首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
3.
The newly defined phytohormones strigolactones (SLs) were recently shown to act as regulators of root development. Their positive effect on root-hair (RH) elongation enabled examination of their cross talk with auxin and ethylene. Analysis of wild-type plants and hormone-signaling mutants combined with hormonal treatments suggested that SLs and ethylene regulate RH elongation via a common regulatory pathway, in which ethylene is epistatic to SLs. The SL and auxin hormonal pathways were suggested to converge for regulation of RH elongation; this convergence was suggested to be mediated via the ethylene pathway, and to include regulation of auxin transport.Key words: strigolactone, auxin, ethylene, root, root hair, lateral rootStrigolactones (SLs) are newly identified phytohormones that act as long-distance shoot-branching inhibitors (reviewed in ref. 1). In Arabidopsis, SLs have been shown to be regulators of root development and architecture, by modulating primary root elongation and lateral root formation.2,3 In addition, they were shown to have a positive effect on root-hair (RH) elongation.2 All of these effects are mediated via the MAX2 F-box.2,3In addition to SLs, two other plant hormones, auxin and ethylene, have been shown to affect root development, including lateral root formation and RH elongation.46 Since all three phytohormones (SLs, auxin and ethylene) were shown to have a positive effect on RH elongation, we examined the epistatic relations between them by examining RH length.7 Our results led to the conclusion that SLs and ethylene are in the same pathway regulating RH elongation, where ethylene may be epistatic to SLs.7 Moreover, auxin signaling was shown to be needed to some extent for the RH response to SLs: the auxin-insensitive mutant tir1-1,8 was less sensitive to SLs than the wild type under low SL concentrations.7On the one hand, ethylene has been shown to induce the auxin response,912 auxin synthesis in the root apex,11,12 and acropetal and basipetal auxin transport in the root.4,13 On the other, ethylene has been shown to be epistatic to SLs in the SL-induced RH-elongation response.7 Therefore, it might be that at least for RH elongation, SLs are in direct cross talk with ethylene, whereas the cross talk between SL and auxin pathways may converge through that of ethylene.7 The reduced response to SLs in tir1-1 may be derived from its reduced ethylene sensitivity;7,14 this is in line with the notion of the ethylene pathway being a mediator in the cross talk between the SL and auxin pathways.The suggested ethylene-mediated convergence of auxin and SLs may be extended also to lateral root formation, and may involve regulation of auxin transport. In the root, SLs have been suggested to affect auxin efflux,3,15 whereas ethylene has been shown to have a positive effect on auxin transport.4,13 Hence, it might be that in the root, the SLs'' effect on auxin flux is mediated, at least in part, via the ethylene pathway. Ethylene''s ability to increase auxin transport in roots was associated with its negative effect on lateral root formation: ethylene was suggested to enhance polar IAA transport, leading to alterations in the quantity of auxin that unloads into the tissues to drive lateral root formation.4 Under conditions of sufficient phosphate, SL''s effect was similar to that of ethylene: SLs reduced the appearance of lateral roots; this was explained by their ability to change auxin flux.3 Taken together, one possibility is that the SLs'' ability to affect auxin flux and thereby lateral root formation in the roots is mediated by induction of ethylene synthesis.To conclude, root development may be regulated by a network of auxin, SL and ethylene cross talk.7 The possibility that similar networks exist elsewhere in the SLs'' regulation of plant development, including shoot architecture, cannot be excluded.  相似文献   

4.
5.
6.
7.
8.
9.
Auxin is a phytohormone essential for plant development. Due to the high redundancy in auxin biosynthesis, the role of auxin biosynthesis in embryogenesis and seedling development, vascular and flower development, shade avoidance and ethylene response were revealed only recently. We previously reported that a vitamin B6 biosynthesis mutant pdx1 exhibits a short-root phenotype with reduced meristematic zone and short mature cells. By reciprocal grafting, we now have found that the pdx1 short root is caused by a root locally generated signal. The mutant root tips are defective in callus induction and have reduced DR5::GUS activity, but maintain relatively normal auxin response. Genetic analysis indicates that pdx1 mutant could suppress the root hair and root growth phenotypes of the auxin overproduction mutant yucca on medium supplemented with tryptophan (Trp), suggesting that the conversion from Trp to auxin is impaired in pdx1 roots. Here we present data showing that pdx1 mutant is more tolerant to 5-methyl anthranilate, an analogue of the Trp biosynthetic intermediate anthranilate, demonstrating that pdx1 is also defective in the conversion from anthranilate to auxin precursor tryptophan. Our data suggest that locally synthesized auxin may play an important role in the postembryonic root growth.Key words: auxin synthesis, root, PLP, PDX1The plant hormone auxin modulates many aspects of growth and development including cell division and cell expansion, leaf initiation, root development, embryo and fruit development, pattern formation, tropism, apical dominance and vascular tissue differentiation.13 Indole-3-acetic acid (IAA) is the major naturally occurring auxin. IAA can be synthesized in cotyledons, leaves and roots, with young developing leaves having the highest capacity.4,5Auxin most often acts in tissues or cells remote from its synthetic sites, and thus depends on non-polar phloem transport as well as a highly regulated intercellular polar transport system for its distribution.2The importance of local auxin biosynthesis in plant growth and development has been masked by observations that impaired long-distance auxin transport can result in severe growth or developmental defects.3,6 Furthermore, a few mutants with reduced free IAA contents display phenotypes similar to those caused by impaired long-distance auxin transport. These phenotypes include defective vascular tissues and flower development, short primary roots and reduced apical dominance, or impaired shade avoidance and ethylene response.715 Since these phenotypes most often could not be rescued by exogenous auxin application, it is difficult to attribute such defects to altered local auxin biosynthesis. By complementing double, triple or quadruple mutants of four Arabidopsis shoot-abundant auxin biosynthesis YUCCA genes with specific YUCCA promoters driven bacterial auxin biosynthesis iaaM gene, Cheng et al. provided unambiguous evidence that auxin biosynthesis is indispensable for embryo, flower and vascular tissue development.8,13 Importantly, it is clear that auxin synthesized by YUCCAs is not functionally interchangeable among different organs, supporting the notion that auxin synthesized by YUCCAs mainly functions locally or in a short range.6,8,13The central role of auxin in root meristem patterning and maintenance is well documented,1,2,16 but the source of such IAA is still unclear. When 14C-labeled IAA was applied to the five-day-old pea apical bud, the radioactivity could be detected in lateral root primordia but not the apical region of primary roots.17 Moreover, removal of the shoot only slightly affected elongation of the primary root, and localized application of auxin polar transport inhibitor naphthylphthalamic acid (NPA) at the primary root tip exerted more profound inhibitory effect on root elongation than at any other site.18 These results suggest that auxin generated near the root tip may play a more important role in primary root growth than that transported from the shoot. In line with this notion, Arabidopsis roots have been shown to harbor multiple auxin biosynthesis sites including root tips and the region upward from the tip.4Many steps of tryptophan synthesis and its conversion to auxin involve transamination reactions, which require the vitamin B6 pyridoxal 5-phosphate (PLP) as a cofactor. We previously reported that the Arabidopsis mutant pdx1 that is defective in vitamin B6 biosynthesis displays dramatically reduced primary root growth with smaller meristematic zone and shorter mature cortical cells.19 In the current investigation, we found that the root tips of pdx1 have reduced cell division capability and reduced DR5::GUS activity, although the induction of this reporter gene by exogenous auxin was not changed. Reciprocal grafting indicates that the short-root phenotype of pdx1 is caused by a root local rather than shoot generated factor(s). Importantly, pdx1 suppresses yucca mutant, an auxin overproducer, in root hair proliferation although it fails to suppress the hypocotyl elongation phenotype.20 Our work thus demonstrated that pdx1 has impaired root local auxin biosynthesis from tryptophan. To test whether the synthesis of tryptophan is also affected in pdx1 mutant, we planted pdx1 together with wild-type seeds on Murashige and Skoog (MS) medium supplemented with 5-mehtyl-anthranilate (5-MA), an analogue of the Trp biosynthetic intermediate anthranilate.21 Although pdx1 seedlings grew poorly under the control conditions, the growth of wild-type seedlings was more inhibited than that of the pdx1 seedlings on 10 µM 5-MA media (Fig. 1A–D). Compared with the elongated primary root on MS, wild-type seedlings showed very limited root growth on 5-MA (Fig. 1E). The relatively increased tolerance to 5-MA of pdx1 thus indicates that the pdx1 mutant may be defective in Trp biosynthesis, although amino acid analysis of the bulked seedlings did not find clear changes in Trp levels in the mutants (our unpublished data).Open in a separate windowFigure 1The pdx1 mutant seedlings are relatively less sensitive to toxic 5-methyl anthranilate (5-MA). (A and C) Five-day-old seedlings of the wild type (Col-0) (A) or pdx1 (C) on MS medium. (B and D) Five-day-old seedlings of the wild type (B) or pdx1 (D) on MS medium supplemented with 10 µM 5-MA. (E) Eight-day-old seedlings of the wild type or pdx1 on MS medium without or with 10 µM 5-MA supplement. Sterilized seeds were planted directly on the indicated medium and after two days of cold treatment, the plates were incubated under continuous light at 22–24°C before taking pictures.We reported that PDX1 is required for tolerance to oxidative stresses in Arabidopsis.19 Interestingly, redox homeostasis appears to play a critical role in Arabidopsis root development. The glutathione-deficient mutant root meristemless1 (rml1) and the vitamin C-deficient mutant vitamin C1 (vtc1) both have similar stunted roots.22,23 Nonetheless, pdx1 is not rescued by either glutathione or vitamin C19 suggesting that the pdx1 short-root phenotype may not be resulted from a general reduction of antioxidative capacity. Interestingly, ascorbate oxidase is found to be highly expressed in the maize root quiescent center.24 This enzyme can oxidatively decarboxylate auxin in vitro, suggesting that the quiescent center may be a site for metabolizing auxin to control its homeostasis.25 It is therefore likely that the reduced auxin level in pdx1 root tips could be partially caused by increased auxin catabolism resulted from reduced vitamin B6 level. We thus conducted experiments to test this possibility. A quiescent center-specific promoter WOX5 driven bacterial auxin biosynthetic gene iaaH26 was introduced into pdx1 mutant. The transgenic seeds were planted on media supplemented with different concentrations of indoleacetamide (IAM), the substrate of iaaH protein. Although promotion of lateral root growth was observed at higher IAM concentrations, which indicates increased tryptophan-independent auxin production from the transgene, no change in root elongation was observed between pdx1 with or without the WOX5::iaaH transgene at any concentration of IAM tested (data not shown), suggesting that the pdx1 short-root phenotype may not be due to increased auxin catabolism.Taken together, in addition to auxin transport; temporally, spatially or developmentally coordinated local auxin biosynthesis defines the plant growth and its response to environmental changes.8,14,15  相似文献   

10.
11.
12.
13.
14.
15.
The symbiotic interaction between the soil bacteria Frankia and actinorhizal plants leads to the formation of nitrogen-fixing nodules resembling modified lateral roots. Little is known about the signals exchanged between the two partners during the establishment of these endosymbioses. However, a role for plant hormones has been suggested.Recently, we studied the role of auxin influx activity during actinorhizal symbioses. An inhibitor of auxin influx was shown to perturb nodule formation. Moreover we identified a functional auxin influx carrier that is produced specifically in Frankia-infected cells. These results together with previous data showing auxin production by Frankia lead us to propose a model of auxin action during the symbiotic infection process.Key words: lateral roots, nitrogen fixation, Frankia, AUX1, actinorhizal symbioses, phenylacetic acid, auxin influxActinorhizal symbioses result from the interaction between the soil actinomycete Frankia and plants belonging to eight angiosperm families collectively called actinorhizal plants.1 This symbiotic interaction leads to the formation of a new organ on the root system, the actinorhizal nodule, where the bacteria are hosted and fix nitrogen.2 Unlike legume nodules, actinorhizal nodules are structurally and developmentally related to lateral roots.3 Little is known about the signals exchanged between the two partners during the establishment of the symbiosis.2 Diffusible signals are emitted by Frankia at early stages of the interaction resulting in root hair deformation.2 The chemical nature of these signals remains unknown, however, detailed studies revealed that they are different from rhizobial Nod factors.4 Phytohormones are chemicals that control many developmental processes5 and have been linked to many plant-microbe interactions. Recently, we studied the role of auxin influx in actinorhizal nodule formation in the tropical tree Casuarina glauca.6  相似文献   

16.
17.
18.
Increased expression of an Arabidopsis vacuolar pyrophosphatase gene, AVP1, leads to increased drought and salt tolerance in transgenic plants, which has been demonstrated in laboratory and field conditions. The molecular mechanism of AVP1-mediated drought resistance is likely due to increased proton pump activity of the vacuolar pyrophosphatase, which generates a higher proton electrochemical gradient across the vacuolar membrane, leading to lower water potential in the plant vacuole and higher secondary transporter activities that prevent ion accumulation to toxic levels in the cytoplasm. Additionally, overexpression of AVP1 appears to stimulate auxin polar transport, which in turn stimulates root development. The larger root system allows AVP1-overexpressing plants to absorb water more efficiently under drought and saline conditions, resulting in stress tolerance and increased yields. Multi-year field-trial data indicate that overexpression of AVP1 in cotton leads to at least 20% more fiber yield than wild-type control plants in dry-land conditions, which highlights the potential use of AVP1 in improving drought tolerance in crops in arid and semiarid areas of the world.Key words: drought tolerance, proton pump, salt tolerance, transgenic cotton, vacuolar membraneDrought and salinity are major environmental factors that limit agricultural productivity in most parts of the world.1 Climate change will likely make many places worse in terms of water availability and soil salinization,2 which will have negative impacts on food production in world agriculture. Yet, the demand for more food will continue to rise because of the growing world population that may reach 9 billon people by 2050.3 Therefore, the primary challenge we face during this century is the production of more food under the constraints of limited water and fertilizer on marginal soils.Many genes that respond to abiotic stresses have been identified in the model plant Arabidopsis,4 and some of them were shown to play important roles in protecting plants under abiotic stress conditions.5 The Arabidopsis vacuolar pyrophosphatase gene AVP1 appears to be one of the most promising genes that may be used to improve drought- and salt-tolerance in crops.6 Roberto Gaxiola''s group first demonstrated that overexpression of AVP1 could lead to significantly improved drought- and salt-tolerance in transgenic Arabidopsis plants.7 Later when this gene was introduced into tomato8 and rice,9 similar tolerance phenotypes were observed. Overexpression of AVP1 in cotton, not only improved drought- and salt-tolerance in greenhouse conditions, but also increased fiber yield in dryland field conditions.6 AVP1-expressing cotton plants produced larger root systems and bigger shoot biomass than controls when grown under hydroponic conditions in the presence of up to 200 mM NaCl.6 In the greenhouse, AVP1-expressing cotton plants also produced more root and shoot biomass than controls when grown under saline conditions or reduced irrigation.6 The increased yield by AVP1-expressing cotton plants is due to more bolls produced, which in turn is due to larger shoot system that AVP1-expressing cotton plants develop under saline or drought conditions.6The larger root systems of AVP1-expressing cotton plants under saline and water-deficit conditions allow transgenic plants access to more of the soil profile and available soil water resulting in increased biomass production and yield. Li et al. showed that the larger root systems of AVP1-overexpressing Arabidopsis is caused by increased auxin polar transport in the root, which stimulates root development in AVP1-overexpressing Arabidopsis plants.10 Furthermore, a recent comparative study of transgenic Arabidopsis lines that produce enlarged leaves showed that auxin levels were increased by 50% in AVP1-overexpressing plants.11 To test if altered auxin level is responsible for the observed larger root systems in AVP1-expressing cotton plants, we germinated wild-type and AVP1-expressing cotton plants in the absence or presence of the auxin polar transport inhibitor Naphthylphthalamic acid (NPA). Both wild-type and AVP1-expressing cotton plants developed robust lateral root systems in the absence of NPA (Fig. 1A). The presence of 50 µM NPA resulted in nearly complete inhibition of lateral root development in wild-type plants, while lateral root development in AVP1-expressing plants was reduced, it was significantly greater than wild-type (Fig. 1B). These data indicate that AVP1-overexpression could overcome the inhibitory effects of NPA on root development in AVP1-expressing cotton plants, suggesting that either increased auxin transport or higher auxin concentration in the root systems of AVP1-expressing cotton plants is responsible for the observed larger root systems, and eventually for the increased boll numbers and fiber yields under dryland field conditions.Open in a separate windowFigure 1Root development of wild-type and AVP1-expressing cotton plants in the absence and presence of auxin transport inhibitor NPA. (A) Phenotype of cotton roots after 10 days of growth in the absence of NPA. WT, Wild-type; 1, 5, 9, three independent AVP1-overexpressing cotton lines. (B) Phenotype of cotton roots after 10 days of growth in the presence of 50 µm NPA.Many genes that may play important roles under water-deficit conditions have been tested in laboratory conditions,4,5 but very few have been tested vigorously in field conditions. A bacterial cold shock protein gene was shown to improve drought tolerance in maize based on multi-year and multi-place field trial experiments,12 and it appears that this gene will likely gain approval for commercial release and become the first genetically engineered product that demonstrates improved drought tolerance in a major crop in the U.S. Another example of increased drought tolerance supported by multiple field trial experiments is through downregulation of farnesylation in transgenic canola plants.13 Downregulation of farnesyltransferase by antisense or RNAi techniques in transgenic canola leads to increased sensitivity to abscisic acid, consequently resulting in smaller guard cell aperture under drought conditions. These transgenic canola plants lose less water through transpiration and are more drought resistant. Data from more than 5 years of field studies in Canada consistently proved that this approach can indeed increase drought tolerance in transgenic canola. Our study with AVP1-expressing cotton over the last several years in field conditions is another example that genetic engineering approach can be an efficient tool in generating drought-tolerant crops. AVP1-expressing cotton plants can establish a larger shoot mass in dryland conditions (Fig. 2), which results in increased boll numbers and fiber production. Our approach is likely applicable to other major crops as well.Open in a separate windowFigure 2Wild-type and AVP1-expressing cotton plants grown in the dryland field condition. Plants were planted in the middle of may 2009 and the picture was taken in the middle of July 2009 at the USDA experimental Farm in Lubbock, Texas.  相似文献   

19.
Thioredoxin (NTR/TRX) and glutathione (GSH/GRX) are the two major systems that play a key role in the maintenance of cellular redox homeostasis. They are essential for plant development, cell division or the response to environmental stresses. In a recent article,1 we studied the interplay between the NADP-linked thioredoxin and glutathione systems in auxin signaling genetically, by associating TRX reductase (ntra ntrb) and glutathione biosynthesis (cad2) mutations. We show that these two thiol reduction pathways interfere with developmental processes. This occurs through modulation of auxin activity as shown by genetic analyses of loss of function mutations in a triple ntra ntrb cad2 mutant. The triple mutant develops almost normally at the rosette stage but fails to generate lateral organs from the inflorescence meristem, producing almost naked stems that are reminiscent of mutants affected in PAT (polar auxin transport) or biosynthesis. The triple mutant exhibits other defects in processes regulated by auxin, including a loss of apical dominance, vasculature defects and reduced secondary root production. Furthermore, it has lower auxin (IAA) levels and decreased capacity for PAT, suggesting that the NTR and glutathione pathways influence inflorescence meristem development through regulation of auxin transport and metabolism.Key words: arabidopsis, NTS pathway, NGS pathway, thioredoxin (TRX), glutaredoxine (GRX), polar auxin transport (PAT), auxin biosynthesis, pin-like phenotype, apical dominance, meristematic activityExposure of living organisms to environmental stresses triggers various defense and developmental responses. Redox signaling is involved in many aspects of these responses.26 The key players in these responses are the NADPH-dependent glutathione/glutaredoxin system (NGS) and the NADPH-dependent thioredoxin system (NTS). TRX and GRX play key roles in the maintenance of cellular redox homeostasis.710 Genetic approaches aiming to identify functions of TRX and GRX in knock-out plants have largely been limited by the absence of phenotypes of single mutants, presumably due to functional redundancies among members of the multigene families of TRX and GRX.11 Interplay between NTS and NGS pathways have been studied in different organisms1217 and association of mutants involved in these two pathways have recently revealed new functions in several aspects of plant development.46  相似文献   

20.
We investigated the role of nitric oxide (NO) in ABA-inhibition of stomatal opening in Vicia faba L. in different size dishes. When a large dish (9 cm diameter) was used, ABA induced NO synthesis and the NO scavenger reduced ABA-inhibition of stomatal opening. When a small dish (6 cm diameter) was used, ABA induced stomatal closure and inhibited stomatal opening. The NO scavenger was able to reduce ABA-induced stomatal closure, but unable to reverse ABA-inhibition of stomatal opening. Furthermore, NO was not synthesized in response to ABA, indicating that NO is not required for ABA-inhibition of stomatal opening in the small dish. These results indicated that an NO-dependent and an NO-independent signaling pathway participate in ABA signaling pathway. An NO-dependent pathway is the major player in ABA-induced stomatal closure. However, in ABA-inhibition of stomatal opening, an NO-dependent and an NO-independent pathway act: different signaling molecules participate in ABA-signaling cascade under different environmental condition.Key words: ABA, environmental condition, nitric oxide, stomata, Vicia faba LNitric oxide (NO) is a key signaling molecule in plants.1,2 It functions in disease resistance and programmed cell death,3,4 root development,5,6 and plant responses to various abiotic stresses.1,2,7,8 In addition, NO is required for stomatal closure in response to ABA in several species including Arabidopsis, Vicia faba, pea, tomato, barley, and wheat.911 ABA-inhibition of stomatal opening is a distinct process from ABA-induced stomatal closure.12,13 In V. faba, these two processes employ a similar signaling pathway; NO is also a second messenger molecule for ABA-inhibition of stomatal opening in a large dish.14 In this study, we examined the role of NO in ABA-inhibition of stomatal opening using different dish sizes. In a small dish, NO is not involved in ABA-inhibition of stomatal opening: the NO-independent signaling pathway is the major player in it.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号