首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Human evolution     
The common ancestor of modern humans and the great apes is estimated to have lived between 5 and 8 Myrs ago, but the earliest evidence in the human, or hominid, fossil record is Ardipithecus ramidus, from a 4.5 Myr Ethiopian site. This genus was succeeded by Australopithecus, within which four species are presently recognised. All combine a relatively primitive postcranial skeleton, a dentition with expanded chewing teeth and a small brain. The most primitive species in our own genus, Homo habilis and Homo rudolfensis, are little advanced over the australopithecines and with hindsight their inclusion in Homo may not be appropriate. The first species to share a substantial number of features with later Homo is Homo ergaster, or ‘early African Homo erectus’, which appears in the fossil record around 2.0 Myr. Outside Africa, fossil hominids appear as Homo erectus-like hominids, in mainland Asia and in Indonesia close to 2 Myr ago; the earliest good evidence of ‘archaic Homo’ in Europe is dated at between 600–700 Kyr before the present. Anatomically modern human, or Homo sapiens, fossils are seen first in the fossil record in Africa around 150 Kyr ago. Taken together with molecular evidence on the extent of DNA variation, this suggests that the transition from ‘archiac’ to ‘modern’ Homo may have taken place in Africa.  相似文献   

2.
The degree to which evolutionary outcomes are historically contingent remains unresolved, with studies at different levels of the biological hierarchy reaching different conclusions. Here we examine historical contingency in the origin of two evolutionary novelties in bryozoans, a phylum of colonial animals whose fossil record is as complete as that of any major group. In cheilostomes, the dominant living bryozoans, key innovations were the costal shield and ascus, which first appeared in the Cretaceous 85–95 Myr ago. We establish the parallel origin of these structures less than 12 Myr ago in an extant bryozoan genus, Cauloramphus, with transitional stages remarkably similar to those inferred for a Cretaceous clade. By one measure, long lag times in the first origins of costal shield and ascus suggest a high degree of historical contingency. This, however, does not equate with dependence on a narrow set of initial conditions or a low probability of evolution. More than one set of initial conditions may lead to an evolutionary outcome, and alternative sets are not entirely independent. We argue that, although historically contingent, the origin of ascus and costal shield was highly likely with sufficient possibilities afforded by time.  相似文献   

3.
The buckwheat family Polygonaceae is a diverse group of plants and is a good model for investigating biogeography, breeding systems, coevolution with symbionts such as ants and fungi, functional trait evolution, hybridization, invasiveness, morphological plasticity, pollen morphology and wood anatomy. The main goal of this study was to obtain age estimates for Polygonaceae by calibrating a Bayesian phylogenetic analysis, using a relaxed molecular clock with fossil data. Based on the age estimates, we also develop hypotheses about the historical biogeography of the Southern Hemisphere group Muehlenbeckia. We are interested in addressing whether vicariance or dispersal could account for the diversification of Muehlenbeckia, which has a “Gondwanan” distribution.Eighty-one species of Polygonaceae were analysed with MrBayes to infer species relationships. One nuclear (nrITS) and three chloroplast markers (the trnL-trnF spacer region, matK and ndhF genes) were used. The molecular data were also analysed with Beast to estimate divergence times. Seven calibration points including fossil pollen and a leaf fossil of Muehlenbeckia were used to infer node ages.Results of the Beast analyses indicate an age of 110.9 (exponential/lognormal priors)/118.7 (uniform priors) million years (Myr) with an uncertainty interval of (90.7–125.0) Myr for the stem age of Polygonaceae. This age is older than previously thought (Maastrichtian, approximately 65.5–70.6 Myr). The estimated divergence time for Muehlenbeckia is 41.0/41.6 (39.6–47.8) Myr and its crown clade is 20.5/22.3 (14.2–33.5) Myr old. Because the breakup of Gondwana occurred from 95–30 Myr ago, diversification of Muehlenbeckia is best explained by oceanic long-distance and maybe stepping-stone dispersal rather than vicariance. This study is the first to give age estimates for clades of Polygonaceae and functions as a jumping-off point for future studies on the historical biogeography of the family.  相似文献   

4.
According to 5-Myr-old fossil evidence, ground squirrels within the genus Spermophilus had diverged into subgenera Spermophilus and Otospermophilus by late Miocene times. Radiometric dating has also provided a precise time for the sudden onset of a geological event, occurring 0.725 Myr ago, that initiated the complete and permanent reproductive isolation of two subspecies within the subgenus Otospermophilus. Since these two subspecies (S. beecheyi beecheyi and S. b. douglasii) readily hybridize with each other under laboratory conditions, allopatric subspeciation is unlikely to have occurred prior to 0.725 Myr ago. We employed Nei's model for estimating genetic distance in units which are linear in time, calibrated on the 0.725-Myr- ago date for initiation of S. b. subspeciation, to test its ability to generate a time scale for subgeneric divergence in keeping with the minimum estimate provided by the fossil record. This represents the most valid test to date of the utility of Nei's model for estimating genetic distance in units which are linear in time. Nei's model was found to underestimate this minimum time by 1 Myr, but it approximated this date after correcting values of D for variation in rates of evolution among loci.   相似文献   

5.
Coelacanths are well-known sarcopterygian (lobe-finned) fishes, which together with lungfishes are the closest extant relatives of land vertebrates (tetrapods). Coelacanths have both living representatives and a rich fossil record, but lack fossils older than the late Middle Devonian (385-390 Myr ago), conflicting with current phylogenies implying coelacanths diverged from other sarcopterygians in the earliest Devonian (410-415 Myr ago). Here, we report the discovery of a new coelacanth from the Early Devonian of Australia (407-409 Myr ago), which fills in the approximately 20 Myr 'ghost range' between previous coelacanth records and the predicted origin of the group. This taxon is based on a single lower jaw bone, the dentary, which is deep and short in form and possesses a dentary sensory pore, otherwise seen in Carboniferous and younger taxa.  相似文献   

6.
Right whales (Eubalaena spp.) were the focus of worldwide whaling activities from the 16th to the 20th century. During the first part of the 19th century, the southern right whale (E. australis) was heavily exploited on whaling grounds around New Zealand (NZ) and east Australia (EA). Here we build upon previous estimates of the total catch of NZ and EA right whales by improving and combining estimates from four different fisheries. Two fisheries have previously been considered: shore-based whaling in bays and ship-based whaling offshore. These were both improved by comparison with primary sources and the American offshore whaling catch record was improved by using a sample of logbooks to produce a more accurate catch record in terms of location and species composition. Two fisheries had not been previously integrated into the NZ and EA catch series: ship-based whaling in bays and whaling in the 20th century. To investigate the previously unaddressed problem of offshore whalers operating in bays, we identified a subset of vessels likely to be operating in bays and read available extant logbooks. This allowed us to estimate the total likely catch from bay-whaling by offshore whalers from the number of vessels seasons and whales killed per season: it ranged from 2,989 to 4,652 whales. The revised total estimate of 53,000 to 58,000 southern right whales killed is a considerable increase on the previous estimate of 26,000, partly because it applies fishery-specific estimates of struck and loss rates. Over 80% of kills were taken between 1830 and 1849, indicating a brief and intensive fishery that resulted in the commercial extinction of southern right whales in NZ and EA in just two decades. This conforms to the global trend of increasingly intense and destructive southern right whale fisheries over time.  相似文献   

7.
Phylogeographic studies frequently reveal multiple morphologically cryptic lineages within species. What is not yet clear is whether such lineages represent nascent species or evolutionary ephemera. To address this question, we compare five contact zones, each of which occurs between ecomorphologically cryptic lineages of skinks from the rainforests of the Australian Wet Tropics. Although the contacts probably formed concurrently in response to Holocene expansion from glacial refugia, we estimate that the divergence times (τ) of the lineage pairs range from 3.1 to 11.5 Ma. Multi-locus analyses of the contact zones yielded estimates of reproductive isolation that are tightly correlated with divergence time and, for lineages with older divergence times (τ > 5 Myr), substantial. These results show that phylogeographic splits of increasing depth represent stages along the speciation continuum, even in the absence of overt change in ecologically relevant morphology.  相似文献   

8.
Fossil plants provide data on climate, community composition and structure, all of which are relevant to the definition and recognition of biomes. Macrofossils reflect local vegetation, whereas pollen assemblages sample a larger area. The earliest solid evidence for angiosperm tropical rainforest in Africa is based primarily on Late Eocene to Late Oligocene (ca. 39-26 Myr ago) pollen assemblages from Cameroon, which are rich in forest families. Plant macrofossil assemblages from elsewhere in interior Africa for this time interval are rare, but new work at Chilga in the northwestern Ethiopian Highlands documents forest communities at 28 Myr ago. Initial results indicate botanical affinities with lowland West African forest. The earliest known woodland community in tropical Africa is dated at 46 Myr ago in northern Tanzania, as documented by leaves and fruits from lake deposits. The community around the lake was dominated by caesalpinioid legumes, but included Acacia, for which this, to my knowledge, is the earliest record. This community is structurally similar to modern miombo, although it is different at the generic level. The grass-dominated savannah biome began to expand in the Middle Miocene (16 Myr ago), and became widespread in the Late Miocene (ca. 8 Myr ago), as documented by pollen and carbon isotopes from both West and East Africa.  相似文献   

9.
Studies of the North American columbines (Aquilegia, Ranunculaceae) have supported the view that adaptive radiations in animal-pollinated plants proceed through pollinator specialisation and floral differentiation. However, although the diversity of pollinators and floral morphology is much lower in Europe and Asia than in North America, the number of columbine species is similar in the three continents. This supports the hypothesis that habitat and pollinator specialisation have contributed differently to the radiation of columbines in different continents. To establish the basic background to test this hypothesis, we expanded the molecular phylogeny of the genus to include a representative set of species from each continent. Our results suggest that the diversity of the genus is the result of two independent events of radiation, one involving Asiatic and North American species and the other involving Asiatic and European species. The ancestors of both lineages probably occupied the mountains of south-central Siberia. North American and European columbines are monophyletic within their respective lineages. The genus originated between 6.18 and 6.57 million years (Myr) ago, with the main pulses of diversification starting around 3 Myr ago both in Europe (1.25–3.96 Myr ago) and North America (1.42–5.01 Myr ago). The type of habitat occupied shifted more often in the Euroasiatic lineage, while pollination vectors shifted more often in the Asiatic-North American lineage. Moreover, while allopatric speciation predominated in the European lineage, sympatric speciation acted in the North American one. In conclusion, the radiation of columbines in Europe and North America involved similar rates of diversification and took place simultaneously and independently. However, the ecological drivers of radiation were different: geographic isolation and shifts in habitat use were more important in Europe while reproductive isolation linked to shifts in pollinator specialisation additionally acted in North America.  相似文献   

10.
Exceptional fossil specimens with preserved soft parts from the Maotianshan Shale (ca 520 Myr ago) and the Burgess Shale (505 Myr ago) biotas indicate that the worldwide distributed bivalved arthropod Isoxys was probably a non-benthic visual predator. New lines of evidence come from the functional morphology of its powerful prehensile frontal appendages that, combined with large spherical eyes, are thought to have played a key role in the recognition and capture of swimming or epibenthic prey. The swimming and steering of this arthropod was achieved by the beating of multiple setose exopods and a flap-like telson. The appendage morphology of Isoxys indicates possible phylogenetical relationships with the megacheirans, a widespread group of assumed predator arthropods characterized by a pre-oral ‘great appendage’. Evidence from functional morphology and taphonomy suggests that Isoxys was able to migrate through the water column and was possibly exploiting hyperbenthic niches for food. Although certainly not unique, the case of Isoxys supports the idea that off-bottom animal interactions such as predation, associated with complex feeding strategies and behaviours (e.g. vertical migration and hunting) were established by the Early Cambrian. It also suggests that a prototype of a pelagic food chain had already started to build-up at least in the lower levels of the water column.  相似文献   

11.
This paper reports the first paleontological record of Beremendia fissidens (Mammalia, Soricidae) in the Iberian Peninsula during the second third of the Early Pleistocene. The species is exclusively present at the lowermost levels (Lower Red Unit: TE8–14) of the Sima del Elefante site, one of the largest stratigraphic sections of the Atapuerca cave complex (Burgos, Spain). The age of Sima del Elefante shows that this large-sized type of red-toothed venomous shrew inhabited the Sierra de Atapuerca more than 1.1 Myr ago, coexisting with an extremely rich and diverse faunal association of nearly 40 small and large mammalian species, including hominines. The presence of this species in the Atapuerca locality has important palaeoecological, palaeobiogeographical and biostratigraphic implications, which are extensively discussed here, throwing light on aspects largely left aside for this important group of red-toothed shrews, previously relegated to nothing but mere faunal lists, at least in the Iberian Peninsular context.  相似文献   

12.

Background and Aims

Incongruence between chloroplast and nuclear DNA phylogenies, and single additive nucleotide positions in internal transcribed spacer (ITS) sequences of polyploid Australian/New Zealand (NZ) Lepidium species have been used to suggest a bicontinental hybrid origin. This pattern was explained by two trans-oceanic dispersals of Lepidium species from California and Africa and subsequent hybridization followed by homogenization of the ribosomal DNA sequence either to the Californian (C-clade) or to the African ITS-type (A-clade) in two different ITS-lineages of Australian/NZ Lepidium polyploids.

Methods

Genomic in situ hybridization (GISH) was used to unravel the genomic origin of polyploid Australian/NZ Lepidium species. Fluorescence in situ hybridization (FISH) with ribosomal DNA (rDNA) probes was applied to test the purported ITS evolution, and to facilitate chromosome counting in high-numbered polyploids.

Key Results

In Australian/NZ A-clade Lepidium polyploids, GISH identified African and Australian/NZ C-clade species as putative ancestral genomes. Neither the African nor the Californian genome were detected in Australian/NZ C-clade species and the Californian genome was not detected in Australian/NZ A-clade species. Five of the eight polyploid species (from 7x to 11x) displayed a diploid-like set of rDNA loci. Even the undecaploid species Lepidium muelleriferdinandi (2n = 11x = 88) showed only one pair of each rDNA repeat. In A-clade allopolyploids, in situ rDNA localization combined with GISH corroborated the presence of the African ITS-type.

Conclusions

The nuclear genomes of African and Australian/NZ C-clade species were detected by GISH in allopolyploid Australian/NZ Lepidium species of the A-clade, supporting their hybrid origin. The presumed hybrid origin of Australian/NZ C-clade taxa could not be confirmed. Hence, it is assumed that Californian ancestral taxa experienced rapid radiation in Australia/NZ into extant C-clade polyploid taxa followed by hybridization with African species. As a result, A-clade allopolyploid Lepidium species share the Californian chloroplast type and the African ITS-type with the C-clade Australian/NZ polyploid and African diploid species, respectively.Key words: Lepidium, Brassicaceae, FISH, GISH, hybridization, polyploidy, long-distance dispersal, ITS, rDNA, Australia, New Zealand  相似文献   

13.
Although changes in atmospheric CO2 levels are thought to be the major factor driving long-term C3/C4 vegetation evolution, recent studies tend to emphasize the effect of regional climate conditions on C3/C4 variations. The middle latitudes (30-45°), in which C3/C4 plants are highly sensitive to environmental changes, provide an optimal basis for the investigation of the relative impacts of climate and pCO2 on shifts in C3/C4 cover. In order to assess the factors controlling these shifts as well as the complex interactions between environmental factors, the carbon isotopic composition of bulk organic matter from the Chashmanigar loess section (southern Tajikistan) was measured for the past 1.77 Myr. In general, the δ13C record shows mostly negative values throughout the sequence, almost all δ13C values falling between − 23‰ and − 26‰, indicating a predominance of C3 plants in Central Asia over this time period, despite the presence of numerous glacial-interglacial cycles. From 0.85 Myr to the present, the δ13C values become increasingly positive, reflecting a growing C4 signal. However, this C4 component is not detectable prior to 0.25 Myr, after which minor peaks are evident at ∼ 228, ∼ 171 and ∼ 18 kyr. The δ13C record from Chashmanigar indicates that winter-spring precipitation, i.e., Mediterranean climatic conditions, have characterized Central Asia throughout the past 1.77 Myr, leading to the predominance of C3 vegetation. In the context of glacial-interglacial-scale changes in atmospheric CO2, therefore, it is climate rather than pCO2 that controls C3/C4 variations in Asia’s middle latitudes. The gradual increase in the C4 component since 0.85 Myr, especially the notable peaks after 0.25 Myr, may have been caused by an increase in summer precipitation due to an enhanced southward shift of the climate zones.  相似文献   

14.
The gobiid Gymnogobius isaza is an endemic species that has adapted remarkably to the pelagic environment in Lake Biwa, Japan, a representative ancient lake in East Asia. To obtain clues that would reveal the origin and evolution of this species, we conducted phylogenetic and population genetic analyses based on partial sequences of the mitochondrial cytochrome b gene. Consistent with previous studies, our Bayesian phylogenetic analysis with a relaxed molecular clock model reconfirmed a sister relationship between G. isaza and Gymnogobius urotaenia?+?Gymnogobius petschiliensis, with a divergence time of about 2.9 million years (Myr), and provided an evolutionary rate of 3.0 %/Myr (pairwise) for their clade. Population genetic analysis revealed two distinct mtDNA groups in G. isaza, which were estimated to have diverged 0.66 million years ago (Mya) at the Lake Katata stage of Paleo-Lake Biwa, preceding the origin of the present Lake Biwa environment with its extensive deep pelagic area (0.3–0.4 Mya). A dumbbell-like haplotype network and bimodal mismatch distribution suggested that the population of G. isaza experienced secondary contact between two genetically differentiated populations. Demographic parameters from mismatch distribution analysis and Bayesian skyline plot analysis suggested that both of the mtDNA groups of G. isaza exhibited a signal of sudden population expansion at approximately the same time (80–90 thousand years ago) during the last glacial period after the development of the present Lake Biwa. These results imply the complex population history of G. isaza, including genetic isolation and secondary contact following differentiation from its relatives in the Pliocene.  相似文献   

15.
DNA sequences of cloned histone coding sequences and spacers of sea urchin species that diverged long ago in evolution were compared. The highly repeated H4 and H3 genes active during early embryogenesis had evolved (in their silent sites) at a rate (0.5-0.6% base changes/Myr) similar to single-copy protein-coding genes and nearly as fast as spacer DNA (0.7% base changes/Myr) and unique DNA. Thus, evolution in the major histone genes conforms to a universal evolutionary clock based on the rate of base sequence change. By contrast, the H4 and H3 coding sequences and a non-transcribed spacer of the DNA clone h19 of Psammechinus miliaris show an exceptionally low rate of sequence evolution only 1/100 to 1/200 that predicted from the clock hypothesis. According to the classical model of gene inheritance, the h19 DNA sequences in the Psammechinus genome require unusual conservation mechanisms by selection at the level of the gene and spacer sequences. An alternative explanation could be recent horizontal gene transfer of a histone gene cluster from the very distantly related Strongylocentrotus dröbachiensis to the P. miliaris genome.  相似文献   

16.

Background

We recently discovered two composite long terminal repeat (LTR)-retrotransposon-like elements which we named DA (~300 kb) and Xiao (~30 kb), meaning big and small in Chinese respectively. Xiao and DA (three types of DA identified) were found to have been derived from several donor sites and have spread to 30 loci in the human genome, totaling to 5 Mb. Our bioinformatics analyses with the released human, chimp, rhesus macaque, orangutan, and marmoset genomic sequences indicate that DA and Xiao emerged ~25 million years (Myr) ago.

Results

To better understand the evolution of these two complex elements, we investigated various internal junctions of DA and Xiao as well as orthologous genomic sites of the 30 DA/Xiao loci in non-human primates including great apes, lesser apes, Old World monkeys, New World monkeys, and a prosimian. We found that Xiao and type I DA first emerged in the genome between 25 and 18 Myr ago, whereas type II and Type III DAs emerged between 14 and 7 Myr ago. Xiao and DA were most active in great apes, with their amplification peaking during 25-14 and 14-7 Myr ago, respectively. Neither DA nor Xiao seem to have been active in the human and chimp genomes during last 6 Myr.

Conclusion

The study has led to a more accurate age determination of the DA and Xiao elements than our previous bioinformatics analyses, and indicates that the amplification activity of the elements coincided with that of group I HERV-Es during evolution. It has also illustrated an evolutionary path with stepwise structural changes for the elements during past 25 Myr, and in doing so has shed more light on these two intriguing and complex elements that have reshaped our genome.  相似文献   

17.
《Acta Oecologica》2006,29(3):313-323
The successful eradication of introduced rodents from islets off the coast of Mauritius has led to local conservation bodies investigating the possibility of translocation as a measure of safeguarding endemic reptile populations. The present study was the first to determine the habitat and microhabitat requirements of Telfair's skinks (Leiolopisma telfairii) on Round Island, Mauritius, with a view to aiding future translocation projects to islands within their historic range. Contrasting preferences found for Telfair's skink at macro- and micro- habitat levels underline the importance of sampling at multiple ecological scales in such investigations. Significantly fewer sightings of L. telfairii were recorded in bare rock habitats compared to more vegetated habitats. Conversely, at a microhabitat scale principal component analysis indicated structural characteristics were the primary determinant of microhabitat choice. The first dietary analysis of Telfair's skinks confirmed their status as omnivores. Cockroaches (Blattodea spp.) appeared to be a primary food source. Four exotic plant species were also present in faecal samples and the potential for L. telfairii to aid their dispersal is discussed. Implications for the long-term management and proposed translocation of Telfair's skinks are discussed.  相似文献   

18.
Arcellinid testate amoebae (Amoebozoa) form a group of free-living microbial eukaryotes with one of the oldest fossil records known, yet several aspects of their evolutionary history remain poorly understood. Arcellinids occur in a range of terrestrial, freshwater and even brackish habitats; however, many arcellinid morphospecies such as Hyalosphenia papilio are particularly abundant in Sphagnum-dominated peatlands, a relatively new ecosystem that appeared during the diversification of Sphagnum species in the Miocene (5–20 Myr ago). Here, we reconstruct divergence times in arcellinid testate amoebae after selecting several fossils for clock calibrations and then infer whether or not arcellinids followed a pattern of diversification that parallels the pattern described for Sphagnum. We found that the diversification of core arcellinids occurred during the Phanerozoic, which is congruent with most arcellinid fossils but not with the oldest known amoebozoan fossil (i.e. at ca. 662 or ca. 750 Myr). Overall, Sphagnum and the Hyalospheniidae exhibit different patterns of diversification. However, an extensive molecular phylogenetic analysis of distinct clades within H. papilio species complex demonstrated a correlation between the recent diversification of H. papilio, the recent diversification of Sphagnum mosses, and the establishment of peatlands.  相似文献   

19.
The physical nature of water and the environment it presents to an organism have long been recognized as important constraints on aquatic adaptation and evolution. Little is known about the dermal cover of mosasauroids (a group of secondarily aquatic reptiles that occupied a wide array of predatory niches in the Cretaceous marine ecosystems 92–65 Myr ago), a lack of information that has hindered inferences about the nature and level of their aquatic adaptations. A newly discovered Plotosaurus skeleton with integument preserved in three dimensions represents not only the first documented squamation in a mosasaurine mosasaur but also the first record of skin in an advanced member of the Mosasauroidea. The dermal cover comprises keeled and possibly osteoderm-reinforced scales that presumably contributed to an anterior–posterior channelling of the water flow and a reduction of microturbulent burst activities along the surface of the skin. Thus, hydrodynamic requirements of life in the water might have influenced the evolution of multiple-keeled body scales in advanced mosasauroids.  相似文献   

20.
The biologically and geologically extremely diverse archipelagos of Wallacea, Australasia and Oceania have long stimulated ecologists and evolutionary biologists. Yet, few molecular phylogenetic analyses of the terrestrial fauna have been carried out to understand the evolutionary patterns. We use dense taxon and character sampling of more than 7000 bp DNA sequence data for a group of diving beetles ranging from the Holarctic throughout Asia to as far east as French Polynesia. We here show that an ecologically diverse, common and widespread (Portugal to New Zealand) arthropod supertramp species originated in the highlands of New Guinea, ca 6.0–2.7 Myr ago. The approximately 25 closely related species are narrow endemics in Australasia/Oceania. The ancestor of this clade colonized that region from Eurasia ca 9–7 Myr ago. Our finding contradicts the widely held view of local endemism as an evolutionary dead end, as we find multiple peripatric speciation events within the Pleistocene and complex colonization patterns between the Oriental and Australian zoogeographic regions, including the recolonization of Eurasia, jumping across Wallace''s line and colonization of continental Australia out of New Guinea. Our study strongly highlights the importance of dispersal over water gaps in shaping biogeographic patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号