首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene expression for seven phosphatidylinositol phosphate kinases (PIPKs)-types Ialpha, Ibeta, Igamma, types IIalpha, IIbeta, IIgamma, and type III-was examined using in situ hybridization histochemistry, in the mouse brain during normal development. In the embryonic mouse brain, positive expression signals were detected only for the genes encoding PIPK Igamma and PIPK IIbeta in both the cerebral ventricular and mantle zones, with weaker signals in the former zone. On the other hand, the genes encoding all PIPKs were essentially detected in the external granule cell layer which represents the germinal zone for the neuronal granule cells. In the postnatal brain, among the seven PIPKs, the expression for genes encoding PIPK Igamma and IIbeta is evident in most gray matter, while the expression for the other five types was weak in the cortical gray matter and negligible in most non-cortical gray matter such as the diencephalon and brain stem nuclei. While the expression for most PIPKs in the mature hippocampus was distinct, the expression in the CA3 and the dentate gyrus was less definite for the genes encoding PIPK Ialpha and IIgamma, respectively. The distinct expression for the gene encoding PIPK IIalpha was detected in the postnatal white matter such as the cerebellar medulla, the corpus callosum, the hippocampal fimbriae, and the internal capsule.  相似文献   

2.
Phosphatidylinositol-4,5-bisphosphate plays a pivotal role in the regulation of cell proliferation and survival, cytoskeletal reorganization, and membrane trafficking. However, little is known about the temporal and spatial regulation of its synthesis. Higher eukaryotic cells have the potential to use two distinct pathways for the generation of phosphatidylinositol-4,5-bisphosphate. These pathways require two classes of phosphatidylinositol phosphate kinases, termed type I and type II PIP kinases. While highly related by sequence, these kinases localize to different subcellular compartments, phosphorylate distinct substrates, and are functionally nonredundant. Here, we show that a 20- to 25-amino acid loop spanning the catalytic site, termed the activation loop, determines both enzymatic specificity and subcellular targeting of PIP kinases. Therefore, the activation loop controls signaling specificity and PIP kinase function at multiple levels.  相似文献   

3.
4.
Ochratoxin A (OchA) is a food-borne mycotoxin with multiple effects in vivo. Previously, we have demonstrated that the toxin can significantly impair the barrier function of the gut epithelial cell line, Caco-2. Barrier disruption involved loss of claudins 3 and 4, but not claudin 1 from the tight junction complex. In this study, we demonstrate for the first time, that OchA is able to remove claudins 3 and 4 from the detergent insoluble membrane microdomains associated with the tight junctions. However, cholesterol distribution within the microdomain was unaffected by the toxin. In addition, the thiol antioxidant, N-acetyl cysteine, preserved the microdomain localisation of claudins and also the barrier function of Caco-2 cells. This work suggests that OchA-mediated barrier toxicity is due to removal of claudins from detergent insoluble membrane microdomains. Moreover, loss of microdomain association may be due to oxidative events.  相似文献   

5.
Turnover of plasma membrane during phagocytosis   总被引:2,自引:0,他引:2  
  相似文献   

6.
The regulatory mechanism of Src tyrosine kinases includes conformational activation by a change in the catalytic domain tertiary structure and in domain-domain contacts between the catalytic domain and the SH2/SH3 regulatory domains. The kinase is activated when tyrosine phosphorylation occurs on the activation loop, but without phosphorylation of the C-terminal tail. Activation also occurs by allostery when contacts between the catalytic domain (CD) and the regulatory SH3 and SH2 domains are released as a result of exogenous protein binding. The aim of this work is to examine the proposed role of an electrostatic network in the conformational transition and to elucidate the molecular mechanism for long-range, allosteric conformational activation by using a combination of experimental enzyme kinetics and nonequilibrium molecular dynamics simulations. Salt dependence of the induction phase is observed in kinetic assays and supports the role of an electrostatic network in the transition. In addition, simulations provide evidence that allosteric activation involves a concerted motion coupling highly conserved residues, and spanning several nanometers from the catalytic site to the regulatory domain interface to communicate between the CD and the regulatory domains.  相似文献   

7.
Engagement of integrin receptors with the extracellular matrix induces the formation of focal adhesions (FAs). Dynamic regulation of FAs is necessary for cells to polarize and migrate. Key interactions between FA scaffolding and signaling proteins are dependent on tyrosine phosphorylation. However, the precise role of tyrosine phosphorylation in FA development and maturation is poorly defined. Here, we show that phosphorylation of type Igamma phosphatidylinositol phosphate kinase (PIPKIgamma661) on tyrosine 644 (Y644) is critical for its interaction with talin, and consequently, localization to FAs. PIPKIgamma661 is specifically phosphorylated on Y644 by Src. Phosphorylation is regulated by focal adhesion kinase, which enhances the association between PIPKIgamma661 and Src. The phosphorylation of Y644 results in an approximately 15-fold increase in binding affinity to the talin head domain and blocks beta-integrin binding to talin. This defines a novel phosphotyrosine-binding site on the talin F3 domain and a "molecular switch" for talin binding between PIPKIgamma661 and beta-integrin that may regulate dynamic FA turnover.  相似文献   

8.
Most of human platelet phosphatidylinositol (PI) kinase activity (approx. 80%) was associated with the membrane fraction and its majority was released by the extraction with Triton X-100 after KCl treatment. Two major activity peaks (mPIK-I and mPIK-III) were obtained by Mono Q column chromatography. They were distinct from each other with regard to Mr (76,000 and 80,000 as determined by gel-filtration chromatography), apparent Km values for ATP, effect of arachidonic acid and phosphatidylserine and detergent requirement. Triton X-100 inhibited the activity of mPIK-I but rather weakly enhanced the mPIK-III activity, and sodium cholate remarkably inhibited both mPIK-I and mPIK-III activities. Their products were identified to be phosphatidylinositol 4-phosphate. On the other hand, about 20% of PI kinase activity was recovered from the cytosolic fraction and two activity peaks (cPIK-I and cPIK-II) were resolved on Mono Q column chromatography. There were no significant differences in biochemical properties between cPIK-I and cPIK-II. Both of them had Mr approx. 550,000 as determined by gel-filtration chromatography and were activated by sodium cholate to a greater extent than by Triton X-100. The results suggest that the major PI kinases (mPIK-I and mPIK-III) are PI 4-kinase and mPIK-I is distinct from PI 4-kinases in other sources especially with regard to the effect of Triton X-100.  相似文献   

9.
G-protein coupled receptors (GPCR) and phosphatidylinositol phosphate kinases (PIPK) are important key switches in signal transduction pathways. A novel class of proteins was identified in the genomes of two unrelated organisms that harbor both a GPCR and a PIPK domain. Dictyostelium discoideum contains one GPCR-PIPK, which is crucial in cell-density sensing, and the genomes of Phytophthora sojae and Phytophthora ramorum each encode twelve GPCR-PIPKs. Intriguingly, these are currently the only species that have these two domains combined in one protein. Here, the structural and regulatory characteristics of GPCR-PIPKs are presented and discussed. It is hypothesized that, upon activation, GPCR-PIPKs are able to trigger heterotrimeric G-protein signaling and phosphoinositide second-messenger synthesis.  相似文献   

10.
The model is based upon an ion channel with an electric dipolar structure. With simplifying assumptions it is possible to calculate that a typical channel, 1 nm in diameter and 5 nm long, could contain at most two or three univalent cations at a time. The channel ion binding sites have an effective affinity for ions from the fluid bathing the negative end of the channel, several orders of magnitude higher than their affinity for ions from the fluid bathing the positive end of the channel. The approach of an external, positively charged body to the negative end of the channel, is sufficient to convert the two- or three-channel ion sites with high affinity for ions from the fluid bathing this end into very low affinity sites for the same ions that now have access only to the fluid bathing the other end of the channel. The change in affinity and fluid access requires no molecular or electrical change in the channel structure other than the passive superposition of the electrostatic potential of the dipolar channel and that of the charged body. An oscillating electric field externally applied to an electric dipolar channel is shown to result in the unidirectional pumping of cations in the direction of the channel dipole even against large adverse ion concentration gradients. The energy required must be supplied by the sources of the electric field. By using two such channels in close proximity, one selective for K+ ions with its dipole moment pointing into a cell and the other selective for Na+ ions with its dipole moment pointing out from the cell, it is possible to construct a model pump with calculated properties that simulate many of those measured for Na+-K+-ATPase, with both physiological and artificial ionic concentrations.  相似文献   

11.
Polyunsaturated fatty acids (PUFAs) such as eicosapentaenoic acid (20:5 (n-3)) inhibit T lymphocyte activation probably by displacing acylated signaling proteins from membrane lipid rafts. Under physiological conditions, saturated fatty acyl residues of such proteins partition into the cytoplasmic membrane lipid leaflet with high affinity for rafts that are enriched in saturated fatty acyl-containing lipids. However, the biochemical alteration causing displacement of acylated proteins from rafts in PUFA-treated T cells is still under debate but could principally be attributed to altered protein acylation or changes in raft lipid composition. We show that treatment of Jurkat T cells with polyunsaturated eicosapentaenoic acid (20:5 (n-3)) results in marked enrichment of PUFAs (20:5; 22:5) in lipids from isolated rafts. Moreover, PUFAs were significantly incorporated into phosphatidylethanolamine that predominantly resides in the cytoplasmic membrane lipid leaflet. Notably, palmitate-labeled Src family kinase Lck and the linker for activation of T cells (LAT) were both displaced from lipid rafts indicating that acylation by PUFAs is not required for protein displacement from rafts in PUFA-treated T cells. In conclusion, these data provide strong evidence that displacement of acylated proteins from rafts in PUFA-treated T cells is predominantly due to altered raft lipid composition.  相似文献   

12.
Type I and type II phosphatidylinositol phosphate (PIP) kinases generate the lipid second messenger phosphatidylinositol (PtdIns) 4,5-bisphosphate and thus play fundamental roles in the regulation of many cellular processes. Although the two kinase families are highly homologous, they phosphorylate distinct substrates and are functionally non-redundant. Type I PIP kinases phosphorylate PtdIns 4-phosphate at the D-5 hydroxyl group and are consequently PtdIns 4-phosphate 5-kinases. By contrast, type II PIP kinases are PtdIns 5-phosphate 4-kinases that phosphorylate PtdIns 5-phosphate at the D-4 position. Type I PIP kinases, in addition, also phosphorylate other phosphoinositides in vitro and in vivo and thus have the potential to generate multiple lipid second messengers. To understand how these enzymes differentiate between stereoisomeric substrates, we used a site-directed mutagenesis approach. We show that a single amino acid substitution in the activation loop, A381E in IIbeta and the corresponding mutation E362A in Ibeta, is sufficient to swap substrate specificity between these PIP kinases. In addition to its role in substrate specificity, the type I activation loop is also key in subcellular targeting. The Ibeta(E362A) mutant and other mutants with reduced PtdIns 4-phosphate binding affinity were largely cytosolic when expressed in mammalian cells in contrast to wild-type Ibeta which targets to the plasma membrane. These results clearly establish the role of the activation loop in determining both signaling specificity and plasma membrane targeting of type I PIP kinases.  相似文献   

13.
Tyrosine phosphorylation of numerous proteins is one of the earliest events detectable during Fcgamma receptor-mediated phagocytosis. We demonstrate that IgG-coated particles associated with the surface of macrophages are enriched with numerous tyrosine-phosphorylated proteins. During particle internalization the proteins are still associated with particles but their phosphorylation is reduced. Lyn kinase is phosphorylated both at particle binding and internalization steps. The phosphorylated Syk kinase is the major kinase associated with engulfed particles. Imnunofluorescent studies confirm spatial and temporal distribution of Lyn and Syk kinases at different stages of phagocytosis. Our data indicate that ligation of Fcgamma receptors activates Lyn followed by Syk kinase and in the result multimolecular complex of the kinases and several accompanying tyrosine phosphorylated proteins with Fcgamma receptors is organized leading to local reorganization of actin-based skeleton and particle uptake.  相似文献   

14.
The most common enzyme defect in humans is glucose‐6‐phosphate dehydrogenase (G6PD) deficiency, which affects more than 400 million people. G6PD shunts glucose into the pentose phosphate pathway (PPP) to generate nucleotides and reducing potential in the form of NADPH. In this issue, Wang et al ( 2014 ) show that G6PD activity is post‐translationally regulated by SIRT2, a cytoplasmic NAD+‐dependent deacetylase, thereby linking NAD+ levels to DNA repair and oxidative defences, and identifying potential new approaches to treating this common genetic disease.  相似文献   

15.
An essential step in Drosophila phototransduction is the hydrolysis of phosphatidylinositol 4,5 bisphosphate PI(4,5)P2 by phospholipase Cbeta (PLCbeta) to generate a second messenger that opens the light-activated channels TRP and TRPL. Although the identity of this messenger remains unknown, recent evidence has implicated diacylglycerol kinase (DGK), encoded by rdgA, as a key enzyme that regulates its levels, mediating both amplification and response termination. In this study, we demonstrate that lazaro (laza) encodes a lipid phosphate phosphohydrolase (LPP) that functions during phototransduction. We demonstrate that the synergistic activity of laza and rdgA regulates response termination during phototransduction. Analysis of retinal phospholipids revealed a reduction in phosphatidic acid (PA) levels and an associated reduction in phosphatidylinositol (PI) levels. Together our results demonstrate the contribution of PI depletion to the rdgA phenotype and provide evidence that depletion of PI and its metabolites might be a key signal for TRP channel activation in vivo.  相似文献   

16.
We measured the electrostatic potential 1 nm from the surface of charged phospholipid bilayer membranes to test the predictions of the Gouy-Chapman theory. Fluorescent probes (anthraniloyl, 5-(dimethylamino)naphthalene-1-sulfonyl, Lucifer yellow) were attached covalently to the sialic acid residue of the ganglioside galactosyl-N-acetylgalactosaminyl(N-acetylneuraminyl)galactosylglucosylc eramide (GM1). These fluorescent gangliosides were incorporated into neutral [phosphatidylcholine (PC)] or charged [phosphatidylserine (PS)] phospholipid bilayers, and the fluorescence was quenched with the cations thallium and 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (tempamine). We calculated the electrostatic potential at the chromophore from the quenching ratio using the Boltzmann relation: the average potential was -30 mV for PS bilayers in 0.1 M NaNO3. We assume the chromophore is 1 nm from the surface because X-ray diffraction measurements demonstrate that the sialic acid residue of GM1 is 1 nm from the surface of a PC/GM1 bilayer [McDaniel, R. V., & McIntosh, T. J. (1986) Biophys. J. 49, 94-96]. We also used thallium and tempamine to quench the fluorescence of chromophores located at the surface of the PS membranes; in 0.1 M NaNO3 the average surface potential was -80 mV, which agrees with other measurements. The Gouy-Chapman theory predicts that the potential 1 nm from a membrane with a surface potential of -80 mV is -24 mV; this prediction agrees qualitatively with the experimental results obtained with fluorescent gangliosides.  相似文献   

17.
Protein kinases of the thylakoid membrane   总被引:3,自引:0,他引:3  
The claim of Racker and co-workers (Lin, Z. F., Lucero, H. A., and Racker, E. (1982) J. Biol. Chem. 257, 12153-12156 and Lucero, H. A., Lin, Z. F., and Racker, E. (1982) J. Biol. Chem. 257, 12157-12160) that two protein kinases, designated CPK1 (25 kDa) and CPK2 (38 kDa), are present in spinach thylakoid membranes was investigated in light of results from this laboratory (Coughlan, S. J., and Hind, G. (1986) J. Biol. Chem. 261, 11378-11385) showing that 75-80% of the measurable protein kinase activity of isolated thylakoids is attributable to a protein kinase of 64 kDa apparent molecular mass. Extraction of thylakoid membranes with octyl glucoside/cholate according to the procedure of Lin et al. (Lin, Z. F., Lucero, H. A., and Racker, E. (1982) J. Biol. Chem. 257, 12153-12156) released proteins assignable to CPK1 and CPK2 on the basis of photoaffinity labeling with 8-azido-[32P]ATP. The 64-kDa protein kinase was present in this extract and accounted for greater than 80% of the total phosphotransferase activity toward lysine-rich histone as substrate; it was not labeled by the photoaffinity reagent. The three presumptive kinases were purified by ammonium sulfate precipitation, sucrose density gradient centrifugation, hydroxylapatite chromatography, and affinity chromatography. CPK1 was specifically eluted from Cibacron blue-Sepharose by 10 mM ATP; it electrophoresed on denaturing polyacrylamide gels as a single band with apparent molecular mass of 25 kDa. Its specific activity toward lysine-rich histone as substrate was approximately 250 pmol of phosphate transferred (mg protein)-1 min-1. The 64-kDa protein kinase was eluted from the affinity column by 1% (w/v) lithium dodecyl sulfate or from a histone IIIs-Sepharose affinity column by 0.25 M NaCl. Its specific activity towards lysine-rich histone was 100-200 times greater than that of CPK1. CPK2 eluted from the Cibacron blue affinity column in 10 mM NADP+; it had an apparent molecular mass of 38 kDa, possessed NADPH-dependent diaphorase activity (specific activity: 225 nmol of ferricyanide reduced (mg protein)-1 min-1), and cross-reacted with immunoglobulin raised against purified ferredoxin:NADP+ oxidoreductase, with which it was thus identified. Kinase activity was not detectable in CPK2 or in reductase isolated by conventional procedures.  相似文献   

18.
D I Stewart  N Crawford 《FEBS letters》1983,156(2):329-334
Calmodulin-dependent glycogen synthase kinase isolated from skeletal muscle and synapsin I kinase II isolated from brain have several properties that are very similar. These properties include: substrate and site-specificities, immunological cross-reactivity, and phosphopeptide maps following limited proteolysis. Both enzymes phosphorylate a wide variety of substrate proteins. The two kinases may represent different isozymes of a multifunctional calmodulin-dependent protein kinase that mediates many of the actions of Ca2+ in various tissues. Therefore, we propose the name 'calmodulin-dependent multi-protein kinase' for this broad specificity enzyme.  相似文献   

19.
Protein palmitoylation is a major dynamic posttranslational regulator of protein function. However, mechanisms that control palmitoylation are poorly understood. In many proteins, palmitoylation occurs at cysteine residues juxtaposed to membrane-anchoring domains such as transmembrane helices, sites of irreversible lipid modification, or hydrophobic and/or polybasic domains. In particular, polybasic domains represent an attractive mechanism to dynamically control protein palmitoylation, as the function of these domains can be dramatically influenced by protein phosphorylation. Here we demonstrate that a polybasic domain immediately upstream of palmitoylated cysteine residues within an alternatively spliced insert in the C terminus of the large conductance calcium- and voltage-activated potassium channel is an important determinant of channel palmitoylation and function. Mutation of basic amino acids to acidic residues within the polybasic domain results in inhibition of channel palmitoylation and a significant right-shift in channel half maximal voltage for activation. Importantly, protein kinase A-dependent phosphorylation of a single serine residue within the core of the polybasic domain, which results in channel inhibition, also reduces channel palmitoylation. These data demonstrate the key role of the polybasic domain in controlling stress-regulated exon palmitoylation and suggests that phosphorylation controls the domain by acting as an electrostatic switch.  相似文献   

20.
Phagocytosis is a highly localized and rapid event, requiring the generation of spatially and temporally restricted signals. Because phosphatidylinositol 3-kinase (PI3K) plays an important role in the innate immune response, we studied the generation and distribution of 3' phosphoinositides (3'PIs) in macrophages during the course of phagocytosis. The presence of 3'PI was monitored noninvasively in cells transfected with chimeras of green fluorescent protein and the pleckstrin homology domain of either Akt, Btk, or Gab1. Although virtually undetectable in unstimulated cells, 3'PI rapidly accumulated at sites of phagocytosis. This accumulation was sharply restricted to the phagosomal cup, with little 3'PI detectable in the immediately adjacent areas of the plasmalemma. Measurements of fluorescence recovery after photobleaching were made to estimate the mobility of lipids in the cytosolic monolayer of the phagosomal membrane. Stimulation of phagocytic receptors induced a marked reduction of lipid mobility that likely contributes to the restricted distribution of 3'PI at the cup. 3'PI accumulation during phagocytosis was transient, terminating shortly after sealing of the phagosomal vacuole. Two factors contribute to the rapid disappearance of 3'PI: the dissociation of the type I PI3K from the phagosomal membrane and the persistent accumulation of phosphoinositide phosphatases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号