首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intracellular regulation of cell death pathways by cIAPs has been enigmatic. Here we show that loss of cIAPs promotes the spontaneous formation of an intracellular platform that activates either apoptosis or necroptosis. This 2 MDa intracellular complex that we designate "Ripoptosome" is necessary but not sufficient for cell death. It contains RIP1, FADD, caspase-8, caspase-10, and caspase inhibitor cFLIP isoforms. cFLIP(L) prevents Ripoptosome formation, whereas, intriguingly, cFLIP(S) promotes Ripoptosome assembly. When cIAPs are absent, caspase activity is the "rheostat" that is controlled by cFLIP isoforms in the Ripoptosome and decides if cell death occurs by RIP3-dependent necroptosis or caspase-dependent apoptosis. RIP1 is the core component of the complex. As exemplified by our studies for TLR3 activation, our data argue that the?Ripoptosome critically influences the outcome of membrane-bound receptor triggering. The differential quality of cell death mediated by the Ripoptosome may cause important pathophysiological consequences during inflammatory responses.  相似文献   

2.
Searching for new strategies to trigger apoptosis in rhabdomyosarcoma (RMS), we investigated the effect of two novel classes of apoptosis-targeting agents, i.e. monoclonal antibodies against TNF-related apoptosis-inducing ligand (TRAIL) receptor 1 (mapatumumab) and TRAIL receptor 2 (lexatumumab) and small-molecule inhibitors of inhibitor of apoptosis (IAP) proteins. Here, we report that IAP inhibitors synergized with lexatumumab, but not with mapatumumab, to reduce cell viability and to induce apoptosis in several RMS cell lines in a highly synergistic manner (combination index <0.1). Cotreatment-induced apoptosis was accompanied by enhanced activation of caspase-8, -9, and -3; loss of mitochondrial membrane potential; and caspase-dependent apoptosis. In addition, IAP inhibitor and lexatumumab cooperated to stimulate the assembly of a cytosolic complex containing RIP1, FADD, and caspase-8. Importantly, knockdown of RIP1 by RNA interference prevented the formation of the RIP1·FADD·caspase-8 complex and inhibited subsequent activation of caspase-8, -9, and -3; loss of mitochondrial membrane potential; and apoptosis upon treatment with IAP inhibitor and lexatumumab. In addition, RIP1 silencing rescued clonogenic survival of cells treated with the combination of lexatumumab and IAP inhibitor, thus underscoring the critical role of RIP1 in cotreatment-induced apoptosis. By comparison, the TNFα-blocking antibody Enbrel had no effect on IAP inhibitor/lexatumumab-induced apoptosis, indicating that an autocrine TNFα loop is dispensable. By demonstrating that IAP inhibitors and lexatumumab synergistically trigger apoptosis in a RIP1-dependent but TNFα-independent manner in RMS cells, our findings substantially advance our understanding of IAP inhibitor-mediated regulation of TRAIL-induced cell death.  相似文献   

3.
Necroptosis is a regulated form of necrotic cell death that has been implicated in the pathogenesis of various diseases including intestinal inflammation and systemic inflammatory response syndrome (SIRS). In this work, we investigated the signaling mechanisms controlled by the necroptosis mediator receptor interacting protein-1 (RIP1) kinase. We show that Akt kinase activity is critical for necroptosis in L929 cells and plays a key role in TNFα production. During necroptosis, Akt is activated in a RIP1 dependent fashion through its phosphorylation on Thr308. In L929 cells, this activation requires independent signaling inputs from both growth factors and RIP1. Akt controls necroptosis through downstream targeting of mammalian Target of Rapamycin complex 1 (mTORC1). Akt activity, mediated in part through mTORC1, links RIP1 to JNK activation and autocrine production of TNFα. In other cell types, such as mouse lung fibroblasts and macrophages, Akt exhibited control over necroptosis-associated TNFα production without contributing to cell death. Overall, our results provide new insights into the mechanism of necroptosis and the role of Akt kinase in both cell death and inflammatory regulation.  相似文献   

4.
Cross-talk between apoptosis and survival signaling pathways is crucial for regulating tissue processes and mitigating disease. We report that anoikis—apoptosis triggered by loss of extracellular matrix contacts—activates a CD95/Fas-mediated signaling pathway regulated by receptor-interacting protein (RIP), a kinase that shuttles between CD95/Fas-mediated cell death and integrin/focal adhesion kinase (FAK)-mediated survival pathways. RIP''s death domain was critical for RIP and Fas association to mediate anoikis. Fas or RIP attenuation reduced this association and suppressed anoikis, whereas their overexpression had the reverse effect. Overexpressing FAK restored RIP and FAK association and inhibited anoikis. Thus, RIP shuttles between CD95/Fas death and FAK survival signaling to mediate anoikis.  相似文献   

5.
Necroptosis is mediated by signaling complexes called necrosomes, which contain receptor-interacting protein 3 (RIP3) and upstream effectors, such as RIP1. In necrosomes, the RIP homotypic interaction motif (RHIM) of RIP3 and RIP1 forms amyloidal complex. But how the amyloidal necrosomes control RIP3 activation and cell necroptosis has not been determined. Here, we showed that RIP3 amyloid fibrils could further assemble into large fibrillar networks which presents as cellular puncta during necroptosis. A viral RHIM-containing necroptosis inhibitor M45 could form heteroamyloid with RIP3 in cells and prevent RIP3 puncta formation and cell necroptosis. We characterized mutual antagonism between RIP3–RHIM and M45–RHIM in necroptosis regulation, which was caused by distinct inter-filament interactions in RIP3, M45 amyloids revealed with atomic force microscopy. Moreover, double mutations Asn464 and Met468 in RIP3–RHIM to Asp disrupted RIP3 kinase-dependent necroptosis. While the mutant RIP3(N464D/M468D) could form amyloid as wild type upon necroptosis induction. Based on these results, we propose that RIP3 amyloid formation is required but not sufficient in necroptosis signaling, the ordered inter-filament assembly of RIP3 is critical in RIP3 amyloid mediated kinase activation and cell necroptosis.Subject terms: Kinases, Cell biology, Protein aggregation  相似文献   

6.
Yersinia outer protein P (YopP) is injected by Y. enterocolitica into host cells thereby inducing apoptotic and necrosis-like cell death in dendritic cells (DC). Here we show the pathways involved in DC death caused by the catalytic activity of YopP. Infection with Yersinia enterocolitica, translocating catalytically active YopP into DC, triggered procaspase-8 cleavage and c-FLIPL degradation. YopP-dependent caspase-8 activation was, however, not mediated by tumor necrosis factor (TNF) receptor family members since the expression of both CD95/Fas/APO-1 and TRAIL-R2 on DC was low, and DC were resistant to apoptosis induced by agonistic anti-CD95 antibodies or TNF-related apoptosis-inducing ligand (TRAIL). Moreover, DC from TNF-Rp55−/− mice were not protected against YopP-induced cell death demonstrating that TNF-R1 is also not involved in this process. Activation of caspase-8 was further investigated by coimmunoprecitation of FADD from Yersinia-infected DC. We found that both cleaved caspase-8 and receptor interacting protein 1 (RIP1) were associated with the Fas-associated death domain (FADD) indicating the formation of an atypical death-inducing signaling complex (DISC). Furthermore, degradation of RIP mediated by the Hsp90 inhibitor geldanamycin significantly impaired YopP-induced cell death. Altogether our findings indicate that Yersinia-induced DC death is independent of death domain containing receptors, but mediated by RIP and caspase-8 at the level of DISC.  相似文献   

7.
Autophagy has diverse biological functions and is involved in many biological processes. The L929 cell death induced by the pan-caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp-(OMe)-fluoromethyl ketone (zVAD) was shown to be an autophagy-mediated death for which RIP1 and RIP3 were both required. It was also reported that zVAD can induce a small amount of TNF production, which was shown to be required for zVAD-induced L929 cell death, arguing for the contribution of autophagy in the zVAD-induced L929 cell death. In an effort to study RIP3 mediated cell death, we identified regulator of G-protein signaling 19 (RGS19) as a RIP3 interacting protein. We showed that RGS19 and its partner Gα-inhibiting activity polypeptide 3 (GNAI3) are involved in zVAD-, but not TNF-, induced cell death. The role of RGS19 and GNAI3 in zVAD-induced cell death is that they are involved in zVAD-induced autophagy. By the use of small hairpin RNAs and chemical inhibitors, we further demonstrated that zVAD-induced autophagy requires not only RIP1, RIP3, PI3KC3 and Beclin-1, but also RGS19 and GNAI3, and this autophagy is required for zVAD-induced TNF production. Collectively, our data suggest that zVAD-induced L929 cell death is a synergistic result of autophagy, caspase inhibition and autocrine effect of TNF.  相似文献   

8.
Inhibitor-of-apoptosis protein (IAP) inhibitors have been reported to synergistically reduce cell viability in combination with a variety of chemotherapeutic drugs via targeted cellular IAP (cIAP) depletion. Here, we found that cIAP silencing sensitised colorectal cancer (CRC) cells to selenite-induced apoptosis. Upon selenite treatment, the K63-linked ubiquitin chains on receptor-interacting protein 1 (RIP1) were removed, leading to the formation of the death-inducing complex and subsequent caspase-8 activation. Although the ubiquitinases cIAP1 and cIAP2 were significantly downregulated after a 24-h selenite treatment, cylindromatosis (CYLD) deubiquitinase protein levels were marginally upregulated. Chromatin immunoprecipitation assays revealed that lymphoid enhancer factor-1 (LEF1) dissociated from the CYLD promoter upon selenite treatment, thus abolishing suppression of CYLD gene expression. We corroborated these findings in a CRC xenograft animal model using immunohistochemistry. Collectively, our findings demonstrate that selenite caused CYLD upregulation via LEF1 and cIAP downregulation, both of which contribute to the degradation of ubiquitin chains on RIP1 and subsequent caspase-8 activation and apoptosis. Importantly, our results identify a LEF1-binding site in the CYLD promoter as a potential target for combinational therapy as an alternative to cIAPs.  相似文献   

9.
10.
Cellular FADD-like interleukin-1β–converting enzyme inhibitory proteins (c-FLIPs; isoforms c-FLIP long [c-FLIPL], c-FLIP short [c-FLIPS], and c-FLIP Raji [c-FLIPR]) regulate caspase-8 activation and death receptor (DR)–induced apoptosis. In this study, using a combination of mathematical modeling, imaging, and quantitative Western blots, we present a new mathematical model describing caspase-8 activation in quantitative terms, which highlights the influence of c-FLIP proteins on this process directly at the CD95 death-inducing signaling complex. We quantitatively define how the stoichiometry of c-FLIP proteins determines sensitivity toward CD95-induced apoptosis. We show that c-FLIPL has a proapoptotic role only upon moderate expression in combination with strong receptor stimulation or in the presence of high amounts of one of the short c-FLIP isoforms, c-FLIPS or c-FLIPR. Our findings resolve the present controversial discussion on the function of c-FLIPL as a pro- or antiapoptotic protein in DR-mediated apoptosis and are important for understanding the regulation of CD95-induced apoptosis, where subtle differences in c-FLIP concentrations determine life or death of the cells.  相似文献   

11.
12.
Overexpression of the cellular FLICE-like inhibitory protein (cFLIP) has been reported in a number of tumor types. As an inactive procaspase-8 homologue, cFLIP is recruited to the intracellular assembly known as the Death Inducing Signaling Complex (DISC) where it inhibits apoptosis, leading to cancer cell proliferation. Here we characterize the molecular details of the interaction between cFLIPL and calmodulin, a ubiquitous calcium sensing protein. By expressing the individual domains of cFLIPL, we demonstrate that the interaction with calmodulin is mediated by the N-terminal death effector domain (DED1) of cFLIPL. Additionally, we mapped the interaction to a specific region of the C-terminus of DED1, referred to as DED1 R4. By designing DED1/DED2 chimeric constructs in which the homologous R4 regions of the two domains were swapped, calmodulin binding properties were transferred to DED2 and removed from DED1. Furthermore, we show that the isolated DED1 R4 peptide binds to calmodulin and solve the structure of the peptide-protein complex using NMR and computational refinement. Finally, we demonstrate an interaction between cFLIPL and calmodulin in cancer cell lysates. In summary, our data implicate calmodulin as a potential player in DISC-mediated apoptosis and provide evidence for a specific interaction with the DED1 of cFLIPL.  相似文献   

13.
cIAPs (cellular inhibitor of apoptosis proteins) 1 and 2 are able to regulate apoptosis when ectopically expressed in recipient cells and probably also in vivo. Previous work suggested that this is at least partially due to direct caspase inhibition, mediated by two of the three baculovirus IAP repeat (BIR) domains that are contained in these proteins. In support of this we show that the BIR domains 2 and 3 of the two cIAPs are able to bind caspases-7 and -9. However, we demonstrate that neither of these BIR domains is able to inhibit caspases because of critical substitutions in the regions that target caspase inhibition in the X-linked IAP, a tight binding caspase inhibitor. The cIAP BIR domains can be converted to tight binding caspase inhibitors by substituting these critical residues with XIAP residues. Thus, cIAPs maintain protein scaffolds suitable for direct caspase inhibition but have lost or never acquired specific caspase inhibitory interaction sites. Consequently, although the binding function of the cIAP BIRs may be important for their physiologic function, caspase inhibition is not.  相似文献   

14.
The inhibitor-of-apoptosis (IAP) proteins are a novel family of antiapoptotic proteins that are thought to inhibit cell death via direct inhibition of caspases. Here, we report that human malignant glioma cell lines express XIAP, HIAP-1 and HIAP-2 mRNA and proteins. NAIP was not expressed. IAP proteins were not cleaved during CD95 ligand (CD95L)-induced apoptosis, and loss of IAP protein expression was not responsible for the potentiation of CD95L-induced apoptosis when protein synthesis was inhibited. LN-18 cells are highly sensitive to CD95-mediated apoptosis, whereas LN-229 cells require co-exposure to CD95L and a protein synthesis inhibitor, CHX, to acquire sensitivity to apoptosis. Adenoviral XIAP gene transfer blocked caspase 8 and 3 processing in both cell lines in the absence of CHX. Apoptosis was blocked in the absence and in the presence of CHX. However, XIAP failed to block caspase 8 processing in LN-229 cells in the presence of CHX. There was considerable overlap of the effects of XIAP on caspase processing with those of BCL-2 and the viral caspase inhibitor crm-A. These data define complex regulatory mechanisms for CD95-mediated apoptosis in glioma cells and indicate that there may be a distinct pathway of death receptor-mediated apoptosis that is readily activated when protein synthesis is inhibited. The constitutive expression of natural caspase inhibitors may play a role in the resistance of these cells to apoptotic stimuli that directly target caspases, including radiochemotherapy and immune-mediated tumor cell lysis.  相似文献   

15.
Excessive nuclear factor κB (NF-κB) activation should be precisely controlled as it contributes to multiple immune and inflammatory diseases. However, the negative regulatory mechanisms of NF-κB activation still need to be elucidated. Various types of polyubiquitin chains have proved to be involved in the process of NF-κB activation. Many negative regulators linked to ubiquitination, such as A20 and CYLD, inhibit IκB kinase activation in the NF-κB signaling pathway. To find new NF-κB signaling regulators linked to ubiquitination, we used a small scale siRNA library against 51 ubiquitin-associated domain-containing proteins and screened out UBXN1, which contained both ubiquitin-associated and ubiquitin regulatory X (UBX) domains as a negative regulator of TNFα-triggered NF-κB activation. Overexpression of UBXN1 inhibited TNFα-triggered NF-κB activation, although knockdown of UBXN1 had the opposite effect. UBX domain-containing proteins usually act as valosin-containing protein (VCP)/p97 cofactors. However, knockdown of VCP/p97 barely affected UBXN1-mediated NF-κB inhibition. At the same time, we found that UBXN1 interacted with cellular inhibitors of apoptosis proteins (cIAPs), E3 ubiquitin ligases of RIP1 in the TNFα receptor complex. UBXN1 competitively bound to cIAP1, blocked cIAP1 recruitment to TNFR1, and sequentially inhibited RIP1 polyubiquitination in response to TNFα. Therefore, our findings demonstrate that UBXN1 is an important negative regulator of the TNFα-triggered NF-κB signaling pathway by mediating cIAP recruitment independent of VCP/p97.  相似文献   

16.
17.
At an unbelievable pace, recent evidence has emerged that demonstrates the importance of a programmed form of necrosis (necroptosis) in physiology, pathophysiology and embryonic development. It is clear that the understanding of the intracellular control of necroptosis as compared to caspase-dependent apoptosis is of paramount importance. Tumorigenesis, immune surveillance of cancer and pathogen-induced disease, to name only a few, appear to be affected by the mode of cell death in vivo. Here, we discuss the Ripoptosome, a newly defined 2 MDa intracellular signalling complex that can be formed upon genotoxic stress or loss of inhibitor-of apoptosis proteins (IAPs). The Ripoptosome is a signaling platform that can switch modes between apoptotic and necroptotic cell death. In this report, we extend our recent studies and further the notion that the stoichiometric balance between RIP1 and cIAPs is critical for Ripoptosome formation. Furthermore, we demonstrate the critical relevance of the balance of expression levels of short (cFLIPS) or viral (vFLIP) forms of FLIP and RIP3 kinase for the spontaneous execution of necroptosis whenever cIAPs are absent in the cells. Our study thus supports and extends the intriguing role of the Ripoptosome for the regulation of apoptosis and necroptosis.  相似文献   

18.
Stimulation of CD95 (APO-1/Fas) by its natural ligand CD95L (APO-1L/FasL) leads to the formation of the death-inducing signaling complex. Here we report that upon CD95 stimulation in several T and B cell lines, a novel signaling complex is formed, which we term complex II. Complex II is composed of the death effector domain proteins as follows: procaspase-8a/b, three isoforms of c-FLIP (c-FLIP(L), c-FLIP(S), c-FLIP(R)), and FADD. Notably, complex II does not contain CD95. Based on our findings we suggest that CD95 signaling includes two steps. The first step involves formation of the death-inducing signaling complex at the cell membrane. The second step involves formation of the cytosolic death effector domain protein-containing complex that may play an important role in amplification of caspase activation.  相似文献   

19.
Different CD95 (Fas/APO-1) isoforms and phosphory lated CD95 species were identified in human T and B cell lines. We had shown previously that the CD95 intracellular domain (IC), expressed as a glutathione S-transferase (GST) fusion protein in murine L929 fibroblasts, was phosphorylatedin vivo. GST-CD95IC was phosphorylatedin vitro by a kinase present in extracts from the human lymphocytic cell lines Jurkat and MP-1 and from murine L929 cells. Phosphoamino acid analysis indicated that phosphorylation occurred at multiple threonine residues and also at tyrosine (Tyr232 and Tyr291) and serine. Amino acids 191 to 275 of CD95 were sufficient for phosphorylation at threonine, tyrosine and serine and also mediated interaction with a 35 kDa cellular protein. Immuno-precipitation of CD95 and chemical cross-linking revealed CD95-associated proteins of approximately 35, 45 and 75 kDa. GST-CD95IC affinity chromatography detected binding of the 35 and 75 kDa protein species. The 75 kDa species may correspond to the CD95-associated proteins RIP or FAF1 and the 35 kDa protein may represent a TRADD analogue. These data indicate that several cellular proteins interact with CD95, possibly in a multi-protein complex, and that a kinase activity is associated with CD95 not onlyin vitro but alsoin vivo. Therefore, receptor phosphorylation may play a role in CD95 signal transduction. This work was in part supported by a grant from the Health Research Council of New Zealand (to JW).  相似文献   

20.
Death receptors are a subfamily of the tumor necrosis factor (TNF) receptor subfamily. They are characterized by a death domain (DD) motif within their intracellular domain, which is required for the induction of apoptosis. Fas-associated death domain protein (FADD) is reported to be the universal adaptor used by death receptors to recruit and activate the initiator caspase-8. CD95, TNF-related apoptosis-inducing ligand (TRAIL-R1), and TRAIL-R2 bind FADD directly, whereas recruitment to TNF-R1 is indirect through another adaptor TNF receptor-associated death domain protein (TRADD). TRADD also binds two other adaptors receptor-interacting protein (RIP) and TNF-receptor-associated factor 2 (TRAF2), which are required for TNF-induced NF-kappaB and c-Jun N-terminal kinase activation, respectively. Analysis of the native TNF signaling complex revealed the recruitment of RIP, TRADD, and TRAF2 but not FADD or caspase-8. TNF failed to induce apoptosis in FADD- and caspase-8-deficient Jurkat cells, indicating that these apoptotic mediators were required for TNF-induced apoptosis. In an in vitro binding assay, the intracellular domain of TNF-R1 bound TRADD, RIP, and TRAF2 but did not bind FADD or caspase-8. Under the same conditions, the intracellular domain of both CD95 and TRAIL-R2 bound both FADD and caspase-8. Taken together these results suggest that apoptosis signaling by TNF is distinct from that induced by CD95 and TRAIL. Although caspase-8 and FADD are obligatory for TNF-mediated apoptosis, they are not recruited to a TNF-induced membrane-bound receptor signaling complex as occurs during CD95 or TRAIL signaling, but instead must be activated elsewhere within the cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号