首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The poorly known fossil record of fur seals and sea lions (Otariidae) does not reflect their current diversity and widespread abundance. This limited fossil record contrasts with the more complete fossil records of other pinnipeds such as walruses (Odobenidae). The oldest known otariids appear 5–6 Ma after the earliest odobenids, and the remarkably derived craniodental morphology of otariids offers few clues to their early evolutionary history and phylogenetic affinities among pinnipeds. We report a new otariid, Eotaria crypta, from the lower middle Miocene ‘Topanga’ Formation (15–17.1 Ma) of southern California, represented by a partial mandible with well-preserved dentition. Eotaria crypta is geochronologically intermediate between ‘enaliarctine’ stem pinnipedimorphs (16.6–27 Ma) and previously described otariid fossils (7.3–12.5 Ma), as well as morphologically intermediate by retaining an M2 and a reduced M1 metaconid cusp and lacking P2–4 metaconid cusps. Eotaria crypta eliminates the otariid ghost lineage and confirms that otariids evolved from an ‘enaliarctine’-like ancestor.  相似文献   

2.
We isolated and characterized 10 novel dinucleotide microsatellite loci from the Galápagos sea lion (Zalophus californianus wollebaeki) and tested their amplification utility in four further otariid species (Zalophus californianus californianus, Arctocephalus gazella, Arctocephalus australis and Eumetopias jubatus) and three phocid species (Hydrurga leptonyx, Halichoerus grypus and Phoca vitulina). All of the loci amplified polymorphic polymerase chain reaction (PCR) products in at least three species other than the Galápagos sea lion. These markers will be useful for studies of pinniped mating systems, genetic structure and genetic diversity.  相似文献   

3.
Shaw''s Agave (Agave shawii ssp. shawii) is an endangered maritime succulent growing along the coast of California and northern Baja California. The population inhabiting Point Loma Peninsula has a complicated history of transplantation without documentation. The low effective population size in California prompted agave transplanting from the U.S. Naval Base site (NB) to Cabrillo National Monument (CNM). Since 2008, there are no agave sprouts identified on the CNM site, and concerns have been raised about the genetic diversity of this population. We sequenced two barcoding loci, rbcL and matK, of 27 individual plants from 5 geographically distinct populations, including 12 individuals from California (NB and CNM). Phylogenetic analysis revealed the three US and two Mexican agave populations are closely related and have similar genetic variation at the two barcoding regions, suggesting the Point Loma agave population is not clonal. Agave‐associated soil microbes used significantly more carbon sources in CNM soil samples than in NB soil likely due to higher pH and moisture content; meanwhile, soil type and soil chemistry analysis including phosphorus, nitrate nitrogen, organic matter, and metals revealed significant correlations between microbial diversity and base saturation (p < 0.05, r 2 = 0.3676), lime buffer capacity (p < 0.01, r 2 = 0.7055), equilibrium lime buffer capacity (p < 0.01, r 2 = 0.7142), and zinc (p < 0.01, r 2 = 0.7136). Soil microbiome analysis within the CNM population revealed overall expected richness (H′ = 5.647–6.982) for Agave species, while the diversity range (1 − D = 0.003392–0.014108) suggests relatively low diversity marked by high individual variation. The most prominent remaining US population of this rare species is not clonal and does not seem to be threatened by a lack of genetic and microbial diversity. These results prompt further efforts to investigate factors affecting Agave''s reproduction and fitness.  相似文献   

4.
Parasites can have both direct and indirect impacts on organisms through changes in health, growth, reproductive success, behaviour and survival. This research investigates the effects of hookworms (Uncinaria sp.) on the growth and mortality of New Zealand sea lion (NZ sea lion, Phocarctos hookeri) pups between birth and 3 months of age. NZ sea lion pups that received ivermectin treatment to reduce their hookworm burden had higher growth rates. Hookworm infection had no significant effect on mortality rate except when overall mortality was high during epidemics caused by other pathogens. Understanding the impacts of parasites on wild populations of pinnipeds is important for the management of the species, particularly when the species is threatened, as is the case for the NZ sea lion. There are at least two reasons for this: first, to quantify the impact of the parasite on parameters of population dynamics such as offspring survival and, as a consequence, female reproductive output; and second, to gain sufficient knowledge of the host/parasite dynamics to allow the balance to be manipulated in favour of the host should this be required for conservation management.  相似文献   

5.
Domoic acid toxicosis (DAT) in California sea lions (Zalophus californianus) is caused by exposure to the marine biotoxin domoic acid and has been linked to massive stranding events and mortality. Diagnosis is based on clinical signs in addition to the presence of domoic acid in body fluids. Chronic DAT further is characterized by reoccurring seizures progressing to status epilepticus. Diagnosis of chronic DAT is often slow and problematic, and minimally invasive tests for DAT have been the focus of numerous recent biomarker studies. The goal of this study was to retrospectively profile plasma proteins in a population of sea lions with chronic DAT and those without DAT using two dimensional gel electrophoresis to discover whether individual, multiple, or combinations of protein and clinical data could be utilized to identify sea lions with DAT. Using a training set of 32 sea lion sera, 20 proteins and their isoforms were identified that were significantly different between the two groups (p<0.05). Interestingly, 11 apolipoprotein E (ApoE) charge forms were decreased in DAT samples, indicating that ApoE charge form distributions may be important in the progression of DAT. In order to develop a classifier of chronic DAT, an independent blinded test set of 20 sea lions, seven with chronic DAT, was used to validate models utilizing ApoE charge forms and eosinophil counts. The resulting support vector machine had high sensitivity (85.7% with 92.3% negative predictive value) and high specificity (92.3% with 85.7% positive predictive value). These results suggest that ApoE and eosinophil counts along with machine learning can perform as a robust and accurate tool to diagnose chronic DAT. Although this analysis is specifically focused on blood biomarkers and routine clinical data, the results demonstrate promise for future studies combining additional variables in multidimensional space to create robust classifiers.  相似文献   

6.
Four variable microsatellite loci were used toexamine the genetic diversity and differentiation of golden lion tamarins (Leontopithecus rosalia) in four populations recently isolated by habitat fragmentation. Using Rst estimates of genetic differentiation, a considerable genetic divergence was detected among these populations, with an averagedifferentiation of 31%. Significant differences in allele number among these populations were found. However, the heterozygosity among these populations was not statistically different. These results suggestthat loss in allele diversity was faster than loss in heterozygosity. Conservation implications, particularly for golden lion tamarins, are then discussed. Loss of allelic diversity might be as serious a concern to endangered species as heterozygosity or inbreeding.  相似文献   

7.
Low genetic heterozygosity is associated with loss of fitness in many natural populations. However, it remains unclear whether the mechanism is related to general (i.e. inbreeding) or local effects, in particular from a subset of loci lying close to genes under balancing selection. Here we analyse involving heterozygosity-fitness correlations on neonatal survival of California sea lions and on susceptibility to hookworm (Uncinaria spp.) infection, the single most important cause of pup mortality. We show that regardless of differences in hookworm burden, homozygosity is a key predictor of hookworm-related lesions, with no single locus contributing disproportionately. Conversely, the subsequent occurrence of anaemia due to blood loss in infected pups is overwhelmingly associated with homozygosity at one particular locus, all other loci showing no pattern. Our results suggest contrasting genetic mechanisms underlying two pathologies related to the same pathogen. First, relatively inbred pups are less able to expel hookworms and prevent their attachment to the intestinal mucosa, possibly due to a weakened immune response. In contrast, infected pups that are homozygous for a gene near to microsatellite Hg4.2 are strongly predisposed to anaemia. As yet, this gene is unknown, but could plausibly be involved in the blood-coagulation cascade. Taken together, these results suggest that pathogenic burden alone may not be the main factor regulating pathogen-related mortality in natural populations. Our study could have important implications for the conservation of small, isolated or threatened populations, particularly when they are at a risk of facing pathogenic challenges.  相似文献   

8.
We examined the impact of opportunistic infections on in-hospital mortality, hospital length of stay (LOS), and the total cost (TC) among adult T-cell leukaemia (ATL) patients. In this retrospective cohort study, we identified 3712 patients with ATL using national hospital administrative data. Analysed opportunistic infections included Aspergillus spp., Candida spp., cytomegalovirus (CMV), herpes simplex virus (HSV), pneumocystis pneumonia (PCP), tuberculosis, varicella zoster virus (VZV), Cryptococcus spp., nontuberculous mycobacteria, and Strongyloides spp. Multilevel logistic regression analysis for in-hospital mortality and a multilevel linear regression analysis for LOS and TC were employed to determine the impact of opportunistic infections on clinical outcomes and healthcare resources. We found ATL patients infected with CMV had significantly higher in-hospital mortality (adjusted odds ratio (AOR) 2.29 [1.50–3.49] p < 0.001), longer LOS (coefficient (B): 0.13 [0.06–0.20] p < 0.001) and higher TC (B: 0.25 [0.17–0.32] p < 0.001) than those without CMV. Those with CAN and PCP were associated with a lower in-hospital mortality rate (AOR 0.72 [0.53–0.98] p = 0.035 and 0.54[0.41–0.73] p < 0.001, respectively) than their infections. VZV was associated with longer LOS (B: 0.13 [0.06–0.19] p < 0.001), while aspergillosis, HSV, or VZV infections were associated with higher TC (B: 0.16 [0.07–0.24] p < 0.001, 0.12 [0.02–0.23] p = 0.025, and 0.17 [0.10–0.24] p < 0.001, respectively). Our findings reveal that CMV infection is a major determinant of poor prognosis in patients affected by ATL.  相似文献   

9.
Lung collapse is considered the primary mechanism that limits nitrogen absorption and decreases the risk of decompression sickness in deep-diving marine mammals. Continuous arterial partial pressure of oxygen profiles in a free-diving female California sea lion (Zalophus californianus) revealed that (i) depth of lung collapse was near 225 m as evidenced by abrupt changes in during descent and ascent, (ii) depth of lung collapse was positively related to maximum dive depth, suggesting that the sea lion increased inhaled air volume in deeper dives and (iii) lung collapse at depth preserved a pulmonary oxygen reservoir that supplemented blood oxygen during ascent so that mean end-of-dive arterial was 74 ± 17 mmHg (greater than 85% haemoglobin saturation). Such information is critical to the understanding and the modelling of both nitrogen and oxygen transport in diving marine mammals.  相似文献   

10.
Studies have reported conflicting results on the association between body mass index (BMI) and prognosis of colorectal cancer. Therefore, we have conducted a meta-analysis of prospective studies, which examined the association of pre- and post-diagnostic BMI with colorectal cancer-specific mortality and all-cause mortality in patients with colorectal cancer. We searched Medline and EMBASE database published between 1970 and September 2014. A total of 508 articles were identified, of which 16 prospective cohort studies were included for the current meta-analysis. The analysis included 58,917 patients who were followed up over a period ranging from 4.9 to 20 years (median: 9.9 years). We found that being underweight before cancer diagnosis was associated with increased all-cause mortality (Relative risk [RR]: 1.63, 95% CI: 1.18–2.23, p < 0.01) and being obese (BMI ≥ 30 kg/m2) before cancer diagnosis was associated with increased colorectal cancer-specific mortality (RR: 1.22, 95% CI: 1.003–1.35, p < 0.01) and all-cause mortality (RR: 1.25, 95% CI: 1.14–1.36, p < 0.01). On the other hand, being underweight (RR: 1.33, 95% CI: 1.20–1.47, p < 0.01), obese (RR: 1.08, 95% CI: 1.03–1.3, p < 0.01), and class II/III obese (BMI ≥ 35 kg/m2; RR: 1.13, 95% CI: 1.04–1.23, p < 0.01) after diagnosis were associated with significantly increased all-cause mortality. Being obese prior to diagnosis of colorectal cancer was associated with increased colorectal cancer-specific mortality and all-cause mortality, whereas being obese after diagnosis was associated with increased all-cause mortality. The associations with being underweight may reflect reverse causation. Maintaining a healthy body weight should be discussed with colorectal cancer survivors.  相似文献   

11.
Connectivity of marine populations is shaped by complex interactions between biological and physical processes across the seascape. The influence of environmental features on the genetic structure of populations has key implications for the dynamics and persistence of populations, and an understanding of spatial scales and patterns of connectivity is crucial for management and conservation. This study employed a seascape genomics approach combining larval dispersal modeling and population genomic analysis using single nucleotide polymorphisms (SNPs) obtained from RADseq to examine environmental factors influencing patterns of genetic structure and connectivity for a highly dispersive mud crab Scylla olivacea (Herbst, 1796) in the Sulu Sea. Dispersal simulations reveal widespread but asymmetric larval dispersal influenced by persistent southward and westward surface circulation features in the Sulu Sea. Despite potential for widespread dispersal across the Sulu Sea, significant genetic differentiation was detected among eight populations based on 1,655 SNPs (FST = 0.0057, p < .001) and a subset of 1,643 putatively neutral SNP markers (FST = 0.0042, p < .001). Oceanography influences genetic structure, with redundancy analysis (RDA) indicating significant contribution of asymmetric ocean currents to neutral genetic variation (Radj2 = 0.133, p = .035). Genetic structure may also reflect demographic factors, with divergent populations characterized by low effective population sizes (N e < 50). Pronounced latitudinal genetic structure was recovered for loci putatively under selection (FST = 0.2390, p < .001), significantly correlated with sea surface temperature variabilities during peak spawning months for S. olivacea (Radj2 = 0.692–0.763; p < .050), suggesting putative signatures of selection and local adaptation to thermal clines. While oceanography and dispersal ability likely shape patterns of gene flow and genetic structure of S. olivacea across the Sulu Sea, the impacts of genetic drift and natural selection influenced by sea surface temperature also appear as likely drivers of population genetic structure. This study contributes to the growing body of literature documenting population genetic structure and local adaptation for highly dispersive marine species, and provides information useful for spatial management of the fishery resource.  相似文献   

12.
Infectious disease has been shown to be a major cause of population declines in wild animals. However, there remains little empirical evidence on the genetic consequences of disease-mediated population declines, or how such perturbations might affect demographic processes such as dispersal. Devil facial tumour disease (DFTD) has resulted in the rapid decline of the Tasmanian devil, Sarcophilus harrisii, and threatens to cause extinction. Using 10 microsatellite DNA markers, we compared genetic diversity and structure before and after DFTD outbreaks in three Tasmanian devil populations to assess the genetic consequences of disease-induced population decline. We also used both genetic and demographic data to investigate dispersal patterns in Tasmanian devils along the east coast of Tasmania. We observed a significant increase in inbreeding (FIS pre/post-disease −0.030/0.012, P<0.05; relatedness pre/post-disease 0.011/0.038, P=0.06) in devil populations after just 2–3 generations of disease arrival, but no detectable change in genetic diversity. Furthermore, although there was no subdivision apparent among pre-disease populations (θ=0.005, 95% confidence interval (CI) −0.003 to 0.017), we found significant genetic differentiation among populations post-disease (θ=0.020, 0.010–0.027), apparently driven by a combination of selection and altered dispersal patterns of females in disease-affected populations. We also show that dispersal is male-biased in devils and that dispersal distances follow a typical leptokurtic distribution. Our results show that disease can result in genetic and demographic changes in host populations over few generations and short time scales. Ongoing management of Tasmanian devils must now attempt to maintain genetic variability in this species through actions designed to reverse the detrimental effects of inbreeding and subdivision in disease-affected populations.  相似文献   

13.
Characterizing habitat suitability for a marine predator requires an understanding of the environmental heterogeneity and variability over the range in which a population moves during a particular life cycle. Female California sea lions (Zalophus californianus) are central‐place foragers and are particularly constrained while provisioning their young. During this time, habitat selection is a function of prey availability and proximity to the rookery, which has important implications for reproductive and population success. We explore how lactating females may select habitat and respond to environmental variability over broad spatial and temporal scales within the California Current System. We combine near‐real‐time remotely sensed satellite oceanography, animal tracking data (n = 72) from November to February over multiple years (2003–2009) and Generalized Additive Mixed Models (GAMMs) to determine the probability of sea lion occurrence based on environmental covariates. Results indicate that sea lion presence is associated with cool ( <14°C ), productive waters, shallow depths, increased eddy activity, and positive sea‐level anomalies. Predictive habitat maps generated from these biophysical associations suggest winter foraging areas are spatially consistent in the nearshore and offshore environments, except during the 2004–2005 winter, which coincided with an El Niño event. Here, we show how a species distribution model can provide broadscale information on the distribution of female California sea lions during an important life history stage and its implications for population dynamics and spatial management.  相似文献   

14.
Two Tsigai sheep populations exist in Serbia: the Old type, called Čokan, and the New type. It is assumed that the New type results from upgrading Tsigai sheep with exotic genetic material. We investigated genetic diversity and differentiation of these types by analysing 23 autosomal microsatellites. Tests for Hardy-Weinberg proportions, linkage equilibrium between genotypes across loci and the calculation of inbreeding coefficients were performed and the deficiency in the number of alleles within the Tsigai types was examined using a Wilcoxon sign-rank test. The New type displayed a higher level of genetic variability than the Čokan in terms of allele numbers, but the New Tsigai showed a pattern of heterozygosity deficiency. The positive f value for the Čokan suggests the occurrence of inbreeding in this type. The proportion of linkage disequilibrium was below that expected by chance. Exclusion of two loci in Hardy-Weinberg disequilibrium did not alter our conclusions based on the entire data set i.e. the two Tsigai types are clearly differentiated and the New Tsigai type has been influenced by crossbreeding. Therefore, the Čokan Tsigai should be considered as a distinct endangered breed in the FAO classification.  相似文献   

15.
Atrial fibrillation (AF) is associated with short-term mortality after ST-elevation myocardial infarction (STEMI), but there is limited data on the temporal association between AF and mortality after STEMI. A total of 830 patients were included (age: 62 ± 12 years, 76 % male). Patients with new-onset AF < 30 days after STEMI were divided among three subgroups: AF on the day of admission, AF 24–72 h and AF > 72 h after admission. Thirty-day mortality was assessed by telephone and via the municipal population registry. Twenty patients died < 30 days after admission. In 41 patients, AF was detected on the day of admission, in 14 patients 24–72 h after admission and in 18 patients > 72 h after admission. Mortality was higher in patients with AF on the day of admission (7.3 vs 2.2 %, p = 0.036) and 24–72 h after admission (14.3 vs 1.4 %, p < 0.001), but not in patients with AF > 72 h after admission (0 vs 1.1 %, p > 0.999). Age (odds ratio (OR) 1.123, p < 0.001), Killip class (adjusted OR 8.341, p < 0.001), AF on the day of admission (OR 3.585, p = 0.049) and 24–72 h after admission (OR 11.515, p = 0.003) were, amongst other variables, associated with an increased 30-day mortality. In conclusion, only new-onset incident AF during the first 72 h after admission was associated with 30-day mortality in STEMI patients.

Electronic supplementary material

The online version of this article (doi:10.1007/s12471-015-0709-2) contains supplementary material, which is available to authorized users.  相似文献   

16.
17.
In this paper, we report the estimates of outcrossing rates using open-pollinated progeny arrays of 40 BC1 individuals of Jatropha developed as a result of interspecific hybridization between J. curcas and J. integerrima. For analysis PCR-based dominant AFLP and codominant SSR markers were used. The multilocus outcrossing rate (tm) estimated from AFLP markers (0.892 ± 0.112) are almost in the same range with SSR (0.884 ± 0.293) markers which indicate a high level of heterozygosity. A low value of inbreeding coefficient (F) also points out to the fact that outcrossing was the prevalent mode of reproduction in Jatropha and suggests maintenance of adequate genetic variability within families.

Electronic supplementary material

The online version of this article (doi:10.1007/s12298-015-0318-y) contains supplementary material, which is available to authorized users.  相似文献   

18.
This research investigates the influence of demographic factors on human genetic sub-structure. In our discovery cohort, we show significant demographic trends for decreasing autozygosity associated with population variation in chronological age. Autozygosity, the genomic signature of consanguinity, is identifiable on a genome-wide level as extended tracts of homozygosity. We identified an average of 28.6 tracts of extended homozygosity greater than 1 Mb in length in a representative population of 809 unrelated North Americans of European descent ranging in chronological age from 19–99 years old. These homozygous tracts made up a population average of 42 Mb of the genome corresponding to 1.6% of the entire genome, with each homozygous tract an average of 1.5 Mb in length. Runs of homozygosity are steadily decreasing in size and frequency as time progresses (linear regression, p<0.05). We also calculated inbreeding coefficients and showed a significant trend for population-wide increasing heterozygosity outside of linkage disequilibrium. We successfully replicated these associations in a demographically similar cohort comprised of a subgroup of 477 Baltimore Longitudinal Study of Aging participants. We also constructed statistical models showing predicted declining rates of autozygosity spanning the 20th century. These predictive models suggest a 14.0% decrease in the frequency of these runs of homozygosity and a 24.3% decrease in the percent of the genome in runs of homozygosity, as well as a 30.5% decrease in excess homozygosity based on the linkage pruned inbreeding coefficients. The trend for decreasing autozygosity due to panmixia and larger effective population sizes will likely affect the frequency of rare recessive genetic diseases in the future. Autozygosity has declined, and it seems it will continue doing so.  相似文献   

19.
Naturally occurring cancers in non-laboratory species have great potential in helping to decipher the often complex causes of neoplasia. Wild animal models could add substantially to our understanding of carcinogenesis, particularly of genetic and environmental interactions, but they are currently underutilized. Studying neoplasia in wild animals is difficult and especially challenging in marine mammals owing to their inaccessibility, lack of exposure history, and ethical, logistical and legal limits on experimentation. Despite this, California sea lions (Zalophus californianus) offer an opportunity to investigate risk factors for neoplasia development that have implications for terrestrial mammals and humans who share much of their environment and diet. A relatively accessible California sea lion population on the west coast of the USA has a high prevalence of urogenital carcinoma and is regularly sampled during veterinary care in wildlife rehabilitation centres. Collaborative studies have revealed that genotype, persistent organic pollutants and a herpesvirus are all associated with this cancer. This paper reviews research to date on the epidemiology and pathogenesis of urogenital carcinoma in this species, and presents the California sea lion as an important and currently underexploited wild animal model of carcinogenesis.  相似文献   

20.
Previous studies indicate that lumbar radicular pain following disc herniation may be associated with release of several pro-inflammatory mediators, including interleukin-1 (IL1). In the present study, we examined how genetic variability in IL1A (rs1800587 C>T), IL1B (rs1143627 T>C) and IL1RN (rs2234677 G>A) influenced the clinical outcome the first year after disc herniation. Patients (n = 258) with lumbar radicular pain due to disc herniation were recruited from two hospitals in Norway. Pain and disability were measured by visual analogue scale (VAS) and Oswestry Disability Index (ODI) over a 12 month period. The result showed that patients with the IL1A T allele, in combination with the IL1RN A allele had more pain and a slower recovery than other patients (VAS p = 0.049, ODI p = 0.059 rmANOVA; VAS p = 0.003, ODI p = 0.050 one-way ANOVA at 12 months). However, regarding the IL1B/IL1RN genotype, no clear effect on recovery was observed (VAS p = 0.175, ODI p = 0.055 rmANOVA; VAS p = 0.105, ODI p = 0.214 one-way ANOVA at 12 months). The data suggest that the IL1A T/IL1RN A genotype, but not the IL1B T/IL1RN A genotype, may increase the risk of a chronic outcome in patients following disc herniation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号