首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motility in trypanosomes is achieved through the undulating behaviour of a single "9 + 2" flagellum; normally the flagellar waves begin at the flagellar tip and propagate towards the base. For flagella in general, however, propagation is from base-to-tip and it is believed that bend formation, and sustained regular oscillation, depend upon a localised resistance to inter-doublet sliding - which is normally conferred by structures at the flagellar base, typically the basal body. We therefore predicted that in trypanosomes there must be a resistive structure at the flagellar tip. Electron micrographs of Crithidia deanei, Herpetomonas megaseliae, Trypanosoma brucei and Leishmania major have confirmed that such attachments are present. Thus, it can be assumed that in trypanosomes microtubule sliding at the flagellar tip is resisted sufficiently to permit bend formation.  相似文献   

2.
Amongst the earliest eukaryotes, trypanosomes have developed conventional organelles but sometimes with extreme features rarely seen in other organisms. This is the case of the flagellum, containing conventional and unique structures whose role in infectivity is still enigmatic.  相似文献   

3.
Kinesin family in murine central nervous system   总被引:27,自引:15,他引:12       下载免费PDF全文
《The Journal of cell biology》1992,119(5):1287-1296
In neuronal axons, various kinds of membranous components are transported along microtubules bidirectionally. However, only two kinds of mechanochemical motor proteins, kinesin and brain dynein, had been identified as transporters of membranous organelles in mammalian neurons. Recently, a series of genes that encode proteins closely related to kinesin heavy chain were identified in several organisms including Schizosaccharomyces pombe, Aspergillus niddulans, Saccharomyces cerevisiae, Caenorhabditus elegans, and Drosophila. Most of these members of the kinesin family are implicated in mechanisms of mitosis or meiosis. To address the mechanism of intracellular organelle transport at a molecular level, we have cloned and characterized five different members (KIF1-5), that encode the microtubule-associated motor domain homologous to kinesin heavy chain, in murine brain tissue. Homology analysis of amino acid sequence indicated that KIF1 and KIF5 are murine counterparts of unc104 and kinesin heavy chain, respectively, while KIF2, KIF3, and KIF4 are as yet unidentified new species. Complete amino acid sequence of KIF3 revealed that KIF3 consists of NH2-terminal motor domain, central alpha-helical rod domain, and COOH-terminal globular domain. Complete amino acid sequence of KIF2 revealed that KIF2 consists of NH2-terminal globular domain, central motor domain, and COOH-terminal alpha-helical rod domain. This is the first identification of the kinesin-related protein which has its motor domain at the central part in its primary structure. Northern blot analysis revealed that KIF1, KIF3, and KIF5 are expressed almost exclusively in murine brain, whereas KIF2 and KIF4 are expressed in brain as well as in other tissues. All these members of the kinesin family are expressed in the same type of neurons, and thus each one of them may transport its specific organelle in the murine central nervous system.  相似文献   

4.
S Kimura  M Ikeda-Saito 《Proteins》1988,3(2):113-120
Human myeloperoxidase and human thyroid peroxidase nucleotide and amino acid sequences were compared. The global similarities of the nucleotide and amino acid sequences are 46% and 44%, respectively. These similarities are most evident within the coding sequence, especially that encoding the myeloperoxidase functional subunits. These results clearly indicate that myeloperoxidase and thyroid peroxidase are members of the same gene family and diverged from a common ancestral gene. The residues at 416 in myeloperoxidase and 407 in thyroid peroxidase were estimated as possible candidates for the proximal histidine residues that link to the iron centers of the enzymes. The primary structures around these histidine residues were compared with those of other known peroxidases. The similarity in this region between the two animal peroxidases (amino acid 396-418 in thyroid peroxidase and 405-427 in myeloperoxidase) is 74%; however, those between the animal peroxidases and other yeast and plant peroxidases are not significantly high, although several conserved features have been observed. The possible location of the distal histidine residues in myeloperoxidase and thyroid peroxidase amino acid sequences are also discussed.  相似文献   

5.
6.
Kinetoplast DNA (kDNA), the trypanosome mitochondrial genome, is a giant network containing several thousand interlocked DNA rings. Within the mitochondrion, kDNA is condensed into a disk-shaped structure positioned near the flagellar basal body. The disk is linked to the basal body by a remarkable transmembrane filament system named the tripartite attachment complex (TAC). Following kDNA replication, the TAC mediates network segregation, pulling the progeny networks into the daughter cells by their linkage to the basal bodies. So far TAC has been characterized only morphologically with no known protein components. By screening an RNAi library, we discovered p166, a protein localizing between the kDNA and basal body in intact cells and in isolated flagellum-kDNA complexes. RNAi of p166 has only small effects on kDNA replication, but it causes profound defects in network segregation. For example, kDNA replication without segregation causes the networks to grow to enormous size. Thus, p166 is the first reported molecular component of the TAC, and its discovery will facilitate study of kDNA segregation machinery at the molecular level.  相似文献   

7.
The endoplasmic reticulum (ER) is an essential cellular compartment in which an enormous number of secretory and cell surface membrane proteins are synthesized and subjected to cotranslational or posttranslational modifications, such as glycosylation and disulfide bond formation. Proper maintenance of ER protein homeostasis (sometimes termed proteostasis) is essential to avoid cellular stresses and diseases caused by abnormal proteins. Accumulating knowledge of cysteine-based redox reactions catalyzed by members of the protein disulfide isomerase (PDI) family has revealed that these enzymes play pivotal roles in productive protein folding accompanied by disulfide formation, as well as efficient ER-associated degradation accompanied by disulfide reduction. Each of PDI family members forms a protein–protein interaction with a preferential partner to fulfill a distinct function. Multiple redox pathways that utilize PDIs appear to function synergistically to attain the highest quality and productivity of the ER, even under various stress conditions. This review describes the structures, physiological functions, and cooperative actions of several essential PDIs, and provides important insights into the elaborate proteostatic mechanisms that have evolved in the extremely active and stress-sensitive ER.  相似文献   

8.
动物bHLH转录因子家族成员及其功能   总被引:3,自引:0,他引:3  
王勇  姚勤  陈克平 《遗传》2010,32(4):307-330
bHLH转录因子在真核生物生长发育调控过程中具有重要作用。动物bHLH转录因子包含45个家族, 分别参与调控神经元发生、肌细胞生成、肠组织发育以及环境毒素响应等生物学过程。过去20年里, 研究人员对动物bHLH家族成员鉴定及其生物学功能开展了广泛的研究。文章在介绍动物45个bHLH家族名称来源的基础上, 综述了小鼠、果蝇和线虫3种模式动物bHLH家族成员及其功能的研究进展。小鼠、果蝇和线虫中分别有114、59和42种bHLH蛋白。其中, 小鼠108种、果蝇47种和线虫20种bHLH蛋白的功能已比较明确, 功能未知的22种线虫bHLH蛋白中还有15种尚未归入相应家族。文章也对部分被误用的bHLH家族成员名称做了说明, 可为相关研究人员深入开展bHLH转录因子结构与功能的研究提供较为清晰和系统的背景资料。  相似文献   

9.
Self-incompatibility (SI) systems prevent self-pollination and promote outbreeding. In Brassica, the SI genes SLG (for S-locus glycoprotein) and SRK (for S-receptor kinase) are members of the S multigene family, which share the SLG-like domain (S domain), which encodes a putative receptor. We have cloned members of the S multigene family from the S9 haplotype of B. campestris (syn. rapa). In addition, eight distinct genomic regions harboring 10 SLG/SRK-like genes were characterized in the present study. Sequence analysis revealed two novel SRK-like genes, BcRK3 and BcRK6 (for B. campestris receptor kinases 3 and 6, respectively). Other genes that were characterized included SFR2 (for S gene family receptor 2), SLR2 (for S locus related gene 2), and a pseudogene. Based on phylogenetic analysis of the nucleotide sequences of the S domain regions, SLG and SRK appear to be distinct from other members of the S multigene family. Linkage analysis showed that most members of the S multigene family are dispersed in the Brassica genome, and that SLR1 (S locus related gene 1) is not linked to the SLR2 in B. campestris.  相似文献   

10.
Identifying conformational changes in kinesin family motors associated with nucleotide and microtubule (MT) binding is essential to determining an atomic-level model for force production and motion by the motors. Using the mobility of nucleotide analog spin probes bound at the active sites of kinesin family motors to monitor conformational changes, we previously demonstrated that, in the ADP state, the open nucleotide site closes upon MT binding [Naber, N., Minehardt, T. J., Rice, S., Chen, X., Grammer, J., Matuska, M., et al. (2003). Closing of the nucleotide pocket of kinesin family motors upon binding to microtubules. Science, 300, 798-801]. We now extend these studies to kinesin-1 (K) and ncd (nonclaret disjunctional protein) motors in ATP and ATP-analog states. Our results reveal structural differences between several triphosphate and transition-state analogs bound to both kinesin and ncd in solution. The spectra of kinesin/ncd in the presence of SLADP•AlFx/BeFx and kinesin, with the mutation E236A (K-E236A; does not hydrolyze ATP) bound to ATP, show an open conformation of the nucleotide pocket similar to that seen in the kinesin/ncd•ADP states. In contrast, the triphosphate analogs K•SLAMPPNP and K-E236A•SLAMPPNP induce a more immobilized component of the electron paramagnetic resonance spectrum, implying closing of the nucleotide site. The MT-bound states of all of the triphosphate analogs reveal two novel spectral components. The equilibrium between these two components is only weakly dependent on temperature. Both components have more restricted mobility than observed in MT-bound diphosphate states. Thus, the closing of the nucleotide pocket when the diphosphate state binds to MTs is amplified in the triphosphate state, perhaps promoting accelerated ATP hydrolysis. Consistent with this idea, molecular dynamics simulations show a good correlation between our spectroscopic data, X-ray crystallography, and the electron microscopy of MT-bound triphosphate-analog states.  相似文献   

11.
We report the sequence and expression analysis of two new Drosophila members of the Semaphorin family. Both proteins show the presence of Semaphorin domains and transmembrane domains. Both genes are expressed maternally and in embryos, and reveal distinct expression patterns much earlier than the onset of neurogenesis. We also present an overview of the domain structure of all so far known semaphorins in Drosophila. Furthermore, we compared all Drosophila and C. elegans Semaphorins and discuss them in the light of their evolution.  相似文献   

12.
gamma-tubulin is an essential part of a multiprotein complex that nucleates the minus end of microtubules. Although the function of gamma-tubulin in nucleating cytoplasmic and mitotic microtubules from organizing centers such as the centrosome and spindle pole body is well documented, its role in microtubule nucleation in the eukaryotic flagellum is unclear. Here, we have used Trypanosoma brucei to investigate possible functions of gamma-tubulin in the formation of the 9 + 2 flagellum axoneme. T. brucei possesses a single flagellum and forms a new flagellum during each cell cycle. We have used an inducible RNA interference (RNAi) approach to ablate expression of gamma-tubulin, and, after induction, we observe that the new flagellum is still formed but is paralyzed, while the old flagellum is unaffected. Electron microscopy reveals that the paralyzed flagellum lacks central pair microtubules but that the outer doublet microtubules are formed correctly. These differences in microtubule nucleation mechanisms during flagellum growth provide insights into spatial and temporal regulation of gamma-tubulin-dependent processes within cells and explanations for the organization and evolution of axonemal structures such as the 9 + 0 axonemes of sensory cells and primary cilia.  相似文献   

13.
Mitochondrial disruption during apoptosis results in the release of cytochrome c that forms apoptosomes with Apaf-1 and caspase-9. Activation of caspase-9 by dimerization in apoptosomes then triggers a caspase signaling cascade. In addition, other apoptosis signaling molecules released from the mitochondrion, such as apoptosis-inducing factor and endonuclease G, may induce caspase-9-independent apoptosis. To determine the signaling events induced by caspase-9, we used chemically induced dimerization for specific activation of caspase-9. We observed that caspase-9 dimerization resulted in the loss of mitochondrial membrane potential and the cleavage of anti-apoptotic Bcl-2, Bcl-xL, and Mcl-1. Moreover, cleavage-resistant Bcl-2, Bcl-xL, or Mcl-1 potently inhibited caspase-9-dependent loss of mitochondrial membrane potential and the release of cytochrome c. Our data suggest that a caspase-9 signaling cascade induces feedback disruption of the mitochondrion through cleavage of anti-apoptotic Bcl-2, Bcl-xL, and Mcl-1.  相似文献   

14.
Galectin-9 (Gal-9) is a tandem-repeat-type member of the galectin family associated with diverse biological processes, such as apoptosis, cell aggregation, and eosinophil chemoattraction. Although the detailed sugar-binding specificity of Gal-9 has been elucidated, molecular mechanisms that underlie these functions remain to be investigated. During the course of our binding study by affinity chromatography and surface plasmon resonance (SPR) analysis, we found that human Gal-9 interacts with immobilized Gal-9 in the protein-protein interaction mode. Interestingly, this intermolecular interaction strongly depended on the activity of the carbohydrate recognition domain (CRD), because the addition of potent saccharide inhibitors abolished the binding. The presence of multimers was also confirmed by Ferguson plot analysis of result of polyacrylamide gel electrophoresis and matrix-assisted laser-desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Moreover, this intermolecular interaction was observed between Gal-9 and other galectin members, such as Gal-3 and Gal-8, but not Gal-1. Because such properties have not been reported yet, they may explain an unidentified mechanism underlying the diverse functions of Gal-9.  相似文献   

15.
Live spermatozoa of the Japanese quail were observed as they swam in highly viscous salines. Under these conditions, torsions of the flagellum were readily seen. The torsions had a characteristic magnitude (nominally 180 degrees) and pattern of incidence. As a cycle of bending propagated over it, each position on the flagellum experienced first a sinistral torsion and, later, a restoring dextral torsion. The two zones of torsion were each associated with bending; between them was a torsion-free zone that tended to be straight. The amount of interdoublet sliding needed to generate the torsions may be as little as 10 nm. These dynamic propagating torsions have been detected by following the angular displacements of individual (swollen) mitochondria lying adjacent to the axoneme. It is suggested that torque generation is a primary outcome when the unconstrained ''9 + 2'' axoneme is activated.  相似文献   

16.
The low density lipoprotein receptor (LDLR) family is composed of a class of cell surface endocytic receptors that recognize extracellular ligands and internalize them for degradation by lysosomes. In addition to LDLR, mammalian members of this family include the LDLR-related protein (LRP), the very low density lipoprotein receptor (VLDLR), the apolipoprotein E receptor-2 (apoER2), and megalin. Herein we have analyzed the endocytic functions of the cytoplasmic tails of these receptors using LRP minireceptors, its chimeric receptor constructs, and full-length VLDLR and apoER2 stably expressed in LRP-null Chinese hamster ovary cells. We find that the initial endocytosis rates mediated by different cytoplasmic tails are significantly different, with half-times of ligand internalization ranging from less than 30 s to more than 8 min. The tail of LRP mediates the highest rate of endocytosis, whereas those of the VLDLR and apoER2 exhibit least endocytosis function. Compared with the tail of LRP, the tails of the LDLR and megalin display significantly lower levels of endocytosis rates. Ligand degradation analyses strongly support differential endocytosis rates initiated by these receptors. Interestingly apoER2, which has recently been shown to mediate intracellular signal transduction, exhibited the lowest level of ligand degradation efficiency. These results thus suggest that the endocytic functions of members of the LDLR family are distinct and that certain receptors in this family may play their main roles in areas other than receptor-mediated endocytosis.  相似文献   

17.
The small zinc finger proteins tbZFP1 and tbZFP2 have been implicated in the control of Trypanosoma brucei differentiation to the procyclic form. Here, we report that the complete ZFP family in Trypanosoma cruzi is composed by four members, ZFP1A and B, and ZFP2A and B. ZFP1B is a paralog specific gene restricted to T. cruzi, while the ZFP2A and B paralogs diverged prior to the trypanosomatid lineage separation. Moreover, we demonstrate that TcZFP1 and TcZFP2 members interact with each other and that this interaction is mediated by a WW domain in TcZFP2. Also, TcZFP2B strongly homodimerizes by a glycine rich region absent in TcZFP2A. We propose a model to discuss the relevance of these protein-protein interactions in terms of the functions of these proteins.  相似文献   

18.
Adrenomedullin (AM) is a novel hypotensive peptide that exerts a variety of strongly protective effects against multiorgan damage. AM-specific receptors were first identified as heterodimers composed of calcitonin-receptor-like receptor (CLR), a G protein coupled receptor, and one of two receptor activity-modifying proteins (RAMP2 or RAMP3), which are accessory proteins containing a single transmembrane domain. RAMPs are required for the surface delivery of CLR and the determination of its phenotype. CLR/RAMP2 (AM1 receptor) is more highly AM-specific than CLR/RAMP3 (AM2 receptor). Although there have been no reports showing differences in intracellular signaling via the two AM receptors, in vitro studies have shed light on their distinct trafficking and functionality. In addition, the tissue distributions of RAMP2 and RAMP3 differ, and their gene expression is differentially altered under pathophysiological conditions, which is suggestive of the separate roles played byAM1 and AM2 receptors in vivo. Both AM and the AM1 receptor, but not the AM2 receptor, are crucial for the development of the fetal cardiovascular system and are able to effectively protect against various vascular diseases. However, AM2 receptors reportedly play an important role in maintaining a normal body weight in old age and may be involved in immune function. In this review article, we focus on the shared and separate functions of the AM receptor subtypes and also discuss the potential for related drug discovery. In addition, we mention their possible function as receptors for AM2 (or intermedin), an AM-related peptide whose biological functions are similar to those of AM.  相似文献   

19.
Budding of transport vesicles from the endoplasmic reticulum in yeast requires the formation, at the budding site, of a coat protein complex (COPII) that consists of two heterodimeric subcomplexes (Sec23p/Sec24p and Sec13p/Sec31p) and the Sar1 GTPase. Sec24p is an essential protein and involved in cargo selection. In addition to Sec24p, the yeast Saccharomyces cerevisiae expresses two non-essential Sec24p-related proteins, termed Sfb2p (product of YNL049c) and Sfb3p/Lst1p (product of YHR098c). We here show that Sfb2p and, less efficiently, Sfb3p/Lst1p are able to bind, like Sec24p, the integral membrane cargo protein Sed5p. We also demonstrate that Sfb2p, like Sec24p and Sfb3p/Lst1p, forms a complex with Sec23p in vivo. Whereas the deletion of SFB2 did not affect transport kinetics of various proteins, the maturation of the glycolipid-anchored plasma membrane protein Gas1p was differentially impaired in sfb3 knock-out cells. We generated several conditional-lethal sec24 mutants that, combined with null alleles of SFB2 and SFB3/LST1, led to a complete block of transport between the endoplasmic reticulum and the Golgi (sec24-11/Deltasfb2) or to cell death (sec24-11/Deltasfb3). Of the Sec24p family members, Sfb2p is the least abundant at steady state, but high intracellular concentrations of Sfb2p can rescue sec24 mutants under restrictive conditions. The data presented strongly suggest that the Sec24p-related proteins function as COPII components.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号