首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Background and Aims Plants regulate cellular oxygen partial pressures (pO2), together with reduction/oxidation (redox) state in order to manage rapid developmental transitions such as bud burst after a period of quiescence. However, our understanding of pO2 regulation in complex meristematic organs such as buds is incomplete and, in particular, lacks spatial resolution.Methods The gradients in pO2 from the outer scales to the primary meristem complex were measured in grapevine (Vitis vinifera) buds, together with respiratory CO2 production rates and the accumulation of superoxide and hydrogen peroxide, from ecodormancy through the first 72 h preceding bud burst, triggered by the transition from low to ambient temperatures.Key Results Steep internal pO2 gradients were measured in dormant buds with values as low as 2·5 kPa found in the core of the bud prior to bud burst. Respiratory CO2 production rates increased soon after the transition from low to ambient temperatures and the bud tissues gradually became oxygenated in a patterned process. Within 3 h of the transition to ambient temperatures, superoxide accumulation was observed in the cambial meristem, co-localizing with lignified cellulose associated with pro-vascular tissues. Thereafter, superoxide accumulated in other areas subtending the apical meristem complex, in the absence of significant hydrogen peroxide accumulation, except in the cambial meristem. By 72 h, the internal pO2 gradient showed a biphasic profile, where the minimum pO2 was external to the core of the bud complex.Conclusions Spatial and temporal control of the tissue oxygen environment occurs within quiescent buds, and the transition from quiescence to bud burst is accompanied by a regulated relaxation of the hypoxic state and accumulation of reactive oxygen species within the developing cambium and vascular tissues of the heterotrophic grapevine buds.  相似文献   

7.
8.
Circular dichroism (CD) and UV-melting experiments were conducted with 16 oligodeoxynucleotides modified by the carcinogen 2-aminofluorene, whose sequence around the lesion was varied systematically [d(CTTCTNG[AF]NCCTC), N = G, A, C, T], to gain insight into the factors that determine the equilibrium between base-displaced stacked (S) and external B-type (B) duplex conformers. Differing stabilities among the duplexes can be attributed to different populations of S and B conformers. The AF modification always resulted in sequence-dependent thermal (Tm) and thermodynamic (−ΔG°) destabilization. The population of B-type conformers derived from eight selected duplexes (i.e. -AG*N- and -CG*N-) was inversely proportional to the −ΔG° and Tm values, which highlights the importance of carcinogen/base stacking in duplex stabilization even in the face of disrupted Watson–Crick base pairing in S-conformation. CD studies showed that the extent of the adduct-induced negative ellipticities in the 290–350 nm range is correlated linearly with −ΔG° and Tm, but inversely with the population of B-type conformations. Taken together, these results revealed a unique interplay between the extent of carcinogenic interaction with neighboring base pairs and the thermodynamic properties of the AF-modified duplexes. The sequence-dependent S/B heterogeneities have important implications in understanding how arylamine–DNA adducts are recognized in nucleotide excision repair.  相似文献   

9.
10.
11.
12.
Genes for histidyl-aspartyl (His-Asp) phosphorelay components (His-containing phosphotransfer proteins, HP, and response regulators, RR) were isolated from Zea mays L. to characterize their function in cytokinin signaling. Six type-A RRs (ZmRR1, ZmRR2, ZmRR4–ZmRR7), 3 type-B RRs (ZmRR8–ZmRR10), and 3 HPs (ZmHP1–ZmHP3) were found in leaves. All type-A RR genes expressed in leaves were up-regulated by exogenous cytokinin. Transient expression of fusion products of the signaling modules with green fluorescent protein in epidermal leaf cells suggested cytosolic and nuclear localizations of ZmHPs, whereas type-B ZmRR8 was restricted to the nucleus. Type-A RRs were localized partly to the cytosol (ZmRR1, ZmRR2, and ZmRR3) and partly to the nucleus (ZmRR4, ZmRR5, and ZmRR6). In the yeast two-hybrid assay, ZmHP1 and ZmHP3 interacted with both cytosolic ZmRR1 and nuclear type-B ZmRRs. In vitro experiments demonstrated that ZmHPs function as a phospho-donor for ZmRRs; turnover rates of the phosphorylated state were tenfold lower in ZmRR8 and ZmRR9 than in ZmRR1 and ZmRR4. These results suggest that the His-Asp phosphorelay signaling pathway might diverge into a cytosolic and a nuclear branch in leaves of maize, and that the biochemical nature of ZmRRs is different in terms of stability of the phosphorylated status.  相似文献   

13.
Root exudates of plants of Vitis vinifera L. cv. Thompson Seedless, grown in nutrient cultures with root temperatures maintained at either 20° or 30° and with shoots at a common air temperature, were assayed for cytokinin activity. After chromatography of freeze-dried sap on paper with n-butanol/acetic acid/water (4:1:1). activity was detected with a soybean callus assay. For both root temperatures, major activity appeared between RF 0.6 and RF 0.8, at about the same concentration in each case. The major difference between the 2 samples was the presence of activity at RF 0.1 to 0.2 in the 20° sample and its absence in the 30° sample.

The higher root temperature resulted in increased shoot and root elongation, increased dry matter accumulation by both shoots and roots, and also altered the morphological appearance of the roots.

  相似文献   

14.
A multistep two-component signaling system is established as a key element of cytokinin signaling in Arabidopsis. Here, we provide evidence for a function of the two-component signaling system in cold stress response in Arabidopsis. Cold significantly induced the expression of a subset of A-type ARR genes and of GUS in ProARR7:GUS transgenic Arabidopsis. AHK2 and AHK3 were found to be primarily involved in mediating cold to express A-type ARRs despite cytokinin deficiency. Cold neither significantly induced AHK2 and AHK3 expression nor altered the cytokinin contents of wild type within the 4 h during which the A-type ARR genes exhibited peak expression in response to cold, indicating that cold might induce ARR expression via the AHK2 and AHK3 proteins without alterations in cytokinin levels. The ahk2 ahk3 and ahk3 ahk4 mutants exhibited enhanced freezing tolerance compared with wild type. These ahk double mutants acclimated as efficiently to cold as did wild type. The overexpression of the cold-inducible ARR7 in Arabidopsis resulted in a hypersensitivity response to freezing temperatures under cold-acclimated conditions. The expression of C-repeat/dehydration-responsive element target genes was not affected by ARR7 overexpression as well as in ahk double mutants. By contrast, the arr7 mutants showed increased freezing tolerance. The ahk2 ahk3 and arr7 mutants showed hypersensitive response to abscisic acid (ABA) for germination, whereas ARR7 overexpression lines exhibited insensitive response to ABA. These results suggest that AHK2 and AHK3 and the cold-inducible A-type ARRs play a negative regulatory role in cold stress signaling via inhibition of ABA response, occurring independently of the cold acclimation pathway.  相似文献   

15.
The phytohormone cytokinin plays a significant role in nearly all aspects of plant growth and development. Cytokinin signaling has primarily been studied in the dicot model Arabidopsis, with relatively little work done in monocots, which include rice (Oryza sativa) and other cereals of agronomic importance. The cytokinin signaling pathway is a phosphorelay comprised of the histidine kinase receptors, the authentic histidine phosphotransfer proteins (AHPs) and type-B response regulators (RRs). Two negative regulators of cytokinin signaling have been identified: the type-A RRs, which are cytokinin primary response genes, and the pseudo histidine phosphotransfer proteins (PHPs), which lack the His residue required for phosphorelay. Here, we describe the role of the rice PHP genes. Phylogenic analysis indicates that the PHPs are generally first found in the genomes of gymnosperms and that they arose independently in monocots and dicots. Consistent with this, the three rice PHPs fail to complement an Arabidopsis php mutant (aphp1/ahp6). Disruption of the three rice PHPs results in a molecular phenotype consistent with these elements acting as negative regulators of cytokinin signaling, including the induction of a number of type-A RR and cytokinin oxidase genes. The triple php mutant affects multiple aspects of rice growth and development, including shoot morphology, panicle architecture, and seed fill. In contrast to Arabidopsis, disruption of the rice PHPs does not affect root vascular patterning, suggesting that while many aspects of key signaling networks are conserved between monocots and dicots, the roles of at least some cytokinin signaling elements are distinct.  相似文献   

16.
17.
18.
19.
LincRNA‐EPS is an important regulator in inflammation. However, the role of lincRNA‐EPS in the host response against viral infection is unexplored. Here, we show that lincRNA‐EPS is downregulated in macrophages infected with different viruses including VSV, SeV, and HSV‐1. Overexpression of lincRNA‐EPS facilitates viral infection, while deficiency of lincRNA‐EPS protects the host against viral infection in vitro and in vivo. LincRNA‐EPS −/− macrophages show elevated expression of antiviral interferon‐stimulated genes (ISGs) such as Mx1, Oas2, and Ifit2 at both basal and inducible levels. However, IFN‐β, the key upstream inducer of these ISGs, is downregulated in lincRNA‐EPS −/− macrophages compared with control cells. RNA pulldown and mass spectrometry results indicate that lincRNA‐EPS binds to PKR and antagonizes the viral RNA–PKR interaction. PKR activates STAT1 and induces antiviral ISGs independent of IFN‐I induction. LincRNA‐EPS inhibits PKR‐STAT1‐ISGs signaling and thus facilitates viral infection. Our study outlines an alternative antiviral pathway, with downregulation of lincRNA‐EPS promoting the induction of PKR‐STAT1‐dependent ISGs, and reveals a potential therapeutic target for viral infectious diseases.  相似文献   

20.
Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-α) secretion by macrophages was essential for robust SHH activation, as TNF-α−/− macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-α or blockade of TNF-α receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号