首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Previously, we have shown that C6 glial cells enriched in hexacosenoic acid (HA) incubated with oxidative stressors released higher amounts of nitric oxide (NO) products and superoxide (O2), compared to native C6 cells. In the present study, we examined the effects of pre-treatment with some of free radical release inhibitors. The aim was to determine the origin of the enhanced generation of NO and superoxide, and to test the possibility of preventing it. Pre-treatment with L-mono-methyl-arginine and N-acetyl-cysteine in oxidized low-density lipoprotein (ox-LDL) exposed HA cells, inhibited not only nitrite but also superoxide production suggesting that (O2) anion could partially derive from inducible NO synthase. We also observed that ox-LDL treatment of HA cells reduced the intracellular glutathione levels and activated extracellular signal-related kinases. Since this signalling is related to neurotoxic effect, our data substantiate the role of the free radicals in X-linked adrenoleukodystrophy pathogenesis, as HA cells have been used as an in vitro model for this disease.  相似文献   

2.
Although it has been shown that hydroxyurea (HU) therapy produces measurable amounts of nitric oxide (NO) metabolites, including iron nitrosyl hemoglobin (HbNO) in patients with sickle cell disease, the in vivo mechanism for formation of these is not known. Much in vitro data and some in vivo data indicates that HU is the NO donor, but other studies suggest a role for nitric oxide synthase (NOS). In this study, we confirm that the NO-forming reactions of HU with hemoglobin (Hb) or other blood constituents is too slow to account for NO production measured in vivo. We hypothesize that, in vivo, HU is partially metabolized to hydroxylamine (HA), which quickly reacts with Hb to form methemoglobin (metHb) and HbNO. We show that addition of urease, which converts HU to HA, to a mixture of blood and HU, greatly enhances HbNO formation.  相似文献   

3.
Polymorphonuclear neutrophils (PMN) are thought to play a role in reperfusion injury and ischemia. These effects are partly mediated by toxic oxygen species (superoxide anion, hydrogen peroxide and hydroxyl radical) acting at the level of the endothelium. It was demonstrated recently that the superoxide anion reacts with nitric oxide (NO) and that interaction leads to the generation of highly toxic peroxynitrite. Several drugs were tested so far in order to affect PMN function. It was demonstrated that dipyridamole (2,6-bis-diethanolamino-4,8-dipiperidinopyrimido-(5,4-d)-pyrimidine) can influence neutrophil function by inhibiting adenosine uptake. However, this action can not fully explain all of the observed effects of dipyridamole action on PMN metabolism. The aim of our study was to evaluate the influence of dipyridamole on nitric oxide production by activated polymorphonuclear neutrophils. Incubation of PMNs with hydroxylamine (HA) and phorbol myristate acetate (PMA) generated nitrite (36.4+/-4.2 nmol/h 2x10(6) PMN), dipyridamole at 100 micromol/l, 50 micromol/l and 10 micromol/l caused a considerable drop in nitrite production (11.8+/-1.8, 19.7+/-2.7 and 27.4+/-3.2 nmol/h, respectively). Neither adenosine nor the adenosine analogue could mimic the dipyridamole effect. Moreover theophylline, an adenosine inhibitor could not reverse the dipirydamole action on PMN metabolism. We also found that dipyridamole inhibited hydrogen peroxide release from neutrophils. Catalase that scavenges hydrogen peroxide also largely abolished nitric oxide release from PMN. It is evident that dipyridamole inhibits hydroxylamine-augmented nitric oxide production by activated polymorphonuclear neutrophils through an adenosine-independent mechanism.  相似文献   

4.
Our objective was to determine whether hydroxylamine is a possible intermediate in the oxidative conversion of L-arginine to nitric oxide. Vasorelaxation by hydroxylamine is known to be mediated by nitric oxide. The vasorelaxant properties of hydroxylamine were examined using rat aortic rings and an isolated rat lung perfusion model. Hydroxylamine and acetylcholine were equally effective in relaxing norepinephrine-contracted intact aortic rings, whereas only hydroxylamine relaxed aortic rings with endothelium removed. This endothelium-independent vasorelaxation by hydroxylamine indicated that the hydroxylamine-converting enzyme is not localized solely within endothelial cells. Catalase, an enzyme known to oxidize hydroxylamine to nitric oxide, was present in homogenates of intact and endothelium-denuded rings. Cyanamide, another catalase substrate and a known precursor of nitroxyl (HNO), was not a vasorelaxant of aortic rings or of isolated, hypoxia-constricted lungs. These results suggest that free nitroxyl is not an intermediate in the oxidation of hydroxylamine to nitric oxide. An overall pathway for the oxidative conversion of L-arginine through an hydroxylamine intermediate to nitric oxide is proposed.  相似文献   

5.
Methylglyoxal (MG) is a metabolite of glucose. Our previous study demonstrated an elevated MG level with an increased oxidative stress in vascular smooth muscle cells (VSMCs) from spontaneously hypertensive rats. Whether MG causes the generation of nitric oxide (NO) and superoxide anion (O2*-), leading to peroxynitrite (ONOO-) formation in VSMCs, was investigated in the present study. Cultured rat thoracic aortic SMCs (A-10) were treated with MG or other different agents. Oxidized DCF, reflecting H2O2 and ONOO- production, was significantly increased in a concentration- and time-dependent manner after the treatment of SMCs with MG (3-300 microM) for 45 min-18 h (n = 12). MG-increased oxidized DCF was effectively blocked by reduced glutathione or N-acetyl-l-cysteine, as well as L-NAME (p < 0.05, n = 12). Both O2*- scavenger SOD and NAD(P)H oxidase inhibitor DPI significantly decreased MG-induced oxidized DCF formation. MG significantly and concentration-dependently increased NO and O2*- generation in A-10 cells, which was significantly inhibited by L-NAME and SOD or DPI, respectively. In conclusion, MG induces significant generation of NO and O2*- in rat VSMCs, which in turn causes ONOO- formation. An elevated MG level and the consequential ROS/RNS generation would alter cellular signaling pathways, contributing to the development of different insulin resistance states such as diabetes or hypertension.  相似文献   

6.
We investigated whether endogenously or exogenously produced nitric oxide (NO) can inhibit cellular glutathione reductase (GR) via the formation of S-nitrosothiols to decrease cellular glutathione (GSH) and increase oxidative stress in RAW 264.7 cells. The specificity of this inhibition was demonstrated by addition of a NO-synthase inhibitor, and met- or oxyhemoglobin. Using isolated GR we found that only certain NO donors inhibit this enzyme via S-nitrosothiol. Furthermore, we found that cellular GSH decrease is paralleled by an increase of superoxide anion production. Our results show that the GR enzyme is a potential target of S-nitrosothiols to decrease cellular GSH levels and to induce oxidative stress in macrophages.  相似文献   

7.
Ketoximes undergo a cytochrome P450-catalyzed oxidation to nitric oxide and ketones in liver microsomes. In addition, nitric oxide synthase (NOS) can catalyze the oxidative denitration of the >C=N-OH group of amidoximes. The objective of this work was to characterize the oxidation of a ketoxime (acetoxime) and to assess the ability of NOS to catalyze the generation of nitric oxide/nitrogen monoxide (*NO) from acetoxime. Acetoxime was oxidized to NO2- (and NO3-) by microsomes enriched with several P450 isoforms, including CYP2E1, CYP1A1, and CYP2B1. Nitric oxide was identified as an intermediate in the overall reaction. Superoxide dismutase and catalase significantly inhibited the reaction. Exogenous iron increased the microsomal generation of NO2- from acetoxime, while metal chelators (desferrioxamine, EDTA, DTPA) inhibited it. A Fenton-like system (Fe2+ plus H2O2, pH 7.4) consumed acetoxime with production of NO2- and NO3-, whereas oxidation by superoxide or by H2O2 was inefficient. The results presented suggest a role for hydroxyl radical-like oxidants in the oxidation of acetoxime to nitric oxide. O-Acetylacetoxime and O-tert-butylacetoxime were not oxidized by a Fenton system or by liver microsomes to any significant extent. Formation of the 5,5'-dimethyl-1-pyrroline-N-oxide/. OH adduct by a Fenton system was significantly inhibited by acetoxime, while O-acetylacetoxime and O-tert-butylacetoxime were inactive. These results suggest that the. OH-dependent oxidation of acetoxime initially proceeds via abstraction of a hydrogen atom from its hydroxyl group, as opposed to the oxidation of its >C=N- function. HepG2 cells with low levels of expression of P450 did not significantly produce NO2- from acetoxime, while HepG2 cells expressing CYP2E1 did, and this generation was blocked by a CYP2E1 inhibitor. Acetoxime was inactive either as a substrate or as an inhibitor of iNOS activity. These results indicate that reactive oxygen species play a key role in the oxidation of acetoxime to. NO by liver microsomes by a mechanism involving H abstraction from the OH moiety by hydroxyl radical-like oxidants and suggest the possibility that acetoxime may be an effective producer of. NO primarily in the liver by a pathway independent of NOS.  相似文献   

8.
Peroxynitrite (PN), the product of the diffusion-limited reaction between nitric oxide (*NO) and superoxide (O*-(2)), represents a relevant mediator of oxidative modifications in low-density lipoprotein (LDL). This work shows for the first time the simultaneous action of low-controlled fluxes of PN and *NO on LDL oxidation in terms of lipid and protein modifications as well as oxidized lipid-protein adduct formation. Fluxes of PN (e.g., 1 microM min(-1)) initiated lipid oxidation in LDL as measured by conjugated dienes and cholesteryl ester hydroperoxides formation. Oxidized-LDL exhibited a characteristic fluorescent emission spectra (lambda(exc) = 365 nm, lambda(max) = 417 nm) in parallel with changes in both the free amino groups content and the relative electrophoretic mobility of the particle. Physiologically relevant fluxes of *NO (80-300 nM min(-1)) potently inhibited these PN-dependent oxidative processes. These results are consistent with PN-induced adduct formation between lipid oxidation products and free amino groups of LDL in a process prevented by the simultaneous presence of *NO. The balance between rates of PN and *NO production in the vascular wall will critically determine the final extent of LDL oxidative modifications leading or not to scavenger receptor-mediated LDL uptake and foam cell formation.  相似文献   

9.
Microorganisms employ diverse mechanisms to withstand physiological stress conditions exerted by reactive or toxic oxygen and nitrogen species such as hydrogen peroxide, organic hydroperoxides, superoxide anions, nitrite, hydroxylamine, nitric oxide or NO-generating compounds. This study identified components of the oxidative and nitrosative stress defence network of Wolinella succinogenes, an exceptional Epsilonproteobacterium that lacks both catalase and haemoglobins. Various gene deletion-insertion mutants were constructed, grown by either fumarate respiration or respiratory nitrate ammonification and subjected to disc diffusion, growth and viability assays under stress conditions. It was demonstrated that mainly two periplasmic multihaem c-type cytochromes, namely cytochrome c peroxidase and cytochrome c nitrite reductase (NrfA), mediated resistance to hydrogen peroxide. Two AhpC-type peroxiredoxin isoenzymes were shown to be involved in protection against different organic hydroperoxides. The phenotypes of two superoxide dismutase mutants lacking either SodB or SodB2 implied that both isoenzymes play important roles in oxygen and superoxide stress defence although they are predicted to reside in the cytoplasm and periplasm respectively. NrfA and a cytoplasmic flavodiiron protein (Fdp) were identified as key components of nitric oxide detoxification. In addition, NrfA (but not the hybrid cluster protein Hcp) was found to mediate resistance to hydroxylamine stress. The results indicate the presence of a robust oxidative and nitrosative stress defence network and identify NrfA as a multifunctional cytochrome c involved in both anaerobic respiration and stress protection.  相似文献   

10.
Arachidonic acid can act as a second messenger regulating many cellular processes among which is nitric oxide (NO) formation. The aim of the present study was to investigate the molecular mechanisms involved in the arachidonic acid effect on platelet NO level. Thus NO, cGMP and superoxide anion level, the phosphorylation status of nitric oxide synthase, the protein kinase C (PKC), and NADPH oxidase activation were measured. Arachidonic acid dose-dependently reduced NO and cGMP level. The thromboxane A2 mimetic U46619 behaved in a similar way. The arachidonic acid or U46619 effect on NO concentration was abolished by the inhibitor of the thromboxane A2 receptor SQ29548 and partially reversed by the PKC inhibitor GF109203X or by the phospholipase C pathway inhibitor U73122. Moreover, it was shown that arachidonic acid activated PKC and decreased nitric oxide synthase (eNOS) activities. The phosphorylation of the inhibiting eNOSthr495 residue mediated by PKC was increased by arachidonic acid, while no changes at the activating ser1177 residue were shown. Finally, arachidonic acid induced NADPH oxidase activation and superoxide anion formation. These effects were greatly reduced by GF109203X, U73122, and apocynin. Likely arachidonic acid reducing NO bioavailability through all these mechanisms could potentiate its platelet aggregating power.  相似文献   

11.
Patients with minimal hepatic encephalopathy (MHE) show increased oxidative stress in blood. We aimed to assess whether MHE patients show alterations in different types of blood cells in (a) basal reactive oxygen and nitrogen species levels; (b) capacity to metabolise these species. To assess the mechanisms involved in the altered capacity to metabolise these species we also analysed: (c) peroxynitrite formation and d) peroxynitrite reaction with biological molecules. Levels of reactive oxygen and nitrogen species were measured by flow cytometry in blood cell populations from cirrhotic patients with and without MHE and controls, under basal conditions and after adding generators of superoxide (plumbagin) or nitric oxide (NOR-1) to assess the capacity to eliminate them. Under basal conditions, MHE patients show reduced superoxide and peroxynitrite levels and increased nitric oxide (NO) and nitrotyrosine levels. In patients without MHE plumbagin strongly increases cellular superoxide, moderately peroxynitrite and reduces NO levels. In MHE patients, plumbagin increases slightly superoxide and strongly peroxynitrite levels and affects slightly NO levels. NOR-1 increases NO levels much less in patients with than without MHE. These data show that the mechanisms and the capacity to eliminate cellular superoxide, NO and peroxynitrite are enhanced in MHE patients. Superoxide elimination is enhanced through reaction with NO to form peroxynitrite which, in turn, is eliminated by enhanced reaction with biological molecules, which could contribute to cognitive impairment in MHE. The data show that basal free radical levels do not reflect the oxidative stress status in MHE.  相似文献   

12.
Our previous studies showed that menadione causes endothelial dysfunction which results in decreased relaxation and increased contraction of blood vessels. This investigation examined the role of two possible mechanisms (oxidative stress and arylation) in menadione-induced endothelial dysfunction. Menadione increased superoxide anion generation in aortic rings in a dose-dependent manner. Superoxide dismutase (SOD), reversed the inhibitory effects of menadione on vascular relaxation. The relaxation induced by the NO donor, sodium nitroprusside, was inhibited by menadione pretreatment in a dose-dependent manner. Endothelial nitric oxide synthase activity (eNOS) was suppressed by menadione. Menadione resulted in a dose-dependent reduction of cGMP levels accumulated by acetylcholine. This reduction of cGMP levels was blocked by SOD treatment, suggesting that superoxide anion generated by menadione could play a role in the inhibition of the nitric oxide pathway. Evidence supporting a possible role for arylation in impaired vascular relaxation was suggested by the observation that benzoquinone, which does not induce oxidative stress in aortic rings, inhibited acetylcholine-induced vascular relaxation to the same extent as menadione. Collectively, these results suggest that menadione can cause endothelial dysfunction in blood vessels by the inhibition of the nitric oxide pathway via superoxide anion generation and that arylation activity may also be another important mechanism.  相似文献   

13.
Guo FQ  Crawford NM 《The Plant cell》2005,17(12):3436-3450
The Arabidopsis thaliana protein nitric oxide synthase1 (NOS1) is needed for nitric oxide (NO) synthesis and signaling during defense responses, hormonal signaling, and flowering. The cellular localization of NOS1 was examined because it is predicted to be a mitochondrial protein. NOS1-green fluorescent protein fusions were localized by confocal microscopy to mitochondria in roots. Isolated mitochondria from leaves of wild-type plants supported Arg-stimulated NO synthesis that could be inhibited by NOS inhibitors and quenched by a NO scavenger; this NOS activity is absent in mitochondria isolated from nos1 mutant plants. Because mitochondria are a source of reactive oxygen species (ROS), which participate in senescence and programmed cell death, these parameters were examined in the nos1 mutant. Dark-induced senescence of detached leaves and intact plants progressed more rapidly in the mutant compared with the wild type. Hydrogen peroxide, superoxide anion, oxidized lipid, and oxidized protein levels were all higher in the mutant. These results demonstrate that NOS1 is a mitochondrial NOS that reduces ROS levels, mitigates oxidative damage, and acts as an antisenescence agent.  相似文献   

14.
Sickle cell disease patients receiving hydroxyurea (HU) therapy have shown increases in the production of nitric oxide (NO) metabolites, which include iron nitrosyl hemoglobin (HbNO), nitrite, and nitrate. However, the exact mechanism by which HU forms HbNO in vivo is not understood. Previous studies indicate that the reaction of oxyhemoglobin (oxyHb) or deoxyhemoglobin (deoxyHb) with HU are too slow to account for in vivo HbNO production. In this study, we show that the reaction of methemoglobin (metHb) with HU to form HbNO could potentially be fast enough to account for in vivo HbNO formation but competing reactions of either excess oxyHb or deoxyHb during the reaction reduces the likelihood that HbNO will be produced from the metHb-HU reaction. Using electron paramagnetic resonance (EPR) spectroscopy we have detected measurable amounts of HbNO and metHb during the reactions of oxyHb, deoxyHb, and metHb with excess hydroxylamine (HA). We also demonstrate HbNO and metHb formation from the reactions of excess oxyHb, deoxyHb, or metHb and HA, conditions that are more likely to mimic those in vivo. These results indicate that the reaction of hydroxylamine with hemoglobin produces HbNO and lend chemical support for a potential role for hydroxylamine in the in vivo metabolism of hydroxyurea.  相似文献   

15.
Subsaturating levels of tetrahydrobiopterin (BH(4)), an essential cofactor for nitric oxide synthase (NOS), can lead to endothelial dysfunction as a result of decreased production of nitric oxide. Furthermore, insufficient BH(4) can also result in NOS-uncoupled production of reactive oxygen intermediates, such as superoxide anion and hydrogen peroxide. Nitric oxide and superoxide react rapidly to form peroxynitrite, which may be the reactive species responsible for many of the toxic effects of nitric oxide. Here we show that BH(4) is a primary target for peroxynitrite-catalyzed oxidation because at pH 7.4, physiologically relevant concentrations of BH(4) are oxidized rapidly by low concentrations of peroxynitrite. Peroxynitrite oxidizes BH(4) to quinonoid 5,6-dihydrobiopterin and a large proportion of the quinonoid isomer readily loses its side chain to form 7,8-dihydropterin which is not a cofactor for nitric oxide synthase. Thus, abnormally low levels of BH(4) can promote a cycle of its own destruction mediated by nitric oxide synthase-dependent formation of peroxynitrite. This mechanism might contribute to vascular endothelial dysfunction induced by oxidative stress.  相似文献   

16.
Nitrite and nitrate, two endogenous oxides of nitrogen, are toxic in vivo. Furthermore, the reaction of superoxide (produced by all aerobic cells) with nitric oxide (NO) generates peroxynitrite, a potent oxidizing agent, that can cause biological oxidative stress. Using subcellular fractions from rat brain hemispheres we studied oxidative stress induced by these nitrogen compounds with special emphasis on nitrite. The consumption of Vitamin C (ascorbate) and Vitamin E (alpha tocopherol), two of the important nutritional antioxidants, was followed in synaptosomes (nerve-ending particles) and mitochondria along with changes in parameters of mitochondrial oxidative phosphorylation. Nitrite, but not nitrate, oxidized ascorbate without oxidizing alpha tocopherol in both synaptosomes and mitochondria whereas peroxynitrite oxidized both ascorbate and alpha tocopherol. Functionally, both nitrite and peroxynitrite inhibited mitochondrial oxidative phosphorylation. Nitrite was less potent than peroxynitrite when the effects of equal concentrations of the two were compared. However, since nitrite is much more stable than peroxynitrite the impact of nitrite as an oxidant in vivo could be as much or even more significant than peroxynitrite. Nitrate would not have similar action unless it is reduced to nitrite. It is possible that nitrite may impair oxidative phosphorylation through modulating levels of nitric oxide, changing the activity of heme proteins or a mild uncoupling of mitochondria.  相似文献   

17.
Adiponectin acts as an endogenous antithrombotic factor. However, the mechanisms underlying the inhibition of platelet aggregation by adiponectin still remain elusive. The present study was designed to test whether adiponectin inhibits platelet aggregation by attenuation of oxidative/nitrative stress. Adult rats were fed a regular or high-fat diet for 14 weeks. The platelet was immediately separated and stimulated with recombinant full-length adiponectin (rAPN) or not. The platelet aggregation, nitric oxide (NO) and superoxide production, endothelial nitric oxide synthase (eNOS)/inducible NOS (iNOS) expression, and antioxidant capacity were determined. Treatment with rAPN inhibited hyperlipidemia-induced platelet aggregation (P<0.05). Interestingly, total NO, a crucial molecule depressing platelet aggregation and thrombus formation?was significantly reduced, rather than increased in rAPN-treated platelets. Treatment with rAPN markedly decreased superoxide production (-62 %, P<0.05) and enhanced antioxidant capacity (+38 %, P<0.05) in hyperlipidemic platelets. Hyperlipidemia-induced reduced eNOS phosphorylation and increased iNOS expression were significantly reversed following rAPN treatment (P<0.05, P<0.01, respectively). Taken together, these data suggest that adiponectin is an adipokine that suppresses platelet aggregation by enhancing eNOS activation and attenuating oxidative/nitrative stress including blocking iNOS expression and superoxide production.  相似文献   

18.
It has been speculated that NG-hydroxy- -arginine (OH- -Arg), which is an intermediate in NO production from -arginine, may be converted to NO by superoxide ion. However, there is still no direct evidence for this conversion. In the present study this was investigated using superoxide ion generated either in acellular or cellular systems. It was found that OH- -Arg and hydroxylamine were converted to nitrite and nitrate apparently via NO by superoxide ion in aqueous solution. Arginine remained unaffected. These changes were observed during reaction of chemical substances as well as in a biological system (zymosan-activated macrophages in culture). Superoxide dismutase prevented this transformation. OH- -Arg was also spontaneously hydrolysed to hydroxylamine and -citrulline, however this occurred at pH> 9 only. Activated microsomes (containing different isoforms of cytochrome P450) were unable to replace NO-synthase in its ability to produce OH- -Arg from -arginine. These data support the hypothesis that a pathway alternative to the well-known synthesis of NO by NO-synthase via OH- -Arg exists. This pathway may involve the production of OH- -Arg by NO-synthase and decomposition of OH- -Arg to NO by the action of superoxide ion. Alternatively, hydrolysis of OH- -Arg to hydroxylamine may occur followed by its oxidation to NO, again by superoxide ion.  相似文献   

19.
It has been speculated that NG-hydroxy-l-arginine (OH-l-Arg), which is an intermediate in NO production from l-arginine, may be converted to NO by superoxide ion. However, there is still no direct evidence for this conversion. In the present study this was investigated using superoxide ion generated either in acellular or cellular systems. It was found that OH-l-Arg and hydroxylamine were converted to nitrite and nitrate apparently via NO by superoxide ion in aqueous solution. Arginine remained unaffected. These changes were observed during reaction of chemical substances as well as in a biological system (zymosan-activated macrophages in culture). Superoxide dismutase prevented this transformation. OH-l-Arg was also spontaneously hydrolysed to hydroxylamine and l-citrulline, however this occurred at pH > 9 only. Activated microsomes (containing different isoforms of cytochrome P450) were unable to replace NO-synthase in its ability to produce OH-l-Arg from l-arginine. These data support the hypothesis that a pathway alternative to the well-known synthesis of NO by NO-synthase via OH-l-Arg exists. This pathway may involve the production of OH-l-Arg by NO-synthase and decomposition of OH-l-Arg to NO by the action of superoxide ion. Alternatively, hydrolysis of OH-l-Arg to hydroxylamine may occur followed by its oxidation to NO, again by superoxide ion.  相似文献   

20.
Antioxidant action of Rosmarinic acid (Ros A), a natural phenolic ingredient in many Lamiaceae herbs such as Perilla frutescens, sage, basil and mint, was analyzed in relation to the Ikappa-B activation in RAW264.7 macrophages. Ros A inhibited nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) protein synthesis induced by lipopolysaccharide (LPS), and also effectively suppressed phorbol 12-myristate 13-acetate (PMA)-induced superoxide production in RAW264.7 macrophages in a dose-dependent manner. Peroxynitrite-induced formation of 3-nitrotyrosine in bovine serum albumin and RAW264.7 macrophages were also inhibited by Ros A. Moreover, Western blot analysis demonstrated that LPS-induced phosphorylation of Ikappa-Balpha was abolished by Ros A. Ros A can act as an effective protector against peroxynitrite-mediated damage, and as a potent inhibitor of superoxide and NO synthesis; the inhibition of the formation of reactive oxygen and nitrogen species are partly based on its ability to inhibit the serine phosphorylation of Ikappa-Balpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号