首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Potential relationships between alfalfa ( Medicago sativa L. cv. Vernal) acetylene reduction activity (ARA) and leghemoglobin content, nodule numbers, shoot biomass, root biomass, or total plant biomass were estimated using linear regression analysis after treatment with a range of concentrations of arsenate, Cd2+, Cu2+, Pb2+, Zn2+, and F. There were highly significant positive linear regressions between ARA and all the other plant values in the control plants, but this linear relationship was significantly altered between ARA and one or more of the other parameters in all treatments. There was also evidence for an alteration of the slope in some of the treatments when compared to control treatments even though a linear model was still applicable.  相似文献   

2.
3.
Inhibition of photosynthesis by heavy metals   总被引:36,自引:0,他引:36  
Inhibition of photosynthesis by heavy metals is well documented. In this review the results are compared between in vitro experiments on isolated systems (chloroplasts, enzymes ­.), experiments on excised leaves and intact plants and algae in vivo. In vitro experiments suggest potential sites of heavy metal interaction with photosynthesis at several levels of organisation, which are not necessarily confirmed in vivo. Analytical data on subcellular heavy metal level are generally missing to discuss their mechanism of action in the intact organism. In the field factors such as soil characteristics and air pollution have to be taken into account for assessing the mechanism of action of heavy metals on photosynthesis in plants, growing in a polluted erea.paper presented at the FESPP meeting in Strasbourg (1984)  相似文献   

4.
模拟酸雨对污泥堆肥中重金属形态转化及其环境行为的影响   总被引:12,自引:0,他引:12  
黄游  陈玲  李宇庆  朱志良  赵建夫 《生态学杂志》2006,25(11):1352-1357
通过模拟酸雨淋溶土柱的方法,研究了酸雨(pH=5.0和2.9)作用下污泥堆肥中Zn、Cu和Ni的溶出和迁移性。分析了酸雨对重金属形态分布规律的影响。结果表明,在相同酸雨强度下,淋出液中重金属含量与其在土柱中迁移距离大小次序为Zn〉Cu〉Ni;重金属在相同深度的土层中含量大小次序为Zn〉Ni〉Cu。淋溶液pH的降低和污泥堆肥施加比例的提高均会增加重金属在淋出液和土柱中的含量,但不影响重金属在土柱中的迁移距离。土壤酸化会促使土壤中重金属形态向活性形态转化,而且迁移距离增加。  相似文献   

5.
Addition of nitrite to rapidly growing, nitrogen-fixing filaments ofAnabaena variabilis caused an immediate drop in nitrogenase activity. This was followed by a transient induction of nitrite reductase, recovery of nitrogen fixation and cyanobacterial growth. The experiments with isolated heterocysts and a partially purified nitrogenase preparation from heterocysts showed that nitrite primarily exerted its inhibitory effect by inactivating nitrogenase irreversibly, rather than interfering with photosynthetic energy conservation.Abbreviations ATCC American type culture collection - Chl chlorophyll - FCCP carbonyl cyanide p-trifluoromethoxy phenylhydrazone - Tes 2-{[2 hydroxy-1,1-bis(hydroxymethyl)ethyl] amino} ethane sulfonic acid  相似文献   

6.
7.
To improve symbiotic nitrogen fixation on alfalfa plants, Sinorhizobium meliloti strains containing different average copy numbers of a symbiotic DNA region were constructed by specific DNA amplification (SDA). A DNA fragment containing a regulatory gene (nodD1), the common nodulation genes (nodABC), and an operon essential for nitrogen fixation (nifN) from the nod regulon region of the symbiotic plasmid pSyma of S. meliloti was cloned into a plasmid unable to replicate in this organism. The plasmid then was integrated into the homologous DNA region of S. meliloti strains 41 and 1021, which resulted in a duplication of the symbiotic region. Sinorhizobium derivatives carrying further amplification were selected by growing the bacteria in increased concentrations of an antibiotic marker present in the integrated vector. Derivatives of strain 41 containing averages of 3 and 6 copies and a derivative of strain 1021 containing an average of 2.5 copies of the symbiotic region were obtained. In addition, the same region was introduced into both strains as a multicopy plasmid, yielding derivatives with an average of seven copies per cell. Nodulation, nitrogenase activity, plant nitrogen content, and plant growth were analyzed in alfalfa plants inoculated with the different strains. The copy number of the symbiotic region was critical in determining the plant phenotype. In the case of the strains with a moderate increase in copy number, symbiotic properties were improved significantly. The inoculation of alfalfa with these strains resulted in an enhancement of plant growth.  相似文献   

8.
9.
Inhibition of methanogenesis by several heavy metals using pure cultures   总被引:1,自引:0,他引:1  
The effect of different concentrations of nickel, copper and zinc on methanogenesis using pure cultures of Methanobacterium formicicum, Methanobrevibacter arboriphilicus, Methanosarcina thermophila and Methanospirillum hungatei over time (1, 15 and 30 d) was evaluated. methanobacterium formicicum showed the highest resistance to all the metals tested, while Methanospirillum hungatei was the most sensitive strain. All strains were sensitive to copper and zinc (10–250 mg 1-1, but were much more resistant to nickel (200–1200 mg 1-1). An adaptation process of the methanogenic pure culture with the toxicants was observed over time, which indicates that the inhibitory effects of heavy metals may be reverted in optimal anaerobic conditions.  相似文献   

10.
11.
The effect of ammonium chloride, sodium butyrate, sodium propionate, and the heavy metals nickel, zinc, and copper on methanogenesis by pure cultures of Methanospirillum hungatei, Methanosarcina barkeri, Methanobacterium thermoautotrophicum, and Methanobacterium formicicum at pH 6.5 was studied. The latter three strains were resistant to greater than 60 g/L of the volatile fatty acids and to greater than 10 g/L of NH3 N. Methanospirillum hungatei was somewhat more sensitive with 50% inhibition of methanogenesis occurring at 4.2 g/L NH3 N, 27 g/L butyrate, and 41 g/L propionate. All strains were very sensitive to both copper (1-5 mg/L) and zinc (1-10 mg/L), but much more resistant to nickel. Zinc and copper concentrations 30 to 270 times higher were required to cause inhibition of Msp. hungatei incubated in sewage sludge compared with buffer, indicating a strong protective environment was afforded the methanogens against heavy metal toxicity in the sludge.  相似文献   

12.
The effect of Zn2+, Mn2+, Cd2+ and Hg2+ ions on the kinetics of growth was studied with Candida utilis. The inhibition of Candida utilis growth by Zn2+ and Mn2+ ions is described by the equation for noncompetitive inhibition of enzymatic reactions which is not the case with Cd2+ and Hg2+ ions. The inhibition constants (Ki) for these metals have been determined.  相似文献   

13.
BassiriRad  H.  Tremmel  D.C.  Virginia  R.A.  Reynolds  J.F.  de Soyza  A.G.  Brunell  M.H. 《Plant Ecology》1999,145(1):27-36
A field experiment was conducted at the Jornada Long-Term Ecological Research (LTER) site in the Chihuahuan Desert of New Mexico to compare the rapidity with which the shrubs Larrea tridentata and Prosopis glandulosa utilized water, CO2 and nitrogen (N) following a simulated summer rainfall event. Selected plants growing in a roughly 50-m2 area were assigned to treatment and control groups. Treatment plants received the equivalent of 3 cm of rain, while no supplemental water was added to the control plants. Xylem water potential (x) and net assimilation rate (Anet) were evaluated one day before and one and three days after watering. To monitor short-term N uptake, soils around each plant were labeled with eight equally distant patches of enriched 15N before watering. Each tracer patch contained 20 ml of 20 mM 15 NH4 15NO3 (99 atom%) solution applied to the soil at 20 cm from the center of the plant at soil depths of 10 and 20 cm. Nitrogen uptake, measured as leaf 15N, was evaluated at smaller time intervals and for a longer period than those used for x and Anet. Both Anet and x exhibited a significant recovery in watered vs. control Larrea plants within 3 days after the imposition of treatment, but no such recovery was observed in Prosopis in that period. Larrea also exhibited a greater capacity for N uptake following the rain. Leaf 15N was five-fold greater in watered compared to unwatered Larrea plants within 2 days after watering, while foliar 15N was not significantly different between the watered and unwatered Prosopis plants during the same period. Lack of a significant change in root 15 NO 3 uptake kinetics of Larrea, even three days after watering, indicated that the response of Larrea to a wetting pulse may have been due to a greater capacity to produce new roots. The differential ability of these potential competitors in rapidly acquiring pulses of improved soil resources following individual summer rainfall events may have significant implications for the dynamic nature of resource use in desert ecosystems.  相似文献   

14.
Bacteroid differentiation was examined in developing and mature alfalfa nodules elicited by wild-type or Fix- mutant strains of Rhizobium meliloti. Ultrastructural studies of wild-type nodules distinguished five steps in bacteroid differentiation (types 1 to 5), each being restricted to a well-defined histological region of the nodule. Correlative studies between nodule development, bacteroid differentiation, and acetylene reduction showed that nitrogenase activity was always associated with the differentiation of the distal zone III of the nodule. In this region, the invaded cells were filled with heterogeneous type 4 bacteroids, the cytoplasm of which displayed an alternation of areas enriched with ribosomes or with DNA fibrils. Cytological studies of complementary halves of transversally sectioned mature nodules confirmed that type 4 bacteroids were always observed in the half of the nodule expressing nitrogenase activity, while the presence of type 5 bacteroids could never be correlated with acetylene reduction. Bacteria with a transposon Tn5 insertion in pSym fix genes elicited the development of Fix- nodules in which bacteroids could not develop into the last two ultrastructural types. The use of mutant strains deleted of DNA fragments bearing functional reiterated pSym fix genes and complemented with recombinant plasmids, each carrying one of these fragments, strengthened the correlation between the occurrence of type 4 bacteroids and acetylene reduction. A new nomenclature is proposed to distinguish the histological areas in alfalfa nodules which account for and are correlated with the multiple stages of bacteroid development.  相似文献   

15.
The ratio of arsenite (As(III)) to arsenate (As(V)) in soils and natural waters is often controlled by the activity of As-transforming microorganisms. Phosphate is a chemical analog to As(V) and, consequently, may competitively inhibit microbial uptake and enzymatic binding of As(V), thus preventing its reduction to the more toxic, mobile, and bioavailable form - As(III). Five As-transforming bacteria isolated either from As-treated soil columns or from As-impacted soils were used to evaluate the effects of phosphate on As(V) reduction and As(III) oxidation. Cultures were initially spiked with various P:As ratios, incubated for approximately 48 h, and analyzed periodically for As(V) and As(III) concentration. Arsenate reduction was inhibited at high P:As ratios and completely suppressed at elevated levels of phosphate (500 and 1,000 μM; P inhibition constant (K(i))~20-100 μM). While high P:As ratios effectively shut down microbial As(V) reduction, the expression of the arsenate reductase gene (arsC) was not inhibited under these conditions in the As(V)-reducing isolate, Agrobacterium tumefaciens str. 5B. Further, high phosphate ameliorated As(V)-induced cell growth inhibition caused by high (1mM) As pressure. These results indicate that phosphate may inhibit As(V) reduction by impeding As(V) uptake by the cell via phosphate transport systems or by competitively binding to the active site of ArsC.  相似文献   

16.
Nodulation was inhibited in plants of green gram (Vigna radiata, cvs. ADT-1 and CO-5) exposed to different levels of simulated acid rain using a mixture of H2SO4, HNO3 and HCl (6:3:1) of pH 2.5, 4.0 and 5.5 in comparison with control (pH 7.0). Protein content of leaves increased in cv. CO-5 but decreased in cv. ADT-1 whereas the nitrate content of leaves increased in cv. ADT-1 but lowered in cv. CO-5. Nitrate reductase activity was increased in the nodular roots of cv. ADT-1 but was decreased in leaves. In cv. CO-5 it was increased in leaves but was insignificantly reduced in the nodules at pH 2.5. The nodule nitrogenase activity increased at pH 4.0 and 2.5 in cv. ADT-1. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Other laboratories have reported biphasic effects of heavy metals on protein kinase C activity: stimulation followed by inhibition at higher concentrations. We demonstrate that these earlier findings most likely resulted from a combination of the effect of the heavy metals to liberate Ca2+ from Ca2+-EGTA buffer systems and the direct inhibitory effects of the metals on protein kinase C. Simulations of such interactions substantiate this conclusion. When soluble protein kinase C is prepared without the addition of Ca2+ or chelator, heavy metals (Cd2+, Cu2+, Hg2+, Zn2+, in the 10 microM range) inhibit the activity of, and the binding of regulatory ligands to, protein kinase C. Heavy metals inhibit the extent of [3H]phorbol dibutyrate binding without affecting the affinity of the interaction, an inhibition that is not surmounted by excess phospholipid. Heavy metals also inhibit the phospholipid-dependent catalytic activity of protein kinase C in a manner that excess phosphatidylserine can overcome. The inhibition of enzyme activity by heavy metals cannot be surmounted by excess Ca2+ or Mg2+. The inhibitory effects of heavy metals are not confined to protein kinase C. Heavy metals also inhibit cyclic AMP binding to cyclic AMP-dependent protein kinase and the catalytic activity of that kinase, but in a distinctly different pattern.  相似文献   

18.
Life on Earth depends on N2-fixing microbes to make ammonia from atmospheric N2 gas by the nitrogenase enzyme. Most nitrogenases use Mo as a cofactor; however, V and Fe are also possible. N2 fixation was once believed to have evolved during the Archean-Proterozoic times using Fe as a cofactor. However, δ15N values of paleo-ocean sediments suggest Mo and V cofactors despite their low concentrations in the paleo-oceans. This apparent paradox is based on an untested assumption that only soluble metals are bioavailable. In this study, laboratory experiments were performed to test the bioavailability of mineral-associated trace metals to a model N2-fixing bacterium Azotobacter vinelandii. N2 fixation was observed when Mo in molybdenite, V in cavansite, and Fe in ferrihydrite were used as the sole sources of cofactors, but the rate of N2 fixation was greatly reduced. A physical separation between minerals and cells further reduced the rate of N2 fixation. Biochemical assays detected five siderophores, including aminochelin, azotochelin, azotobactin, protochelin, and vibrioferrin, as possible chelators to extract metals from minerals. The results of this study demonstrate that mineral-associated trace metals are bioavailable as cofactors of nitrogenases to support N2 fixation in those environments that lack soluble trace metals and may offer a partial answer to the paradox.  相似文献   

19.
The effects of the heavy metals Cu, Cd, Ni, Pb and Zn on [(14)C]methylamine and [(14)C]aminoisobutyric acid uptake were studied in the free-living fungus Paxillus involutus and in mycorrhizal and non-mycorrhizal birch roots. The uptake of both N sources by P. involutus was inhibited by the five metals tested. However, Cu(2+) and Pb(2+) had a greater inhibitory effect. Non-competitive inhibitions were determined between heavy metals and [(14)C]methylamine uptake. [(14)C]Methylamine uptake was reduced by one third by 2 μM Cd(2+) and Cu(2+) in non-mycorrhizal roots, whereas that of mycorrhizal roots was not affected. However, it was reduced by 30 to 80% by 200 μM Cd(2+) and Cu(2+) irrespective of the mycorrhizal status. [(14)C]Aminoisobutyric acid uptake in mycorrhizal roots was not significantly affected by Cd(2+) and Cu(2+), whereas that of non-mycorrhizal roots was decreased by 77% at 200 μM Cu(2+). [(14)C]Aminoisobutyric acid uptake was 4.5 to 6 fold higher in mycorrhizal roots, compared with non-mycorrhizal roots, even under metal exposure. The high efficiency of N acquisition by mycorrhizal birch seedlings under metal exposure might be regarded as a mechanism of stress avoidance.  相似文献   

20.
土壤氮矿化作为氮转化的主要过程决定土壤供氮能力。热带森林生态系统往往受磷限制, 氮矿化过程对干旱的响应是否受磷限制的调控值得探讨。该研究以海南三亚甘什岭自然保护区热带低地雨林为研究对象, 利用2019年建立的林内穿透雨减少(50%)及磷添加双因素交互实验平台, 通过野外树脂芯原位培养法研究模拟干旱及磷添加对土壤无机氮(包括铵态氮和硝态氮)含量和氮矿化过程的影响。结果表明: 1)减雨处理显著降低了5和15 cm深度土壤的水分含量, 而对土壤温度没有显著影响。2)减雨处理和减雨与磷添加共同处理无论在旱季还是湿季对0-10 cm土壤无机氮含量均没有产生显著影响, 但磷添加处理在旱季显著降低了土壤硝态氮含量, 表明磷添加处理对氮有效性的影响主要体现在旱季, 而非湿季。3)干旱处理在旱季和湿季均显著降低了土壤净氨化速率和净氮矿化速率, 而磷添加处理和减雨与磷添加共同处理无论在旱季还是湿季对净氨化速率、净硝化速率和净氮矿化速率均没有产生显著影响, 结果表明了干旱能够显著降低土壤净氮矿化速率。4)土壤水分含量与土壤净氨化速率和净氮矿化速率呈显著正相关关系, 同时减雨处理显著影响了土壤净氨化速率与铵态氮含量的关系, 并且在铵态氮含量相等的情况, 随着干旱的影响净氨化速率下降得更快。这表明土壤水分含量变化是影响该研究样地土壤氮矿化的主要因素。上述研究结果说明, 降水变化对热带低地雨林中土壤氮矿化有重要影响, 短期磷添加没有显著影响, 减雨与磷添加对土壤氮矿化过程并没有交互效应。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号