首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
Nitric oxide (NO) and reactive oxygen species (ROS) are important signaling molecules in plant immunity. However, roles of NO and ROS in disease resistance to necrotrophic pathogens are not fully understood. We have recently demonstrated that NO plays a pivotal role in basal defense against Botrytis cinerea and the expression of the salicylic acid (SA)-responsive gene PR-1 in Nicotiana benthamiana. By contrast, ROS function negatively in resistance or positively in expansion of disease lesions during B. cinerea-N. benthamiana interaction. Here, analysis in NahG-transgenic N. benthamiana showed that SA signaling is not involved in resistance to B. cinerea in N. benthamiana. We discuss how NO and ROS participate in disease resistance to necrotrophic pathogens on the basis of recent reports.Key words: NO burst, oxidative burst, necrotrophic pathogen, salicylic acid, plant immunity, MAPKNecrotrophs are pathogens that kill host cells by means of toxic molecules and lytic enzymes, and they feed on the remains for their own growth. If the toxic molecule shows differential activity to one or a few plant species, the pathogen has a limited host range and the metabolite is referred to as a host-selective toxin (HST).1 Several well-studied necrotrophs, in particular Cochliobolus and Alternaria spp., produce HSTs required for the pathogenicity. There are also necrotrophic fungal pathogens with a broad host range, particularly those in the order of Helotiales, including Sclerotinia sclerotiorum and Botrytis cinerea.Rapid production of nitric oxide (NO) and reactive oxygen species (ROS), called NO burst and oxidative burst, respectively, is one of the earliest responses of plants to pathogen attacks. Our recent study showed that NO and oxidative bursts accompanied by activation of the mitogen-activated protein kinase (MAPK)2 are induced after inoculation with B. cinerea, and that NO plays a key role, but ROS have an opposite effect in basal defense against B. cinerea in Nicotiana benthamiana.3 NO and ROS are believed to play key roles independently or coordinately in plant innate immunity.4,5 NO signaling comprises complex processes including increases in cytosolic Ca2+ concentration, cyclic GMP (cGMP), cyclic ADP ribose and activation of protein kinases. NO also modulates protein activities directly by cysteine S-nitrosylation.6 In addition, NO appears to act as an antioxidant of ROS, because NO can react quickly with superoxide (O2) to form peroxynitrite (ONOO) and then, reduces the amount of endogenous ROS. Actually, treatment with a mammalian NO synthase inhibitor and silencing NbNOA1 decreased endogenous NO levels and increased the levels of ROS after inoculation with B. cinerea.3 The suppression of NO burst induced high susceptibility to B. cinerea, and depletion of oxidative burst by an NADPH oxidase inhibitor or silencing NbRBOHB led to reduction in disease lesions by B. cinerea,3 suggesting that the growth of B. cinerea might be determined by endogenous levels of ROS which is an important component of virulence.7 However, depletion of both NO and oxidative bursts by double silencing NbNOA1/NbRBOHB resulted in expansion of disease lesions compared with reduction of oxidative burst alone by silencing NbRBOHB.3 Similarly, our most recent study showed that silencing NbRibA which compromises production of both NO and ROS do not affect basal resistance against B. cinerea.8 These findings suggest that NO positively functions in resistance to necrotrophic pathogens in the manner other than as an antioxidant of ROS.The relationship between NO and salicylic acid (SA) has been studied.9 SA signaling-deficient mutants of Arabidopsis thaliana show high susceptibility to B. cinerea.10,11 We have suggested that reduced basal defense against B. cinerea in N. benthamiana resulting from compromised endogenous NO production may be due to depletion of SA signaling, because NbNOA1-silenced plants showed suppression of the SA-responsive gene NbPR-1 expression induced by inoculation with B. cinerea.3 To confirm the possibility, we used N. benthamiana expressing NahG that converts all SA to catechol. NahG and non-NahG (WT) leaves were inoculated with B. cinerea. NahG plants showed similar susceptibility to B. cinerea compared with WT plants (Fig. 1). We also evaluated effects of silencing NbNOA1 and NbRBOHB in NahG plants on susceptibility to B. cinerea. Like NbNOA1-silenced WT plants shown previusly,3 NbNOA1-silenced NahG leaves showed high susceptibility to B. cinerea. On the other hand, NbRBOHB-silenced NahG leaves showed marked reduction of disease lesions compared with silencing-control NahG leaves. NbNOA1/NbRBOHB-silenced NahG leaves showed expansion of disease lesions compared with NbRBOHB-silenced NahG leaves (Fig. 2). These results suggest that NO-mediated basal defense against B. cinerea is not due to SA signaling, and effects of ROS on disease lesions may not depend on SA in N. benthamiana.Open in a separate windowFigure 1Effects of NahG transgene on susceptibility to B. cinerea. NahG and non-NahG (WT) leaves were inoculated with B. cinerea conidial suspension (1 × 105 conidia/ml). (A) Inoculated leaves were photographed at 4 days postinoculation (dpi). (B) Average diameter of lesions formed on the leaves at 3 and 4 dpi. Data are means ± SD from fourteen experiments.Open in a separate windowFigure 2Effects of silencing NbNOA1 (N), NbRBOHB (B) or NbNOA1/NbRBOHB (N/B) in NahG plants on susceptibility to B. cinerea. Silenced NahG leaves were inoculated with B. cinerea conidial suspension (1 × 105 conidia/ml). (A) Inoculated leaves were photographed at 4 dpi. (B) Average diameter of lesions formed on the leaves at 3 and 4 dpi. Data are means ± SD from four experiments. Data were subjected to Student''s t-test. *p < 0.05 versus silencing-control plants (TRV). **p < 0.05 versus NbRBOHB-silenced plants.Recently, it has been reported that NO and ROS are involved in HSTs responses.1215 Victorin, an HST produced by Cochliobolus victoriae, elicits generation of NO and ROS in victorin-sensitive oat leaves.12 Cell death induced by victorin is suppressed by treatment with ROS scavengers.13 Similarly, treatment with ToxA, an HST produced by Pyrenophora triticirepentis, induces oxidative burst, and scavenging ROS compromises ToxA-inducible cell death in ToxA-sensitive wheatleaves.14,15 SA-induced MAPK, which regulates both NO and ROS production,2 is activated by AAL-toxin produced by Alternaria alternata f. sp. lycopersici in AAL-toxin-sensitive tobacco (Mizuno et al. unpublished data). These findings indicate requirement of ROS for the HST-inducible cell death and participation of NO in HST responses.In conclusion, NO and ROS appear to play a contrasting role in disease resistance to necrotrophic pathogens as shown in Figure 3. However, how NO signaling participates in defense responses against necrotrophic pathogens has yet to be elucidated. Recently, several targets of protein S-nitrosylation during hypersensitive response have been characterized in A. thaliana.16 Evidence is also accumulating for cGMP as an important component of NO-related signal transduction.17 Further investigations of NO signaling will lead to our understanding of interactions between plants and necrotrophic pathogens.Open in a separate windowFigure 3Model showing role of NO and oxidative bursts in disease resistance to necrotrophic pathogens. After recognition of necrotrophs, plants immediately provoke activation of MAPK which could regulate production of both NO and ROS,2 and then NO and oxidative bursts. NO burst plays an important role in disease resistance to necrotrophic pathogens, whereas oxidative burst has a negative role in resistance or has a positive role in expansion of disease lesions by necrotrophs.  相似文献   

3.
The prion hypothesis13 states that the prion and non-prion form of a protein differ only in their 3D conformation and that different strains of a prion differ by their 3D structure.4,5 Recent technical developments have enabled solid-state NMR to address the atomic-resolution structures of full-length prions, and a first comparative study of two of them, HET-s and Ure2p, in fibrillar form, has recently appeared as a pair of companion papers.6,7 Interestingly, the two structures are rather different: HET-s features an exceedingly well-ordered prion domain and a partially disordered globular domain. Ure2p in contrast features a very well ordered globular domain with a conserved fold, and—most probably—a partially ordered prion domain.6 For HET-s, the structure of the prion domain is characterized at atomic-resolution. For Ure2p, structure determination is under way, but the highly resolved spectra clearly show that information at atomic resolution should be achievable.Key words: prion, NMR, solid-state NMR, MAS, structure, Ure2p, HET-sDespite the large interest in the basic mechanisms of fibril formation and prion propagation, little is known about the molecular structure of prions at atomic resolution and the mechanism of propagation. Prions with related properties to the ones responsible for mammalian diseases were also discovered in yeast and funghi8,9 which provide convenient model system for their studies. Prion proteins described include the mammalian prion protein PrP, Ure2p,10 Rnq1p,11 Sup35,12 Swi1,13 and Cyc8,14 from bakers yeast (S. cervisiae) and HET-s from the filamentous fungus P. anserina. The soluble non-prion form of the proteins characterized in vitro is a globular protein with an unfolded, dynamically disordered N- or C-terminal tail.1518 In the prion form, the proteins form fibrillar aggregates, in which the tail adopts a different conformation and is thought to be the dominant structural element for fibril formation.Fibrills are difficult to structurally characterize at atomic resolution, as X-ray diffraction and liquid-state NMR cannot be applied because of the non-crystallinity and the mass of the fibrils. Solid-state NMR, in contrast, is nowadays well suited for this purpose. The size of the monomer, between 230 and 685 amino-acid residues for the prions of Figure 1, and therefore the number of resonances in the spectrum—that used to be large for structure determination—is now becoming tractable by this method.Open in a separate windowFigure 1Prions identified today and characterized as consisting of a prion domain (blue) and a globular domain (red).Prion proteins characterized so far were found to be usually constituted of two domains, namely the prion domain and the globular domain (see Fig. 1). This architecture suggests a divide-and-conquer approach to structure determination, in which the globular and prion domain are investigated separately. In isolation, the latter, or fragments thereof, were found to form β-sheet rich structures (e.g., Ure2p(1-89),6,19 Rnq1p(153-405)20 and HET-s(218-289)21). The same conclusion was reached by investigating Sup35(1-254).22 All these fragements have been characterized as amyloids, which we define in the sense that a significant part of the protein is involved in a cross-beta motif.23 An atomic resolution structure however is available presently only for the HET-s prion domain, and was obtained from solid-state NMR24 (vide infra). It contains mainly β-sheets, which form a triangular hydrophobic core. While this cross-beta structure can be classified as an amyloid, its triangular shape does deviate significantly from amyloid-like structures of smaller peptides.23Regarding the globular domains, structures have been determined by x-ray crystallography (Ure2p25,26 and HET-s27), as well as NMR (mammal prions15,2830). All reveal a protein fold rich in α-helices, and dimeric structures for the Ure2 and HET-s proteins. The Ure2p fold resembles that of the β-class glutathione S-transferases (GST), but lacks GST activity.25It is a central question for the structural biology of prions if the divide-and-conquer approach imposed by limitations in current structural approaches is valid. Or in other words: can the assembly of full-length prions simply be derived from the sum of the two folds observed for the isolated domains?  相似文献   

4.
5.
Organelle movement in plants is dependent on actin filaments with most of the organelles being transported along the actin cables by class XI myosins. Although chloroplast movement is also actin filament-dependent, a potential role of myosin motors in this process is poorly understood. Interestingly, chloroplasts can move in any direction and change the direction within short time periods, suggesting that chloroplasts use the newly formed actin filaments rather than preexisting actin cables. Furthermore, the data on myosin gene knockouts and knockdowns in Arabidopsis and tobacco do not support myosins'' XI role in chloroplast movement. Our recent studies revealed that chloroplast movement and positioning are mediated by the short actin filaments localized at chloroplast periphery (cp-actin filaments) rather than cytoplasmic actin cables. The accumulation of cp-actin filaments depends on kinesin-like proteins, KAC1 and KAC2, as well as on a chloroplast outer membrane protein CHUP1. We propose that plants evolved a myosin XI-independent mechanism of the actin-based chloroplast movement that is distinct from the mechanism used by other organelles.Key words: actin, Arabidopsis, blue light, kinesin, myosin, organelle movement, phototropinOrganelle movement and positioning are pivotal aspects of the intracellular dynamics in most eukaryotes. Although plants are sessile organisms, their organelles are quickly repositioned in response to fluctuating environmental conditions and certain endogenous signals. By and large, plant organelle movements and positioning are dependent on actin filaments, although microtubules play certain accessory roles in organelle dynamics.1,2 Actin inhibitors effectively retard the movements of mitochondria,36 peroxisomes,5,711 Golgi stacks,12,13 endoplasmic reticulum (ER),14,15 and nuclei.1618 These organelles are co-aligned and associated with actin filaments.5,7,8,1012,15,18 Recent progress in this field started to reveal the molecular motility system responsible for the organelle transport in plants.19Chloroplast movement is among the most fascinating models of organelle movement in plants because it is precisely controlled by ambient light conditions.20,21 Weak light induces chloroplast accumulation response so that chloroplasts can capture photosynthetic light efficiently (Fig. 1A). Strong light induces chloroplast avoidance response to escape from photodamage (Fig. 1B).22 The blue light-induced chloroplast movement is mediated by the blue light receptor phototropin (phot). In some cryptogam plants, the red light-induced chloroplast movement is regulated by a chimeric phytochrome/phototropin photoreceptor neochrome.2325 In a model plant Arabidopsis, phot1 and phot2 function redundantly to regulate the accumulation response,26 whereas phot2 alone is essential for the avoidance response.27,28 Several additional factors regulating chloroplast movement were identified by analyses of Arabidopsis mutants deficient in chloroplast photorelocation.2932 In particular, identification of CHUP1 (chloroplast unusual positioning 1) revealed the connection between chloroplasts and actin filaments at the molecular level.29 CHUP1 is a chloroplast outer membrane protein capable of interacting with F-actin, G-actin and profilin in vitro.29,33,34 The chup1 mutant plants are defective in both the chloroplast movement and chloroplast anchorage to the plasma membrane,22,29,33 suggesting that CHUP1 plays an important role in linking chloroplasts to the plasma membrane through the actin filaments. However, how chloroplasts move using the actin filaments and whether chloroplast movement utilizes the actin-based motility system similar to other organelle movements remained to be determined.Open in a separate windowFigure 1Schematic distribution patterns of chloroplasts in a palisade cell under different light conditions, weak (A) and strong (B) lights. Shown as a side view of mid-part of the cell and a top view with three different levels (i.e., top, middle and bottom of the cell). The cell was irradiated from the leaf surface shown as arrows. Weak light induces chloroplast accumulation response (A) and strong light induces the avoidance response (B).Here, we review the recent findings pointing to existence of a novel actin-based mechanisms for chloroplast movement and discuss the differences between the mechanism responsible for movement of chloroplasts and other organelles.  相似文献   

6.
7.
8.
9.
10.
11.
Cellulose Synthase Like (CSL) proteins are a group of plant glycosyltransferases that are predicted to synthesize β-1,4-linked polysaccharide backbones. CSLC, CSLF and CSLH families have been confirmed to synthesize xyloglucan and mixed linkage β-glucan, while CSLA family proteins have been shown to synthesize mannans. The polysaccharide products of the five remaining CSL families have not been determined. Five CSLD genes have been identified in Arabidopsis thaliana and a role in cell wall biosynthesis has been demonstrated by reverse genetics. We have extended past research by producing a series of double and triple Arabidopsis mutants and gathered evidence that CSLD2, CSLD3 and CSLD5 are involved in mannan synthesis and that their products are necessary for the transition between early developmental stages in Arabidopsis. Moreover, our data revealed a complex interaction between the three glycosyltransferases and brought new evidence regarding the formation of non-cellulosic polysaccharides through multimeric complexes.Key words: mannan, mannose, plant cell wall, glycosyltransferase, cellulose synthase like, CSL, biosynthesis, hemicelluloseThe plant cell wall is mainly composed of polysaccharides, which are often grouped into cellulose, hemicelluloses and pectin. Since the discovery of the first cellulose synthase (CESA) genes in cotton fibers,1 the synthesis of cellulose has been extensively studied.2 In contrast, the glycosyltransferases responsible for synthesizing hemicelluloses and pectin are still largely unidentified.3,4,5 The CESA genes are members of a superfamily that includes genes with a high sequence similarity with CESA genes and are named Cellulose Synthase Like (CSL).6 The CSL genes have themselves been grouped into nine families designated CSLA, -B, -C, -D, -E, -F, -G, -H and -J (Figure 1A).5,6 Mannan and glucomannan synthase activity has been demonstrated in the CSLA family,7,8,9 while members of the CSLC family have been implicated in synthesis of the xyloglucan backbone.10 CSLF and CSLH, which are found only in grasses, are involved in synthesis of mixed linkage glucan.11,12 The function of the remaining CSL families has not been determined. We have reported our research on the CSLD family in a recent publication.13 Of all the CSL families, CSLD possesses the most ancient intron/exon structure and is the most similar to the CESA family.6 CSLD genes are found in all sequenced genomes of terrestrial plants including Physcomitrella and Selaginella suggesting a highly conserved function throughout the plant kingdom (Figure 1A). Five genes (CSLD1 to CSLD5) and one apparent pseudogene (CSLD6) have been identified in Arabidopsis thaliana.14 Bernal et al.14,15 studied knock-out mutants of the individual genes and presented evidence for a role in cell wall biosynthesis for each Arabidopsis CSLD. To elucidate the activity of the CSLD proteins and obtain further understanding of their biological role, we generated double mutants csld2/csld3, csld2/csld5, csld3/csld5 and the triple mutant csld2/csld3/csld5. Immunochemical, biochemical and complementation assays brought evidence that CSLD5 or CSLD2 in concomitance with CSLD3 act as mannan synthases.Open in a separate windowFigure 1(A) Schematic representation of the CESA superfamily phylogeny. The inset on the right is a detailed phylogenetic tree of CSLDs from Selaginella moellendorffii, Arabidopsis thaliana and Oryza sativa. The figure is modified from Ulvskov and Scheller.5 (B) Comparison of csld2, csld3, csld5 with Col-0 20 days after germination. The inflorescences of csld2 and csld3 were similar to Col-0 whereas csld5 had a delayed growth. Scale bar: 1 cm. (C) Col-0 and csld2/csld3/csld5 (triple mutant, TM) 40 days after germination. After 40 days, the triple mutant was barely developed and, as shown in the magnified inset, displayed purple coloration indicating accumulation of anthocyanins, a typical stress response. Scale bar: 2 mm.  相似文献   

12.
Plant defensins are small, highly stable, cysteine-rich peptides that constitute a part of the innate immune system primarily directed against fungal pathogens. Biological activities reported for plant defensins include antifungal activity, antibacterial activity, proteinase inhibitory activity and insect amylase inhibitory activity. Plant defensins have been shown to inhibit infectious diseases of humans and to induce apoptosis in a human pathogen. Transgenic plants overexpressing defensins are strongly resistant to fungal pathogens. Based on recent studies, some plant defensins are not merely toxic to microbes but also have roles in regulating plant growth and development.Key words: defensin, antifungal, antimicrobial peptide, development, innate immunityDefensins are diverse members of a large family of cationic host defence peptides (HDP), widely distributed throughout the plant and animal kingdoms.13 Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling.4 In the early 1990s, the first members of the family of plant defensins were isolated from wheat and barley grains.5,6 Those proteins were originally called γ-thionins because their size (∼5 kDa, 45 to 54 amino acids) and cysteine content (typically 4, 6 or 8 cysteine residues) were found to be similar to the thionins.7 Subsequent “γ-thionins” homologous proteins were indentified and cDNAs were cloned from various monocot or dicot seeds.8 Terras and his colleagues9 isolated two antifungal peptides, Rs-AFP1 and Rs-AFP2, noticed that the plant peptides'' structural and functional properties resemble those of insect and mammalian defensins, and therefore termed the family of peptides “plant defensins” in 1995. Sequences of more than 80 different plant defensin genes from different plant species were analyzed.10 A query of the UniProt database (www.uniprot.org/) currently reveals publications of 371 plant defensins available for review. The Arabidopsis genome alone contains more than 300 defensin-like (DEFL) peptides, 78% of which have a cysteine-stabilized α-helix β-sheet (CSαβ) motif common to plant and invertebrate defensins.11 In addition, over 1,000 DEFL genes have been identified from plant EST projects.12Unlike the insect and mammalian defensins, which are mainly active against bacteria,2,3,10,13 plant defensins, with a few exceptions, do not have antibacterial activity.14 Most plant defensins are involved in defense against a broad range of fungi.2,3,10,15 They are not only active against phytopathogenic fungi (such as Fusarium culmorum and Botrytis cinerea), but also against baker''s yeast and human pathogenic fungi (such as Candida albicans).2 Plant defensins have also been shown to inhibit the growth of roots and root hairs in Arabidopsis thaliana16 and alter growth of various tomato organs which can assume multiple functions related to defense and development.4  相似文献   

13.
14.
Flowering is a developmental process, which is influenced by chemical and environmental stimuli. Recently, our research established that the Arabidopsis SUMO E3 ligase, AtSIZ1, is a negative regulator of transition to flowering through mechanisms that reduce salicylic acid (SA) accumulation and involve SUMO modification of FLOWERING LOCUS D (FLD). FLD is an autonomous pathway determinant that represses the expression of FLOWERING LOCUS C (FLC), a floral repressor. This addendum postulates mechanisms by which SIZ1-mediated SUMO conjugation regulates SA accumulation and FLD activity.Key words: SIZ1, SA, flowering, SUMO, FLD, FLCSUMO conjugation and deconjugation are post-translational processes implicated in plant defense against pathogens, abscisic acid (ABA) and phosphate (Pi) starvation signaling, development, and drought and temperature stress tolerance, albeit only a few of the modified proteins have been identified.18 The Arabidopsis AtSIZ1 locus encodes a SUMO E3 ligase that regulates floral transition and leaf development.8,9 siz1 plants accumulate substantial levels of SA, which is the primary cause for dwarfism and early short-day flowering exhibited by these plants.1,9 How SA promotes transition to flowering is not yet known but apparently, it is through a mechanism that is independent of the known floral signaling pathways.9,10 Exogenous SA reduces expression of AGAMOUS-like 15 (AGL15), a floral repressor that functions redundantly with AGL18.11,12 A possible mechanism by which SA promotes transition to flowering may be by repressing expression of AGL15 and AGL18 (Fig. 1).Open in a separate windowFigure 1Model of how SUMO conjugation and deconjugation regulate plant development in Arabidopsis. SIZ1 and Avr proteins regulate biosynthesis and accumulation of SA, a plant stress hormone that is involved in plant innate immunity, leaf development and regulation of flowering time. SA promotes transition to flowering may through AGL15/AGL18 dependent and independent pathways. FLC expression is activated by FRIGIDA but repressed by the autonomous pathway gene FLD, and SIZ1-mediated sumoylation of FLD represses its activity. Lines with arrows indicate upregulation (activation), and those with bars identify downregulation (repression).siz1 mutations also cause constitutive induction of pathogenesis-related protein genes leading to enhanced resistance against biotrophic pathogens.1 Several bacterial type III effector proteins, such as YopJ, XopD and AvrXv4, have SUMO isopeptidase activity.1315 PopP2, a member of YopJ/AvrRxv bacterial type III effector protein family, physically interacts with the TIR-NBS-LRR type R protein RRS1, and possibly stabilizes the RRS1 protein.16 Phytopathogen effector and plant R protein interactions lead to increased SA biosynthesis and accumulation, which in turn activates expression of pathogenesis-related proteins that facilitate plant defense.17 SIZ1 may participate in SUMO conjugation of plant R proteins to regulate Avr and R protein interactions leading to SA accumulation, which, in turn, affects phenotypes such as diseases resistance, dwarfism and flowering time (Fig. 1).Our recent work revealed also that AtSIZ1 facilitates FLC expression, negatively regulating flowering.9 AtSIZ1 promotes FLC expression by repressing FLD activity.9 Site-specific mutations that prevent SUMO1/2 conjugation to FLD result in enhanced activity of the protein to represses FLC expression, which is associated with reduced acetylation of histone 4 (H4) in FLC chromatin.9 FLD, an Arabidopsis ortholog of Lysine-Specific Demethylase 1 (LSD1), is a floral activator that downregulates methylation of H3K4 in FLC chromatin and represses FLC expression.18,19 Interestingly, bacteria expressing recombinant FLD protein did not demethylate H3K4me2, inferring that the demethylase activity requires additional co-factors as are necessary for LSD1.18,20 Together, these results suggest that SIZ1-mediated SUMO modification of FLD may affect interactions between FLD and co-factors, which is necessary for FLC chromatin modification.Despite our results that implicate SA in flowering time control, how SIZ1 regulates SA accumulation and the identity of the effectors involved remain to be discovered. In addition, it remains to be determined if SIZ1 is involved in other mechanisms that modulate FLD activity and FLC expression, or the function of other autonomous pathway determinants.  相似文献   

15.
16.
17.
VERNALIZATION INSENSITIVE 3 (VIN3) encodes a PHD domain chromatin remodelling protein that is induced in response to cold and is required for the establishment of the vernalization response in Arabidopsis thaliana.1 Vernalization is the acquisition of the competence to flower after exposure to prolonged low temperatures, which in Arabidopsis is associated with the epigenetic repression of the floral repressor FLOWERING LOCUS C (FLC).2,3 During vernalization VIN3 binds to the chromatin of the FLC locus,1 and interacts with conserved components of Polycomb-group Repressive Complex 2 (PRC2).4,5 This complex catalyses the tri-methylation of histone H3 lysine 27 (H3K27me3),4,6,7 a repressive chromatin mark that increases at the FLC locus as a result of vernalization.4,710 In our recent paper11 we found that VIN3 is also induced by hypoxic conditions, and as is the case with low temperatures, induction occurs in a quantitative manner. Our experiments indicated that VIN3 is required for the survival of Arabidopsis seedlings exposed to low oxygen conditions. We suggested that the function of VIN3 during low oxygen conditions is likely to involve the mediation of chromatin modifications at certain loci that help the survival of Arabidopsis in response to prolonged hypoxia. Here we discuss the implications of our observations and hypotheses in terms of epigenetic mechanisms controlling gene regulation in response to hypoxia.Key words: arabidopsis, VIN3, FLC, hypoxia, vernalization, chromatin remodelling, survival  相似文献   

18.
Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric αβ integrins is correlated to the association state of the single-pass α and β transmembrane domains. The association of integrin αIIbβ3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (αIIb) and tilted (β3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual αIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the β3 transmembrane helix, enabling αIIb(D723)β3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/β complex that overlap with the αβ transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.Key words: cell adhesion, membrane protein, integrin, platelet, transmembrane complex, transmembrane signalingThe communication of biological signals across the plasma membrane is fundamental to cellular function. The ubiquitous family of integrin adhesion receptors exhibits the unusual ability to convey signals bi-directionally (outside-in and inside-out signaling), thereby controlling cell adhesion, migration and differentiation.15 Integrins are Type I heterodimeric receptors that consist of large extracellular domains (>700 residues), single-pass transmembrane (TM) domains, and mostly short cytosolic tails (<70 residues). The activation state of heterodimeric integrins is correlated to the association state of the TM domains of their α and β subunits.610 TM dissociation initiated from the outside results in the transmittal of a signal into the cell, whereas dissociation originating on the inside results in activation of the integrin to bind ligands such as extracellular matrix proteins. The elucidation of the role of the TM domains in integrin-mediated adhesion and signaling has been the subject of extensive research efforts, perhaps commencing with the demonstration that the highly conserved GFFKR sequence motif of α subunits (Fig. 1), which closely follows the first charged residue on the intracellular face, αIIb(K989), constrains the receptor to a default low affinity state.11 Despite these efforts, an understanding of this sequence motif had not been reached until such time as the structure of the αIIb TM segment was determined.12 In combination with the structure of the β3 TM segment13 and available mutagenesis data,6,9,10,14,15 this has allowed the first correct prediction of the overall association of an integrin αβ TM complex.12 The predicted association was subsequently confirmed by the αIIbβ3 complex structure determined in phospholipid bicelles,16 as well as by the report of a similar structure based on molecular modeling using disulfide-based structural constraints.17 In addition to the structures of the dissociated and associated αβ TM domains, their membrane embedding was defined12,13,16,18,19 and it was experimentally recognized that, in the context of the native receptor, the TM complex is stabilized by the inactive, resting ectodomain.16 These advances in integrin membrane structural biology are complemented by the recent structures of a resting integrin ectodomain and an activating talin/β cytosolic tail complex that overlap with the αβ TM complex,20,21 allowing detailed insight into integrin bi-directional TM signaling.Open in a separate windowFigure 1Amino acid sequence of integrin αIIb and β3 transmembrane segments and flanking regions. Membrane-embedded residues12,13,16,18,19 are enclosed by a gray box. Residues 991–995 constitute the highly conserved GFFKR sequence motif of integrin α subunits.  相似文献   

19.
As a second messenger, H2O2 generation and signal transduction is subtly controlled and involves various signal elements, among which are the members of MAP kinase family. The increasing evidences indicate that both MEK1/2 and p38-like MAP protein kinase mediate ABA-induced H2O2 signaling in plant cells. Here we analyze the mechanisms of similarity and difference between MEK1/2 and p38-like MAP protein kinase in mediating ABA-induced H2O2 generation, inhibition of inward K+ currents, and stomatal closure. These data suggest that activation of MEK1/2 is prior to p38-like protein kinase in Vicia guard cells.Key words: H2O2 signaling, ABA, p38-like MAP kinase, MEK1/2, guard cellAn increasing number of literatures elucidate that reactive oxygen species (ROS), especially H2O2, is essential to plant growth and development in response to stresses,14 and involves activation of various signaling events, among which are the MAP kinase cascades.13,5 Typically, activation of MEK1/2 mediates NADPH oxidase-dependent ROS generation in response to stresses,4,68 and the facts that MEK1/2 inhibits the expression and activation of antioxidant enzymes reveal how PD98059, the specific inhibitor of MEK1/2, abolishes abscisic acid (ABA)-induced H2O2 generation.6,8,9 It has been indicated that PD98059 does not to intervene on salicylic acid (SA)-stimulated H2O2 signaling regardless of SA mimicking ABA in regulating stomatal closure.2,6,8,10 Generally, activation of MEK1/2 promotes ABA-induced stomatal closure by elevating H2O2 generation in conjunction with inactivating anti-oxidases.Moreover, activation of plant p38-like protein kinase, the putative counterpart of yeast or mammalian p38 MAP kinase, has been reported to participate in various stress responses and ROS signaling. It has been well documented that p38 MAP kinase is involved in stress-triggered ROS signaling in yeast or mammalian cells.1113 Similar to those of yeast and mammals, many studies showed the activation of p38-like protein kinase in response to stresses in various plants, including Arabidopsis thaliana,1416 Pisum sativum,17 Medicago sativa18 and tobacco.19 The specific p38 kinase inhibitor SB203580 was found to modulate physiological processes in plant tissues or cells, such as wheat root cells,20 tobacco tissue21 and suspension-cultured Oryza sativa cells.22 Recently, we investigate how activation of p38-like MAP kinase is involved in ABA-induced H2O2 signaling in guard cells. Our results show that SB203580 blocks ABA-induced stomatal closure by inhibiting ABA-induced H2O2 generation and decreasing K+ influx across the plasma membrane of Vicia guard cells, contrasting greatly with its analog SB202474, which has no effect on these events.23,24 This suggests that ABA integrate activation of p38-like MAP kinase and H2O2 signaling to regulate stomatal behavior. In conjunction with SB203580 mimicking PD98059 not to mediate SA-induced H2O2 signaling,23,24 these results generally reveal that the activation of p38-like MAP kinase and MEK1/2 is similar in guard cells.On the other hand, activation of p38-like MAP kinase23,24 is not always identical to that of MEK1/28,25 in ABA-induced H2O2 signaling of Vicia guard cells. For example, H2O2- and ABA-induced stomatal closure was partially reversed by SB203580. The maximum inhibition of both regent-induced stomatal closure were observed at 2 h after treatment with SB203580, under which conditions the stomatal apertures were 89% and 70% of the control values, respectively. By contrast, when PD98059 was applied together with ABA or H2O2, the effects of both ABA- and H2O2-induced stomatal closure were completely abolished (Fig. 1). These data imply that the two members of MAP kinase family are efficient in H2O2-stimulated stomatal closure, but p38-like MAP kinase is less susceptive than MEK1/2 to ABA stimuli.Open in a separate windowFigure 1Effects of SB203580 and PD98059 on ABA- and H2O2-induced stomatal closure. The experimental procedure and data analysis are according to the previous publication.8,23,24It has been reported that ABA or NaCl activate p38 MAP kinase in the chloronema cells of the moss Funaria hygrometrica in 2∼10 min.26 Similar to this, SB203580 improves H2O2-inhibited inward K+ currents after 4 min and leads it to the control level (100%) during the following 8 min (Fig. 2). However, the activation of p38-like MAP kinase in response to ABA need more time, and only recovered to 75% of the control at 8 min of treatment (Fig. 2). These results suggest that control of H2O2 signaling is required for the various protein kinases including p38-like MAP kinase and MEK1/2 in guard cells,1,2,8,23,24 and the ABA and H2O2 pathways diverge further downstream in their actions on the K+ channels and, thus, on stomatal control. Other differences in action between ABA and H2O2 are known. For example, Köhler et al. (2001) reported that H2O2 inhibited the K+ outward rectifier in guard cells shows that H2O2 does not mimic ABA action on guard cell ion channels as it acts on the K+ outward rectifier in a manner entirely contrary to that of ABA.27Open in a separate windowFigure 2Effect of SB203580 on ABA- and H2O2-inhibited inward K+ currents. The experimental procedure and data analysis are according to the previous publication.24 SB203580 directs ABA- and H2O2-inactivated inward K+ currents across plasma membrane of Vicia guard cells. Here the inward K+ currents value is stimulated by −190 mV voltage.Based on the similarity and difference between PD98059 and SB203580 in interceding ABA and H2O2 signaling, we speculate the possible mechanism is that the member of MAP kinase family specially regulate signal event in ABA-triggered ROS signaling network,14 and the signaling model as follows (Fig. 3).Open in a separate windowFigure 3Schematic illustration of MAP kinase-mediated H2O2 signaling of guard cells. The arrows indicate activation. The line indicates enhancement and the bar denotes inhibition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号