner. The two PCB congeners assessed can also induce apoptosis. However, the extent of apoptosis generated was greater for the non-ortho-substituted planar congener (3,3,4,4-tetrachlorobiphenyl) than for the di-ortho-substituted nonplanar congener (2,2,4,4,5,5-hexachlorobiphenyl). This correlated with the loss of cell viability since the planar compound is much more cytotoxic. The results suggest a different molecular mechanism in the induction of apoptosis by planar or nonplanar PCB congeners.  相似文献   

9.
Summary (3H)DIDS (4,4-diisothiocyano-2,2-ditritiostilbene-disulfonate) was used as a convalent label for membrane sites involved in anion permeability. The label binds to a small, superficially located population of sites, about 300,000 per cell, resulting in almost complete inhibition of anion exchange. The relationship of biding to inhibition is linear suggesting that binding renders each site nonfunctional. In the inhibitory range less than 1% of the label is associated with lipids but at higher concentrations of DIDS, the fraction may be as high as 4%. In ghosts, however, treatment with (3H)DIDS results in extensive labeling of lipids. In cells, a protein fraction that behavens on SDS acrylamide gels as thought its molecular weight is 95,000 daltons (95K) is predominatly labeled by (3H)DIDS. The only other labeled protein is the major sialoglycoprotein which contains less than, 5% of the total bound (3H)DIDS. Because of the linear relationship of binding to inhibition and the unique architecture of the site, it is suggested that the (3H)DIDS-binding site of the 95K protein is the substrate binding site of the anion transport system. The 95K protein is asymmetrically arranged in the membrane with the sites arranged on the outer face accessible to agent in the medium. In leaky ghost, only a few additional binding sites can be reached from the inside of the membrane in the 95K protein, in contrast to the extensive labeling of other membrane proteins in ghosts as compared to cells.Abbreviations DADS 4,4-Diamino-2,2-dihydrostilbene disulfonic acid - DIDS 4,4-Diisothiocyano-2,2-stilbene disulfonic acid - (3H)DADS 4,4-Diamino-2,2-ditritiostilbene disulfonic acid - (3H)DIDS 4,4-Diisothiocyano-2,2-ditritiostilbene disulfonic acid  相似文献   

10.
The occurrence of adenosine 5-triphosphate-3-diphosphate-synthesizing activity was detected in five strains of actinomycetes; Streptomyces morookaensis, Streptomyces aspergilloides, Streptomyces hachijoensis, Actinomyces violascens and Streptoverticillium septatum, out of 825 strains of actinomycetes, bacteria, fungi and imperfecti. Purine nucleotide pyrophosphotransferase were extracellularly excreted associating with the cell growth, and were purified partially or to apparent homogeniety from the culture filtrate. The enzymes are a monomeric protein with a molecular weight of 18000–26000 and synthesize adenosine, guanosine and inosine 5-phosphate (mono, di or tri)-3-diphosphate such as pApp, ppApp, pppApp, pGpp, ppGpp, pppGpp and pppIpp by transferring a pyrophosphoryl group from the 5-position of ATP, dATP and pppApp to the 3-position of purine nucleotides in the presence of a divalent cation and in alkaline state.Abbreviations pppApp adenosine 5-triphosphate 3-diphosphate - ppApp adenosine 5-diphosphate 3-diphosphate - pApp adenosine 5-monophosphate 3-diphosphate - pppGpp guanosine 5-triphosphate 3-diphosphate  相似文献   

11.
2,2'-Dichlorobiphenyl (CB) is transformed by the biphenyl dioxygenase of Burkholderia xenovorans LB400 (LB400 BPDO) into two metabolites (1 and 2). The most abundant metabolite, 1, was previously identified as 2,3-dihydroxy-2'-chlorobiphenyl and was presumed to originate from the initial attack by the oxygenase on the chlorine-bearing ortho carbon and on its adjacent meta carbon of one phenyl ring. 2,3,2',3'-Tetrachlorobiphenyl is transformed by LB400 BPDO into two metabolites that had never been fully characterized structurally. We determined the precise identity of the metabolites produced by LB400 BPDO from 2,2'-CB and 2,3,2',3'-CB, thus providing new insights on the mechanism by which 2,2'-CB is dehalogenated to generate 2,3-dihydroxy-2'-chlorobiphenyl. We reacted 2,2'-CB with the BPDO variant p4, which produces a larger proportion of metabolite 2. The structure of this compound was determined as cis-3,4-dihydro-3,4-dihydroxy-2,2'-dichlorobiphenyl by NMR. Metabolite 1 obtained from 2,2'-CB-d(8) was determined to be a dihydroxychlorobiphenyl-d(7) by gas chromatographic-mass spectrometric analysis, and the observed loss of only one deuterium clearly shows that the oxygenase attack occurs on carbons 2 and 3. An alternative attack at the 5 and 6 carbons followed by a rearrangement leading to the loss of the ortho chlorine would have caused the loss of more than one deuterium. The major metabolite produced from catalytic oxygenation of 2,3,2',3'-CB by LB400 BPDO was identified by NMR as cis-4,5-dihydro-4,5-dihydroxy-2,3,2',3'-tetrachlorobiphenyl. These findings show that LB400 BPDO oxygenates 2,2'-CB principally on carbons 2 and 3 and that BPDO regiospecificity toward 2,2'-CB and 2,3,2,',3'-CB disfavors the dioxygenation of the chlorine-free ortho-meta carbons 5 and 6 for both congeners.  相似文献   

12.
4-Methylumbelliferyl 6-O-benzyl--d-lactoside (6Bn-MU-Lac) and some related compounds were synthesizedvia different selective reactions including phase-transfer glycosylation. Their suitability as substrates for a fluorometric assay of ceramide glycanase (CGase) was evaluated. Among others, the 6Bn-MU-Lac, which is resistant to exogalactosidase, was found to be a suitable substrate for routine assay of the CGase activity. For American leech CGase, theK m value is 0.232 mM at pH 5. Abbreviations: CGase, ceramide glycanase; Gal, galactose; Glc, Glucose; Lac, lactose; MU, 4-methylumbelliferone; MU-Lac, 4-methylumbelliferyl -d-lactoside; bBn-Lac, 6-O-benzyl-lactose; 6Bn-MU-Lac, 4-methylumbelliferyl 6-Obenzyl--d-lactoside; 46Bd-MU-Lac, 4-methylumbelliferyl 4,6-O-benzylidene--d-lactoside; MU-Cel, 4-methylumbellifery -d-cellobioside; 46Bd-MU-Cel, 4-methylumbelliferyl 4,6-O-benzylidene--d-cellobioside; TLC, thin layer chromatography;1H-NMR, proton nuclear magnetic resonance; GSL, glycosphingolipids; CSA, 10-camphorsulfonic acid. See Scheme 1 for chemical structures.  相似文献   

13.
Alkaloid uptake into vacuoles isolated from a Fumaria capreolata L. cell suspension culture was investigated. The uptake is carrier-mediated as shown by its substrate saturation, its sensitivity to metabolic inhibitors and especially by its exclusive preference for the (S)-forms of reticuline and scoulerine while the (R)-enantiomers which do not occur in this plant species were strictly discriminated. The carrier has a high affinity for (S)-reticuline with a K m=0.3 M. The rate of alkaloid uptake was 6 pmol·h-1·l-1 vacuole, and 0.03 mg alkaloid·mg-1 vacuolar protein were taken up. Transport was stimulated five-to seven-fold by ATP and was inhibited by the ATPase inhibitors N,N-dicyclohexylcarbodiimide and 4-4-diisothiocyanatostilbene-2,2 disulfonic acid, as well as by the protonophore carbonyl cyanide m-chlorophenylhydrazone. A number of alkaloids did not compete with labelled (S)-reticuline for uptake into vacuoles. The uptake system is absolutely specific for alkaloids indigenous to the plant from which the vacuoles were isolated. Slight modifications of the topography of an alkaloid molecule even with full retention of its electrical charge results in its exclusion. Alkaloid efflux was also shown to be mediated by a highly specific energy-dependent carrier. These results contradict the previously proposed ion-trap mechanism for alkaloid accumulation in vacuoles. A highly specific carrier-mediated and energy-dependent proton antiport system for alkaloid uptake and release is postulated.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - DCCD N,N-dicyclohexylcarbodiimide - DIDS 4-4-diisothiocyanatostilbene-2,2 disulfonic acid Dedicated to Professor Harry Beevers, Santa Cruz, on the occasion of his 60th birthday  相似文献   

14.
Summary Adenosine monophosphates (AMPs) cause the induction of floral buds in Impatients balsamina L. under strictly non-inductive photoperiods and hasten it under inductive photoperiods, cyclic AMP being more effective than 3- or 5-AMPs in this regard.Abbreviations cyclic AMP cyclic 3,5-adenosine monophosphate  相似文献   

15.
The white rot basidiomycete Phanerochaete chrysosporium metabolized 1-(3,4-diethoxyphenyl)-1,3(dihydroxy)-2-(4'-methoxyphenyl)-propane (XII) in low nitrogen stationary cultures, conditions under which the ligninolytic enzyme system is expressed. 3,4-Diethoxybenzyl alcohol (IV), 1,2(dihydroxy)-1-(4-methoxyphenyl)ethane (XX) and anisyl alcohol were isolated as metabolic products indicating an initial , bond cleavage of this dimer. Exogenously added XX was rapidly converted to anisyl alcohol, indicating that XX is an intermediate in the metabolism of XII. Fungal cleavage of the , bond of 1-(3-4-diethoxyphenyl)-1-(hydroxy)-2-(4'-methoxyphenyl)ethane (XI) also occurred, indicating that a hydroxymethyl group is not a prerequisite for this reaction. P. chrysosporium also metabolized 1-(4-ethoxy-3-methoxyphenyl)-2,2(dihydroxy)-2-(4'-methoxyphenyl)propane-1-ol (XIII). The major products of the degradation of this triol included 4-ethoxy-3-methoxybenzyl alcohol (III) and 2-hydroxy-1-(4-methoxyphenyl)-1-oxoethane (XXI). The nature of the products formed indicates that this triol is also cleaved directly at the , bond. The significant difference in the nature of the products formed from the diaryl propane (XII) and the triol (XIII), however, suggests that XIII is not an intermediate in the major pathway for the degradation of XII. Metabolites were identified after comparison with chemically synthesized standards by GLC-mass spectrometry.Abbreviations GLC Gas liquid chromatography - TMSi trimethylsilyl - TLC thin layer chromatography - MS mass spectrometry  相似文献   

16.
The rate of CO2- and p-benzoquione-dependent photosynthetic O2 evolution by Anabaena variabilis cells remained unaltered and the rate of O2 uptake observed after switching off the light (endogenous respiration) was enhanced by a factor of 6–8 when the O2 concentration was increased from 200 to 400 M. Photosystem-I-linked O2 uptake and respiration of the cells incubated with ascorbate and N,N,NN-tetramethyl-p-phenylenediamine was not appreciable influenced by the O2 concentration. 2-Iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether, blocking electron transfer at the plastoquinone level, suppressed O2 evolution and had no influence on endogenous respiration. 2-n-Heptyl-4-hydroxyquinoline-N-oxide, an inhibitor of electron transfer between photosystems II and I, as well as the cytochrome-oxidase inhibitors N 3 - , CN- and NH2OH, caused a 35–50% retardation of endogenous respiration and blocked photosynthetic O2 evolution. The molar ratio of cytochromes b6, f, c-553, aa3 and photosystem-I reaction centers in the isolated membranes equalled approx. 2:1:2:0.7:2. It is inferred that endogenous respiration of A. variabilis cells is inhibited by the light-induced electron flow through both photosystems at the level of the plastoquinone-plastocyanin-oxidoreductase complex.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DNP-INT 2-iodo-6-isopropyl-3-methyl-2,4,4-trinitrodiphenyl ether - Hepes 4-(2-hydroxyethyl)-1-piperazine ethansulfonic acid - TMPD N,N,NN-tetramethyl-p-phenylenediamine  相似文献   

17.
The sugar conformation of a DNA decamer was studied with proton-proton 3J coupling constants. Two samples, one comprising stereospecifically labeled 2-R-2H for all residues and the other 2-S-2H, were prepared by the method of Kawashima et al. [J. Org. Chem. (1995) 60, 6980–6986; Nucleosides Nucleotides (1995) 14, 333–336], the deuterium labeling being highly stereospecific 99% for all 2-2H, 98% for 2-2H of A, C, and T, and 93% for 2-2H of G). The 3J values of all H1-H2 and H1-H2 pairs, and several H2-H3 and H2-H3 pairs were determined by line fitting of 1D spectra with 0.1–0.2 Hz precision. The observed J coupling constants were explained by the rigid sugar conformation model, and the sugar conformations were found to be between C3-exo and C2-endo with m values of 26° to 44°, except for the second and 3 terminal residues C2 and C10. For the C2 and C10 residues, the lower fraction of S-type conformation was estimated from JH1H2 and JH1H2 values. For C10, the N–S two-site jump model or Gaussian distribution of the torsion angle model could explain the observed J values, and 68% S-type conformation or C1-exo conformation with 27° distribution was obtained, respectively. The differences between these two motional models are discussed based on a simple simulation of J-coupling constants.  相似文献   

18.
Summary The carotenoid pigments of the myxobacterium Sorangium compositum were analyzed by chromatographical and chemical techniques and by visible, infra red, and mass spectroscopy. Besides -carotene, neurosporene, torulene, lycopene, and 1,2-dihydro-1-hydroxy--carotene, four new carotenoid glycosides were found. These pigments were identified as 1,2-dihydro-1-hydroxy-torulene glucoside ester (I), 1,2-dihydro-3,1-dihydroxy-torulene glucoside ester (III), 1,2-dihydro-1-hydroxy-torulene rhamnoside (II), and 1,2-dihydro-3,1-dihydroxytorulene rhamnoside (IV).Fifth communication on the carotenoids of myxobacteria. Fourth communication see Arch. Mikrobiol. 76, 364–380 (1971).  相似文献   

19.
Summary DNA sequence analysis and the localization of the 5 and 3 termini by S1 mapping have shown that the mitochondrial (mt) small subunit rRNA coding region fromPodospora anserina is 1980 bp in length. The analogous coding region for mt rRNA is 1962 bp in maize, 1686 bp inSaccharomyces cerevisiae, and 956 bp in mammals, whereas its counterpart inEscherichia coli is 1542 bp. TheP. anserina mt 16S-like rRNA is 400 bases longer than that fromE. coli, but can be folded into a similar secondary structure. The additional bases appear to be clustered at specific locations, including extensions at the 5 and 3 termini. Comparison with secondary structure diagrams of 16S-like RNAs from several organisms allowed us to specify highly conserved and variable regions of this gene. Phylogenetic tree construction indicated that this gene is grouped with other mitochondrial genes, but most closely, as expected, with the fungal mitochondrial genes.  相似文献   

20.
Summary The regulation patterns of gastric acid secretion in rats were investigated. Pentagastrin and histamine stimulate gastric acid secretion, but the inhibitors of DNA-dependent synthesis of RNA and of proteins prevent only the pentagastrin action. It has been found that pentagastrin induces histidine decarboxylase in gastric mucosa, ensuring local accumulation of histamine. The latter activates adenylate cyclase and results in 3,5-AMP accumulation in gastric tissues. The administration of pentagastrin, histamine or 3,5-AMP enhances the activity of gastric carbonic anhydrase, the enzyme which takes part in HCI formation. The data suggest that these three compounds act sequentially (pentagastrin histamine 3,5-AMP) and the effect of the last one could be mediated through 3,5-AMP dependent protein kinase. The experiments in vitro demonstrated that gastric carbonic anhydrase can be separated into two isoenzymes and the phosphorylation of one of them by the 3,5-AMP dependent protein kinase sharply increases its activity. The findings raise the possibility that histamine and 3,5-AMP, mediating gastrin action, form together with enzymes (histidine decarboxylase, adenylate cyclase, protein kinase, carbonic anhydrase) a cascade of amplifiers.Autoradiographic studies have shown that [3H]-pentagastrin is not bound by oxyntic cells but adheres preferentially to histamine-producing-like endocrine cells and to the chief cells, while3H-histamine adheres preferentially to oxyntic and to chief cells. Electron microscopy indicates that only pentagastrin (but not histamine) initiates in-like endocrine cells ultrastructural changes characteristic for induction. Pentagastrin, histamine and 3,5-AMP administration produces in oxyntic cells ultrastructural changes typical for the secretion processes.These results lead to assumption that pentagastrin (gastrin) induces histidine decarboxylase in-like endocrine cells of gastric glands. Histamine which is secreted enhances adenylate cyclase activity in the neighbouring oxyntic cells where 3,5-AMP dependent protein kinase activates carbonic anhydrase by means of phosphorylation. These different cells form, probably, a multicellular functional unit for gastric acid secretion.An invited article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号