首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Convergent evolution is a widespread phenomenon seen in diverseorganisms inhabiting similar selective environments. However,it is unclear if similar phenotypes are produced by the sameor different genes and mutations. Here we analyze the molecularmechanisms underlying convergent pigment pattern among subspeciesof the beach mouse (Peromyscus polionotus) inhabiting the Gulfand Atlantic coasts of Florida. In these two geographic regions,separated by more than 300 km, "beach mice" have lighter coloredcoats than do their mainland counterparts, produced by naturalselection for camouflage against the pale coastal sand dunes.We measured color pattern in eight beach mouse subspecies andshowed that three of the Gulf Coast subspecies are more phenotypicallysimilar to an Atlantic coast subspecies than to their Gulf Coastneighbors. However, light-colored beach mice do not form a monophyleticgroup. Previous results implicated a single derived amino acidchange in the melanocortin-1 receptor (Mc1r) as a major contributorto pigment pattern in the Gulf Coast beach mice; despite phenotypicsimilarities, the derived Mc1r allele was not found in the Atlanticcoast beach mouse populations. Here we show that Atlantic coastbeach mice have high levels of Mc1r polymorphism but they lackunique alleles. Functional assays revealed that single aminoacid mutations segregating in Atlantic coast beach mice do notcause any change in Mc1r activity compared with the activityof Mc1r from dark-colored mice. These joint results show thatconvergent pigment patterns in recently diverged beach mousesubspecies—whose developmental constraints are presumablysimilar—have evolved through a diversity of genetic mechanisms.  相似文献   

2.
Studying the genetic factors underlying phenotypic traits can provide insight into dynamics of selection and molecular basis of adaptation, but this goal can be difficult for non-model organisms without extensive genomic resources. However, sequencing candidate genes for the trait of interest can facilitate the study of evolutionary genetics in natural populations. We sequenced the melanocortin-1 receptor (Mc1r) to study the genetic basis of color polymorphism in a group of snake species with variable black banding, the genera Sonora, Chilomeniscus, and Chionactis. Mc1r is an important gene in the melanin synthesis pathway and is associated with ecologically important variation in color pattern in birds, mammals, and other squamate reptiles. We found that Mc1r nucleotide sequence was variable and that within our focal Sonora species, there are both fixed and heterozygous nucleotide substitutions that result in an amino acid change and selection analyses indicated that Mc1r sequence was likely under purifying selection. However, we did not detect any statistical association with the presence or absence of black bands. Our results agree with other studies that have found no role for sequence variation in Mc1r and highlight the importance of comparative data for studying the phenotypic associations of candidate genes.  相似文献   

3.
Research in eco-evolutionary dynamics and community genetics has demonstrated that variation within a species can have strong impacts on associated communities and ecosystem processes. Yet, these studies have centred around individual focal species and at single trophic levels, ignoring the role of phenotypic variation in multiple taxa within an ecosystem. Given the ubiquitous nature of local adaptation, and thus intraspecific variation, we sought to understand how combinations of intraspecific variation in multiple species within an ecosystem impacts its ecology. Using two species that co-occur and demonstrate adaptation to their natal environments, black cottonwood (Populus trichocarpa) and three-spined stickleback (Gasterosteus aculeatus), we investigated the effects of intraspecific phenotypic variation on both top-down and bottom-up forces using a large-scale aquatic mesocosm experiment. Black cottonwood genotypes exhibit genetic variation in their productivity and consequently their leaf litter subsidies to the aquatic system, which mediates the strength of top-down effects from stickleback on prey abundances. Abundances of four common invertebrate prey species and available phosphorous, the most critically limiting nutrient in freshwater systems, are dictated by the interaction between genetic variation in cottonwood productivity and stickleback morphology. These interactive effects fit with ecological theory on the relationship between productivity and top-down control and are comparable in strength to the effects of predator addition. Our results illustrate that intraspecific variation, which can evolve rapidly, is an under-appreciated driver of community structure and ecosystem function, demonstrating that a multi-trophic perspective is essential to understanding the role of evolution in structuring ecological patterns.  相似文献   

4.
Phenotypic plasticity is the ability of a genotype to produce more than one phenotype in order to match the environment. Recent theory proposes that the major axis of genetic variation in a phenotypically plastic population can align with the direction of selection. Therefore, theory predicts that plasticity directly aids adaptation by increasing genetic variation in the direction favoured by selection and reflected in plasticity. We evaluated this theory in the freshwater crustacean Daphnia pulex, facing predation risk from two contrasting size-selective predators. We estimated plasticity in several life-history traits, the G matrix of these traits, the selection gradients on reproduction and survival, and the predicted responses to selection. Using these data, we tested whether the genetic lines of least resistance and the predicted response to selection aligned with plasticity. We found predator environment-specific G matrices, but shared genetic architecture across environments resulted in more constraint in the G matrix than in the plasticity of the traits, sometimes preventing alignment of the two. However, as the importance of survival selection increased, the difference between environments in their predicted response to selection increased and resulted in closer alignment between the plasticity and the predicted selection response. Therefore, plasticity may indeed aid adaptation to new environments.  相似文献   

5.
Pseudovivipary is an environmentally induced flowering abnormality in which vegetative shoots replace seminiferous (sexual) inflorescences. Pseudovivipary is usually retained in transplantation experiments, indicating that the trait is not solely induced by the growing environment. Pseudovivipary is the defining characteristic of Festuca vivipara, and arguably the only feature separating this species from its closest seminiferous relative, Festuca ovina. We performed phylogenetic and population genetic analysis on sympatric F. ovina and F. vivipara samples to establish whether pseudovivipary is an adaptive trait that accurately defines the separation of genetically distinct Festuca species. Chloroplast and nuclear marker-based analyses revealed that variation at a geographical level can exceed that between F. vivipara and F. ovina. We deduced that F. vivipara is a recent species that frequently arises independently within F. ovina populations and has not accumulated significant genetic differentiation from its progenitor. We inferred local gene flow between the species. We identified one amplified fragment length polymorphism marker that may be linked to a pseudovivipary-related region of the genome, and several other markers provide evidence of regional local adaptation in Festuca populations. We conclude that F. vivipara can only be appropriately recognized as a morphologically and ecologically distinct species; it lacks genetic differentiation from its relatives. This is the first report of a 'failure in normal flowering development' that repeatedly appears to be adaptive, such that the trait responsible for species recognition constantly reappears on a local basis.  相似文献   

6.
The history of population size and migration patterns leaves its mark in the genetics of populations. We investigate the genetic structure of the edible frog, Pelophylax esculentus in the Danish archipelago and adjacent countries. This frog is of particular interest because it is a hybrid that, in this area, forms all-hybrid populations of diploid (LR) and triploid (LLR and LRR) genomotypes with no (or very few) adults of the parental species (LL and RR). This study is the first to cover the entire geographic range of Danish, Swedish and German all-hybrid populations, documenting their extent and providing a broad picture of their diversity of neutral genetic markers and genomotype proportions. With 18 microsatellite markers, we found that genetic diversity declines northwards in agreement with the glacial refuge and central-marginal hypotheses; however, populations on small and medium-sized islands are no less diverse than those on large islands and continental peninsulas. Isolation by distance exists across the archipelago with limited influence of fragmentation by brackish seawater. The extremely low genetic diversity in all-hybrid populations, compared with adjacent populations, may be responsible for the maintenance of their special breeding system. We also show large variation among ponds in proportions of LLR, LR and LRR genomotypes, but little geographic pattern in their distribution. Instead, we found relationships between the genomotype proportions and some of 15 habitat parameters monitored. Body size differences among LLR, LR and LRR further suggest ecological differences.  相似文献   

7.
Henry LM 《Biology letters》2008,4(5):508-511
Local adaptation is promoted when habitat or mating preferences reduce gene flow between populations. However, gene flow is not only a function of dispersal but also of the success of migrants in their new habitat. In this study I investigated mating preference in conjunction with phenotypic plasticity using Aphidius parasitoids adapted to different host species. Males actively attempted to assortatively mate, but actual mating outcomes were strongly influenced by the relative size of the adult males. Results are discussed in the context of assortative mating in combination with the success of migrant males in mitigating gene flow between host-associated parasitoid populations.  相似文献   

8.

Background and Aims

Natural selection and genetic drift are important evolutionary forces in determining genetic and phenotypic differentiation in plant populations. The extent to which these two distinct evolutionary forces affect locally adaptive quantitative traits has been well studied in common plant and animal species. However, we know less about how quantitative traits respond to selection pressures and drift in endangered species that have small population sizes and fragmented distributions. To address this question, this study assessed the relative strengths of selection and genetic drift in shaping population differentiation of phenotypic traits in Psilopeganum sinense, a naturally rare and recently endangered plant species.

Methods

Population differentiation at five quantitative traits (QST) obtained from a common garden experiment was compared with differentiation at putatively neutral microsatellite markers (FST) in seven populations of P. sinense. QST estimates were derived using a Bayesian hierarchical variance component method.

Key Results

Trait-specific QST values were equal to or lower than FST. Neutral genetic diversity was not correlated with quantitative genetic variation within the populations of P. sinense.

Conclusions

Despite the prevalent empirical evidence for QST > FST, the results instead suggest a definitive role of stabilizing selection and drift leading to phenotypic differentiation among small populations. Three traits exhibited a significantly lower QST relative to FST, suggesting that populations of P. sinense might have experienced stabilizing selection for the same optimal phenotypes despite large geographical distances between populations and habitat fragmentation. For the other two traits, QST estimates were of the same magnitude as FST, indicating that divergence in these traits could have been achieved by genetic drift alone. The lack of correlation between molecular marker and quantitative genetic variation suggests that sophisticated considerations are required for the inference of conservation measures of P. sinense from neutral genetic markers.  相似文献   

9.
The degree of plasticity an individual expresses when moving into a new environment is likely to influence the probability of colonization and potential for subsequent evolution. Yet few empirical examples exist where the ancestral and derived conditions suggest a role for plasticity in adaptive genetic divergence of populations. Here we explore the genetic and plastic components of shoaling behaviour in two pairs of populations of Poecilia reticulata (Trinidadian guppies). We contrast shoaling behaviour of guppies derived from high‐ and low‐predation populations from two separate drainages by measuring the shoaling response of second generation laboratory‐reared individuals in the presence and absence of predator induced alarm pheromones. We find persistent differences in mean shoaling cohesion that suggest a genetic basis; when measured under the same conditions high‐predation guppies form more cohesive shoals than low‐predation guppies. Both high and low‐predation guppies also exhibit plasticity in the response to alarm pheromones, by forming tighter, more cohesive shoals. These patterns suggest a conserved capacity for adaptive behavioural plasticity when moving between variable predation communities that are consistent with models of genetic accommodation.  相似文献   

10.
An approach frequently used to demonstrate a genetic basis for population-level phenotypic differences is to employ common garden rearing designs, where observed differences are assumed to be attributable to primarily additive genetic effects. Here, in two common garden experiments, we employed factorial breeding designs between wild and domestic, and among wild populations of Chinook salmon (Oncorhynchus tshawytscha). We measured the contribution of additive (V(A)) and maternal (V(M)) effects to the observed population differences for 17 life history and fitness-related traits. Our results show that, in general, maternal effects contribute more to phenotypic differences among populations than additive genetic effects. These results suggest that maternal effects are important in population phenotypic differentiation and also signify that the inclusion of the maternal source of variation is critical when employing models to test population differences in salmon, such as in local adaptation studies.  相似文献   

11.

Background and Aims

Apomictic species (with asexual seed production) make up for 20–50 % of all taxonomically recognized species in northern Europe, but the phylogenetic relationships of apomictic species and the mode of evolution and speciation remain largely unknown and their taxonomy is consequently disputed.

Methods

In the present study, plastid psbD-trnT sequences (349 accessions) and 12 nuclear microsatellite loci (478 accessions) were used to create an overview of the molecular variation in (mainly) northern European members of the most species-rich of all plant genera, Hieracium s.s. The results are discussed and interpreted in the context of morphological and cytological data on the same species.

Key Results and Conclusions

The complete psbD-trnT alignment was 1243 bp and 50 polymorphisms defined 40 haplotypes. All haplotypes found in the sections of the genus distributed in the northern European lowlands fell into one of two main groups, group H and group V, mutually separated by seven or eight polymorphisms. All accessions belonging to H. sects. Foliosa, Hieracioides (viz. H. umbellatum) and Tridentata and all but one accession of triploid species of H. sects. Oradea and Vulgata showed haplotypes of group V. Haplotypes of group H were found in all accessions of H. sects. Bifida and Hieracium and in all tetraploid representatives of H. sects. Oreadea and Vulgata. Additional haplotypes were found in accessions of the genus Pilosella and in southern European and Alpine sections of Hieracium. In contrast, the distribution of individual haplotypes in the two major groups appeared uncorrelated with morphology and current taxonomy, but polymorphisms within species were only rarely encountered. In total, 160 microsatellite alleles were identified. Levels of variation were generally high with only nine pairs of accessions being identical at all loci (in all cases representing accessions of the same species). In the neighbor-joining analysis based on the microsatellite data, accessions of the same species generally clustered together and some smaller groups of species congruent with morphology and/or current taxonomy were recovered but, except for H. sect. Oreadea, most larger groups were not correlated with morphology. Although the plastid DNA sequences show too little variation and the nuclear microsatellites are too variable to resolve relationships successfully among species or to fully understand processes of evolution, it is concluded that both species and sections as defined by morphology are largely congruent with the molecular data, that gene flow between the sections is rare or non-existent and that the tetraploid species may constitute the key to understanding evolution and speciation in this genus.  相似文献   

12.
13.
Recently diverged taxa may continue to exchange genes. A number of models of speciation with gene flow propose that the frequency of gene exchange will be lower in genomic regions of low recombination and that these regions will therefore be more differentiated. However, several population-genetic models that focus on selection at linked sites also predict greater differentiation in regions of low recombination simply as a result of faster sorting of ancestral alleles even in the absence of gene flow. Moreover, identifying the actual amount of gene flow from patterns of genetic variation is tricky, because both ancestral polymorphism and migration lead to shared variation between recently diverged taxa. New analytic methods have been developed to help distinguish ancestral polymorphism from migration. Along with a growing number of datasets of multi-locus DNA sequence variation, these methods have spawned a renewed interest in speciation models with gene flow. Here, we review both speciation and population-genetic models that make explicit predictions about how the rate of recombination influences patterns of genetic variation within and between species. We then compare those predictions with empirical data of DNA sequence variation in rabbits and mice. We find strong support for the prediction that genomic regions experiencing low levels of recombination are more differentiated. In most cases, reduced gene flow appears to contribute to the pattern, although disentangling the relative contribution of reduced gene flow and selection at linked sites remains a challenge. We suggest fruitful areas of research that might help distinguish between different models.  相似文献   

14.
Many organisms have geographical distributions extending from the tropics to near polar regions or can experience up to 30°C temperature variation within the lifespan of an individual. Two forms of evolutionary adaptation to such wide ranges in ambient temperatures are frequently discussed: local adaptation and phenotypic plasticity. The freshwater planktonic crustacean Daphnia magna, whose range extends from South Africa to near arctic sites, shows strong phenotypic and genotypic variation in response to temperature. In this study, we use D. magna clones from 22 populations (one clone per population) ranging from latitude 0° (Kenya) to 66° North (White Sea) to explore the contributions of phenotypic plasticity and local adaptation to high temperature tolerance. Temperature tolerance was studied as knockout time (time until immobilization, Timm) at 37°C in clones acclimatized to either 20°C or 28°C. Acclimatization to 28°C strongly increased Timm, testifying to adaptive phenotypic plasticity. At the same time, Timm significantly correlated with average high temperature at the clones’ sites of origin, suggesting local adaptation. As earlier studies have found that haemoglobin expression contributes to temperature tolerance, we also quantified haemoglobin concentration in experimental animals and found that both acclimatization temperature (AccT) and temperature at the site of origin are positively correlated with haemoglobin concentration. Furthermore, Daphnia from warmer climates upregulate haemoglobin much more strongly in response to AccT, suggesting local adaptation for plasticity in haemoglobin expression. Our results show that both local adaptation and phenotypic plasticity contribute to temperature tolerance, and elucidate a possible role of haemoglobin in mediating these effects that differs along a cold–warm gradient.  相似文献   

15.
In the nematode Caenorhabditis elegans, the appropriate induction of dauer larvae development within growing populations is likely to be a primary determinant of genotypic fitness. The underlying genetic architecture of natural genetic variation in dauer formation has, however, not been thoroughly investigated. Here, we report extensive natural genetic variation in dauer larvae development within growing populations across multiple wild isolates. Moreover, bin mapping of introgression lines (ILs) derived from the genetically divergent isolates N2 and CB4856 reveals 10 quantitative trait loci (QTLs) affecting dauer formation. Comparison of individual ILs to N2 identifies an additional eight QTLs, and sequential IL analysis reveals six more QTLs. Our results also show that a behavioural, laboratory-derived, mutation controlled by the neuropeptide Y receptor homolog npr-1 can affect dauer larvae development in growing populations. These findings illustrate the complex genetic architecture of variation in dauer larvae formation in C. elegans and may help to understand how the control of variation in dauer larvae development has evolved.  相似文献   

16.
Natural populations of widely distributed organisms often exhibit genetic clinal variation over their geographical ranges. The European anchovy, Engraulis encrasicolus, illustrates this by displaying a two-clade mitochondrial structure clinally arranged along the eastern Atlantic. One clade has low frequencies at higher latitudes, whereas the other has an anti-tropical distribution, with frequencies decreasing towards the tropics. The distribution pattern of these clades has been explained as a consequence of secondary contact after an ancient geographical isolation. However, it is not unlikely that selection acts on mitochondria whose genes are involved in relevant oxidative phosphorylation processes. In this study, we performed selection tests on a fragment of 1044 bp of the mitochondrial cytochrome b gene using 455 individuals from 18 locations. We also tested correlations of six environmental features: temperature, salinity, apparent oxygen utilization and nutrient concentrations of phosphate, nitrate and silicate, on a compilation of mitochondrial clade frequencies from 66 sampling sites comprising 2776 specimens from previously published studies. Positive selection in a single codon was detected predominantly (99%) in the anti-tropical clade and temperature was the most relevant environmental predictor, contributing with 59% of the variance in the geographical distribution of clade frequencies. These findings strongly suggest that temperature is shaping the contemporary distribution of mitochondrial DNA clade frequencies in the European anchovy.  相似文献   

17.
Convergence—the independent evolution of the same trait by two or more taxa—has long been of interest to evolutionary biologists, but only recently has the molecular basis of phenotypic convergence been identified. Here, we highlight studies of rapid evolution of cryptic coloration in vertebrates to demonstrate that phenotypic convergence can occur at multiple levels: mutations, genes and gene function. We first show that different genes can be responsible for convergent phenotypes even among closely related populations, for example, in the pale beach mice inhabiting Florida''s Gulf and Atlantic coasts. By contrast, the exact same mutation can create similar phenotypes in distantly related species such as mice and mammoths. Next, we show that different mutations in the same gene need not be functionally equivalent to produce similar phenotypes. For example, separate mutations produce divergent protein function but convergent pale coloration in two lizard species. Similarly, mutations that alter the expression of a gene in different ways can, nevertheless, result in similar phenotypes, as demonstrated by sister species of deer mice. Together these studies underscore the importance of identifying not only the genes, but also the precise mutations and their effects on protein function, that contribute to adaptation and highlight how convergence can occur at different genetic levels.  相似文献   

18.

Background and Aims

While molecular approaches can often accurately reconstruct species relationships, taxa that are incompletely differentiated pose a challenge even with extensive data. Such taxa are functionally differentiated, but may be genetically differentiated only at small and/or patchy regions of the genome. This issue is considered here in Poa tussock grass species that dominate grassland and herbfields in the Australian alpine zone.

Methods

Previously reported tetraploidy was confirmed in all species by sequencing seven nuclear regions and five microsatellite markers. A Bayesian approach was used to co-estimate nuclear and chloroplast gene trees with an overall dated species tree. The resulting species tree was used to examine species structure and recent hybridization, and intertaxon fertility was tested by experimental crosses.

Key Results

Species tree estimation revealed Poa gunnii, a Tasmanian endemic species, as sister to the rest of the Australian alpine Poa. The taxa have radiated in the last 0·5–1·2 million years and the non-gunnii taxa are not supported as genetically distinct. Recent hybridization following past species divergence was also not supported. Ongoing gene flow is suggested, with some broad-scale geographic structure within the group.

Conclusions

The Australian alpine Poa species are not genetically distinct despite being distinguishable phenotypically, suggesting recent adaptive divergence with ongoing intertaxon gene flow. This highlights challenges in using conventional molecular taxonomy to infer species relationships in recent, rapid radiations.  相似文献   

19.
Toothed whales and bats have independently evolved specialized ultrasonic hearing for echolocation. Recent findings have suggested that several genes including Prestin, Tmc1, Pjvk and KCNQ4 appear to have undergone molecular adaptations associated with the evolution of this ultrasonic hearing in mammals. Here we studied the hearing gene Cldn14, which encodes the claudin-14 protein and is a member of tight junction proteins that functions in the organ of Corti in the inner ear to maintain a cationic gradient between endolymph and perilymph. Particular mutations in human claudin-14 give rise to non-syndromic deafness, suggesting an essential role in hearing. Our results uncovered two bursts of positive selection, one in the ancestral branch of all toothed whales and a second in the branch leading to the delphinid, phocoenid and ziphiid whales. These two branches are the same as those previously reported to show positive selection in the Prestin gene. Furthermore, as with Prestin, the estimated hearing frequencies of whales significantly correlate with numbers of branch-wise non-synonymous substitutions in Cldn14, but not with synonymous changes. However, in contrast to Prestin, we found no evidence of positive selection in bats. Our findings from Cldn14, and comparisons with Prestin, strongly implicate multiple loci in the acquisition of echolocation in cetaceans, but also highlight possible differences in the evolutionary route to echolocation taken by whales and bats.  相似文献   

20.
Wang J  Abbott RJ  Peng YL  Du FK  Liu JQ 《Heredity》2011,107(4):362-370
It remains unclear how speciation history might contribute to species-specific variation and affect species delimitation. We examined concordance between cytoplasmic genetic variation and morphological taxonomy in two fir species, Abies chensiensis and A. fargesii, with overlapping distributions in central China. Range-wide genetic variation was investigated using mitochondrial (mt) and plastid (pt) DNA sequences, which contrast in their rates of gene flow. Four mtDNA haplotypes were recovered and showed no obvious species' bias in terms of relative frequency. In contrast, a high level of ptDNA variation was recorded in both species with 3 common ptDNA haplotypes shared between them and 21 rare ptDNA haplotypes specific to one or other species. We argue that the lack of concordance between morphological and molecular variation between the two fir species most likely reflects extensive ancestral polymorphism sharing for both forms of cytoplasmic DNA variation. It is feasible that a relatively fast mutation rate for ptDNA contributed to the production of many species-specific ptDNA haplotypes, which remained rare due to insufficient time passing for their spread and fixation in either species, despite high levels of intraspecific ptDNA gene flow. Our phylogeographic analyses further suggest that polymorphisms in both organelle genomes most likely originated during and following glacial intervals preceding the last glacial maximum, when species distributions became fragmented into several refugia and then expanded in range across central China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号