首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Os2H16, a rice gene of unknown function, has been previously reported to be upregulated in response to infection by Xanthomonas oryzae pv. oryzae. In this study, expression patterns of Os2H16 were analyzed, demonstrating that expression of Os2H16 was dramatically induced by both bacterial and fungal infection as well as by drought stress, but repressed by salt treatment. To further investigate the role of Os2H16 in plant defense responses to abiotic and biotic stresses, transgenic lines of rice were developed. In comparison with wild-type rice, transgenic lines overexpressing Os2H16 show enhanced tolerance to bacterial blight and sheath blight disease, respectively caused by Xanthomonas oryzae pv. oryzae and Rhizoctonia solani. On the contrary, Os2H16 knockdown lines were more susceptible to both pathogens. Consistent with their individual phenotypes, upon inoculation, the expression of defense-related marker genes were elevated in Os2H16 overexpression individuals than in wild-type, while they were significantly reduced in Os2H16 knockdown lines. We also show that Os2H16 overexpression lines display enhanced tolerance to drought stress and elevated induction of drought-related genes, compared to wild-type rice. Os2H16 knockdown lines were more sensitive to drought stress and exhibited reduced induction of drought-related genes. Our study provides the first functional characterization of the rice Os2H16 gene, and suggests that Os2H16 positively modulate plant defense to abiotic and biotic stress.  相似文献   

5.
6.
Currently, there are few studies concerning the function of heavy metal ATPase 2 (HMA2), particularly in monocotyledons, and the potential application of this protein in biofortification and phytoremediation. Thus, we isolated and characterized the TaHMA2 gene from wheat (Triticum aestivum L.). Our results indicate that TaHMA2 is localized to the plasma membrane and stably expressed, except in the nodes, which showed relatively high expression. Zinc/cadmium (Zn/Cd) resistance was observed in TaHMA2‐transformed yeast. The over‐expression of TaHMA2 increased the elongation and decreased the seed‐setting rate in rice (Oryza sativa L.), but not Arabidopsis thaliana, tobacco (Nicotiana tabacum L.) or wheat. TaHMA2 over‐expression also improved root‐shoot Zn/Cd translocation, especially in rice. The seeds of transgenic rice and wheat, not tobacco, showed decreased Zn concentrations. The Zn concentration was decreased in all parts of the transgenic rice seeds, but was decreased only in the ventral endosperm of wheat, which showed an increased Zn concentration in the embryo and aleurone. The over‐expression of TaHMA2 improved plant tolerance under moderate Zn stress and Zn deficiency, but Zn and Cd resistance decreased under high levels of Zn and Cd stress, respectively. The Cd concentration in transgenic rice seedlings was dramatically increased under Zn deficiency. Thus, over‐expression of TaHMA2 showed a more obvious phenotype in monocotyledons than in dicotyledons. These findings provide important information for TaHMA2, and more efforts should be made in the future to characterize the reduced Zn concentration in TaHMA2 transgenic grains and the diversity of TaHMA2 substrate specificity.  相似文献   

7.
8.
9.
10.
11.
12.
Long-chain base phosphates (LCBPs) such as sphingosine-1-phosphate and phytosphingosine-1-phosphate function as abscisic acid (ABA)-mediated signaling molecules that regulate stomatal closure in plants. Recently, a glycoside hydrolase family 1 (GH1) β-glucosidase, Os3BGlu6, was found to improve drought tolerance by stomatal closure in rice, but the biochemical functions of Os3BGlu6 have remained unclear. Here we identified Os3BGlu6 as a novel GH1 glucocerebrosidase (GCase) that catalyzes the hydrolysis of glucosylceramide to ceramide. Phylogenetic and enzymatic analyses showed that GH1 GCases are widely distributed in seed plants and that pollen or anthers of all seed plants tested had high GCase activity, but activity was very low in ferns and mosses. Os3BGlu6 had high activity for glucosylceramides containing (4E,8Z)-sphingadienine, and GCase activity in leaves, stems, roots, pistils, and anthers of Os3BGlu6-deficient rice mutants was completely absent relative to that of wild-type rice. The levels of ceramides containing sphingadienine were correlated with GCase activity in each rice organ and were significantly lower in Os3BGlu6-deficient rice mutants than in the wild type. The levels of LCBPs synthesized from ceramides, especially the levels of sphingadienine-1-phosphate, were also correlated with GCase activity in each rice organ and were significantly lower in Os3BGlu6-deficient rice mutants than in the wild type. These results indicate that Os3BGlu6 regulates the level of ceramides containing sphingadienine, influencing the regulation of sphingadienine-1-phosphate levels and subsequent improvement of drought tolerance via stomatal closure in rice.  相似文献   

13.

Key message

OsPHR4 mediates the regulation of Pi-starvation signaling and Pi-homeostasis in a PHR1-subfamily dependent manner in rice.

Abstract

Phosphate (Pi) starvation response is a sophisticated process for plant in the natural environment. In this process, PHOSPHATE STARVATION RESPONSE 1 (PHR1) subfamily genes play a central role in regulating Pi-starvation signaling and Pi-homeostasis. Besides the three PHR1 orthologs in Oryza sativa L. (Os) [(Os) PHR1, (Os) PHR2, and (Os) PHR3], which were reported to regulated Pi-starvation signaling and Pi-homeostasis redundantly, a close related PHR1 ortholog [designated as (Os) PHR4] is presented in rice genome with unknown function. In this study, we found that OsPHR4 is a Pi-starvation induced gene and mainly expresses in vascular tissues through all growth and development periods. The expression of OsPHR4 is positively regulated by OsPHR1, OsPHR2 and OsPHR3. The nuclear located OsPHR4 can respectively interact with other three PHR1 subfamily members to regulate downstream Pi-starvation induced genes. Consistent with the positive role of PHR4 in regulating Pi-starvation signaling, the OsPHR4 overexpressors display higher Pi accumulation in the shoot and elevated expression of Pi-starvation induced genes under Pi-sufficient condition. Besides, moderate growth retardation and repression of the Pi-starvation signaling in the OsPHR4 RNA interfering (RNAi) transgenic lines can be observed under Pi-deficient condition. Together, we propose that OsPHR4 mediates the regulation of Pi-starvation signaling and Pi-homeostasis in a PHR1-subfamily dependent manner in rice.
  相似文献   

14.
15.
16.
Cadmium causes the generation of reactive oxygen species, which in turn causes cell damage. We isolated a novel gene from a wheat root cDNA library, which conferred Cd(II)-specific tolerance when expressed in yeast (Saccharomyces cerevisiae). The gene, which we called TaTM20, for Triticum aestivum transmembrane 20, encodes a putative hydrophobic polypeptide of 889 amino acids, containing 20 transmembrane domains arranged as a 5-fold internal repeating unit of 4 transmembrane domains each. Expression of TaTM20 in yeast cells stimulated Cd(II) efflux resulting in a decrease in the content of yeast intracellular cadmium. TaTM20-induced Cd(II) tolerance was maintained in yeast even under conditions of reduced GSH. These results demonstrate that TaTM20 enhances Cd(II) tolerance in yeast through the stimulation of Cd(II) efflux from the cell, partially independent of GSH. Treatment of wheat seedlings with Cd(II) induced their expression of TaTM20, decreasing subsequent root Cd(II) accumulation and suggesting a possible role for TaTM20 in Cd(II) tolerance in wheat.  相似文献   

17.
The clustered genes C-repeat (CRT) binding factor (CBF)1/ dehydration-responsive element binding protein (DREB)1B, CBF2/DREB1C, and CBF3/DREB1A play a central role in cold acclimation and facilitate plant resistance to freezing in Arabidopsis thaliana. Rice (Oryza sativa L.) is very sensitive to low temperatures; enhancing the cold stress tolerance of rice is a key challenge to increasing its yield. In this study, we demonstrate chilling acclimation, a phenomenon similar to Arabidopsis cold acclimation, in rice. To determine whether rice CBF/DREB1 genes participate in this cold-responsive pathway, all putative homologs of Arabidopsis DREB1 genes were filtered from the complete rice genome through a BLASTP search, followed by phylogenetic, colinearity and expression analysis. We thereby identified 10 rice genes as putative DREB1 homologs: nine of these were located in rice genomic regions with some colinearity to the Arabidopsis CBF1CBF4 region. Expression profiling revealed that six of these genes (Os01g73770, Os02g45450, Os04g48350, Os06g03670, Os09g35010, and Os09g35030) were similarly expressed in response to chilling acclimation and cold stress and were co-expressed with genes involved in cold signalling, suggesting that these DREB1 homologs may be involved in the cold response in rice. The results presented here serve as a prelude towards understanding the function of rice homologs of DREB1 genes in cold-sensitive crops.  相似文献   

18.
Irrigation of paddy fields to arsenic (As) containing groundwater leads to As accumulation in rice grains and causes serious health risk to the people worldwide. To reduce As intake via consumption of contaminated rice grain, identification of the mechanisms for As accumulation and detoxification in rice is a prerequisite. Herein, we report involvement of a member of rice NRAMP (Natural Resistance‐Associated Macrophage Protein) transporter, OsNRAMP1, in As, in addition to cadmium (Cd), accumulation through expression in yeast and Arabidopsis. Expression of OsNRAMP1 in yeast mutant (fet3fet4) rescued iron (Fe) uptake and exhibited enhanced accumulation of As and Cd. Expression of OsNRAMP1 in Arabidopsis provided tolerance with enhanced As and Cd accumulation in root and shoot. Cellular localization revealed that OsNRAMP1 resides on plasma membrane of endodermis and pericycle cells and may assist in xylem loading for root to shoot mobilization. This is the first report demonstrating role of NRAMP in xylem mediated loading and enhanced accumulation of As and Cd in plants. We propose that genetic modification of OsNRAMP1 in rice might be helpful in developing rice with low As and Cd content in grain and minimize the risk of food chain contamination to these toxic metals.  相似文献   

19.
20.
Thlaspi caerulescens exhibits a unique capacity for cadmium tolerance and accumulation. We investigated the molecular basis of this exceptional Cd(2+) tolerance by screening for T. caerulescens genes, which alleviate Cd(2+) toxicity upon expression in Saccharomyces cerevisiae. This allowed for the isolation of a cDNA encoding a peptide with homology to the C-terminal part of a heavy metal ATPase. The corresponding TcHMA4 full-length sequence was isolated from T. caerulescens and compared to its homolog from Arabidopsis thaliana (AtHMA4). Expression of TcHMA4 and AtHMA4 cDNAs conferred Cd sensitivity in yeast, while expression of TcHMA4-C and AtHMA4-C cDNAs encoding the C-termini of, respectively, TcHMA4 and AtHMA4 conferred Cd tolerance. Moreover, heterologous expression in yeast suggested a higher Cd binding capacity of TcHMA4-C compared to AtHMA4-C. In planta, both HMA4 genes were expressed at a higher level in roots than in shoots. However, TcHMA4 shows a much higher constitutive expression than AtHMA4. Our data indicate that HMA4 could be involved in Cd(2+) transport and possibly in the Cd hyperaccumulation character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号