首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries and is an important evolutionary phenomenon in the ancestry of many microbes. The role of HGT in plant evolutionary history is, however, largely unexplored. Here, we compare the genomes of six plant species with those of 159 prokaryotic and eukaryotic species and identify 1689 genes that show the highest similarity to corresponding genes from fungi. We constructed a phylogeny for all 1689 genes identified and all homolog groups available from the rice (Oryza sativa) genome (3177 gene families) and used these to define 14 candidate plant-fungi HGT events. Comprehensive phylogenetic analyses of these 14 data sets, using methods that account for site rate heterogeneity, demonstrated support for nine HGT events, demonstrating an infrequent pattern of HGT between plants and fungi. Five HGTs were fungi-to-plant transfers and four were plant-to-fungi HGTs. None of the fungal-to-plant HGTs involved angiosperm recipients. These results alter the current view of organismal barriers to HGT, suggesting that phagotrophy, the consumption of a whole cell by another, is not necessarily a prerequisite for HGT between eukaryotes. Putative functional annotation of the HGT candidate genes suggests that two fungi-to-plant transfers have added phenotypes important for life in a soil environment. Our study suggests that genetic exchange between plants and fungi is exceedingly rare, particularly among the angiosperms, but has occurred during their evolutionary history and added important metabolic traits to plant lineages.  相似文献   

2.
We discuss the impact of horizontal gene transfer (HGT) on phylogenetic reconstruction and taxonomy. We review the power of HGT as a creative force in assembling new metabolic pathways, and we discuss the impact that HGT has on phylogenetic reconstruction. On one hand, shared derived characters are created through transferred genes that persist in the recipient lineage, either because they were adaptive in the recipient lineage or because they resulted in a functional replacement. On the other hand, taxonomic patterns in microbial phylogenies might also be created through biased gene transfer. The agreement between different molecular phylogenies has encouraged interpretation of the consensus signal as reflecting organismal history or as the tree of cell divisions; however, to date the extent to which the consensus reflects shared organismal ancestry and to which it reflects highways of gene sharing and biased gene transfer remains an open question. Preferential patterns of gene exchange act as a homogenizing force in creating and maintaining microbial groups, generating taxonomic patterns that are indistinguishable to those created by shared ancestry. To understand the evolution of higher bacterial taxonomic units, concepts usually applied in population genetics need to be applied.  相似文献   

3.
Although horizontal gene transfer (HGT) is usually considered a disruptive force in recovering organismal phylogeny, it creates important phylogenetic information. In the 'net of life', the recipient of an ancient gene transfer can be the ancestor of a lineage that inherits the transferred gene; thus, the transferred gene marks the recipient and its descendants as a monophyletic group. Ancient gene transfer events can also reveal the order of emergence of donor and recipient lineages. In addition, these ancient events can significantly shape the genetic systems of the recipients and can play a part in their long-term evolution. In this article, we discuss the recent progress in phylogenetic application of ancient HGTs and describe two examples of transfer events to the ancestor of red algae and green plants that support a common origin of these two groups. We also address the potential pitfalls of this application.  相似文献   

4.
Comparative genomics revealed in the last decade a scenario of rampant horizontal gene transfer (HGT) among prokaryotes, but for fungi a clearly dominant pattern of vertical inheritance still stands, punctuated however by an increasing number of exceptions. In the present work, we studied the phylogenetic distribution and pattern of inheritance of a fungal gene encoding a fructose transporter (FSY1) with unique substrate selectivity. 109 FSY1 homologues were identified in two sub-phyla of the Ascomycota, in a survey that included 241 available fungal genomes. At least 10 independent inter-species instances of horizontal gene transfer (HGT) involving FSY1 were identified, supported by strong phylogenetic evidence and synteny analyses. The acquisition of FSY1 through HGT was sometimes suggestive of xenolog gene displacement, but several cases of pseudoparalogy were also uncovered. Moreover, evidence was found for successive HGT events, possibly including those responsible for transmission of the gene among yeast lineages. These occurrences do not seem to be driven by functional diversification of the Fsy1 proteins because Fsy1 homologues from widely distant lineages, including at least one acquired by HGT, appear to have similar biochemical properties. In summary, retracing the evolutionary path of the FSY1 gene brought to light an unparalleled number of independent HGT events involving a single fungal gene. We propose that the turbulent evolutionary history of the gene may be linked to the unique biochemical properties of the encoded transporter, whose predictable effect on fitness may be highly variable. In general, our results support the most recent views suggesting that inter-species HGT may have contributed much more substantially to shape fungal genomes than heretofore assumed.  相似文献   

5.
Horizontal gene transfer (HGT) may result in genes whose evolutionary histories disagree with each other, as well as with the species tree. In this case, reconciling the species and gene trees results in a network of relationships, known as the "phylogenetic network" of the set of species. A phylogenetic network that incorporates HGT consists of an underlying species tree that captures vertical inheritance and a set of edges which model the "horizontal" transfer of genetic material. In a series of papers, Nakhleh and colleagues have recently formulated a maximum parsimony (MP) criterion for phylogenetic networks, provided an array of computationally efficient algorithms and heuristics for computing it, and demonstrated its plausibility on simulated data. In this article, we study the performance and robustness of this criterion on biological data. Our findings indicate that MP is very promising when its application is extended to the domain of phylogenetic network reconstruction and HGT detection. In all cases we investigated, the MP criterion detected the correct number of HGT events required to map the evolutionary history of a gene data set onto the species phylogeny. Furthermore, our results indicate that the criterion is robust with respect to both incomplete taxon sampling and the use of different site substitution matrices. Finally, our results show that the MP criterion is very promising in detecting HGT in chimeric genes, whose evolutionary histories are a mix of vertical and horizontal evolution. Besides the performance analysis of MP, our findings offer new insights into the evolution of 4 biological data sets and new possible explanations of HGT scenarios in their evolutionary history.  相似文献   

6.
The reconstruction of bacterial evolutionary relationships has proven to be a daunting task because variable mutation rates and horizontal gene transfer (HGT) among species can cause grave incongruities between phylogenetic trees based on single genes. Recently, a highly robust phylogenetic tree was constructed for 13 gamma-proteobacteria using the combined alignments of 205 conserved orthologous proteins.1 Only two proteins had incongruent tree topologies, which were attributed to HGT between Pseudomonas species and Vibrio cholerae or enterics. While the evolutionary relationships among these species appears to be resolved, further analysis suggests that HGT events with other bacterial partners likely occurred; this alters the implicit assumption of gamma-proteobacteria monophyly. Thus, any thorough reconstruction of bacterial evolution must not only choose a suitable set of molecular markers but also strive to reduce potential bias in the selection of species.  相似文献   

7.
Horizontal gene transfer (HGT) is an important evolutionary process that allows the spread of innovations between distantly related organisms. We present evidence that prokaryotes (bacteria and archaea) are more likely to transfer genetic material with their close relatives than with distantly related lineages. This bias in transfer partners can create phylogenetic signals that are difficult to distinguish from the signal created through shared ancestry. Preferences for transfer partners can be revealed by studying the distribution patterns of divergent genes with identical functions. In many respects, these genes are similar to alleles in a population, except that they coexist only in higher taxonomic groupings and are acquired by a species through HGT. We also discuss the role of biased gene transfer in the formation of taxonomically recognizable natural groups in the tree or net of life.  相似文献   

8.
Phototrophic bacteria are among the most biogeochemically significant organisms on Earth and are physiologically related through the use of reaction centers to collect photons for energy metabolism. However, the major phototrophic lineages are not closely related to one another in bacterial phylogeny, and the origins of their respective photosynthetic machinery remain obscured by time and low sequence similarity. To better understand the co‐evolution of Cyanobacteria and other ancient anoxygenic phototrophic lineages with respect to geologic time, we designed and implemented a variety of molecular clocks that use horizontal gene transfer (HGT) as additional, relative constraints. These HGT constraints improve the precision of phototroph divergence date estimates and indicate that stem green non‐sulfur bacteria are likely the oldest phototrophic lineage. Concurrently, crown Cyanobacteria age estimates ranged from 2.2 Ga to 2.7 Ga, with stem Cyanobacteria diverging ~2.8 Ga. These estimates provide a several hundred Ma window for oxygenic photosynthesis to evolve prior to the Great Oxidation Event (GOE) ~2.3 Ga. In all models, crown green sulfur bacteria diversify after the loss of the banded iron formations from the sedimentary record (~1.8 Ga) and may indicate the expansion of the lineage into a new ecological niche following the GOE. Our date estimates also provide a timeline to investigate the temporal feasibility of different photosystem HGT events between phototrophic lineages. Using this approach, we infer that stem Cyanobacteria are unlikely to be the recipient of an HGT of photosystem I proteins from green sulfur bacteria but could still have been either the HGT donor or the recipient of photosystem II proteins with green non‐sulfur bacteria, prior to the GOE. Together, these results indicate that HGT‐constrained molecular clocks are useful tools for the evaluation of various geological and evolutionary hypotheses, using the evolutionary histories of both genes and organismal lineages.  相似文献   

9.
Mammals constitute a rich subject of study on evolution and development and provide model organisms for experimental investigations. They can serve to illustrate how ontogeny and phylogeny can be studied together and how the reconstruction of ancestors of our own evolutionary lineage can be approached. Likewise, mammals can be used to promote 'tree thinking' and can provide an organismal appreciation of evolutionary changes. This subject is suitable for the classroom and to the public at large given the interest and familiarity of people with mammals and their closest relatives. We present a simple exercise in which embryonic development is presented as a transformative process that can be observed, compared, and analyzed. In addition, we provide and discuss a freely available animation on organogenesis and life history evolution in mammals. An evolutionary tree can be the best tool to order and understand those transformations for different species. A simple exercise introduces the subject of changes in developmental timing or heterochrony and its importance in evolution. The developmental perspective is relevant in teaching and outreach efforts for the understanding of evolutionary theory today.  相似文献   

10.
The evolutionary history of all life forms is usually represented as a vertical tree-like process. In prokaryotes, however, the vertical signal is partly obscured by the massive influence of horizontal gene transfer (HGT). The HGT creates widespread discordance between evolutionary histories of different genes as genomes become mosaics of gene histories. Thus, the Tree of Life (TOL) has been questioned as an appropriate representation of the evolution of prokaryotes. Nevertheless a common hypothesis is that prokaryotic evolution is primarily tree-like, and a routine effort is made to place new isolates in their appropriate location in the TOL. Moreover, it appears desirable to exploit non–tree-like evolutionary processes for the task of microbial classification. In this work, we present a novel technique that builds on the straightforward observation that gene order conservation (‘synteny’) decreases in time as a result of gene mobility. This is particularly true in prokaryotes, mainly due to HGT. Using a ‘synteny index’ (SI) that measures the average synteny between a pair of genomes, we developed the phylogenetic reconstruction tool ‘Phylo SI’. Phylo SI offers several attractive properties such as easy bootstrapping, high sensitivity in cases where phylogenetic signal is weak and computational efficiency. Phylo SI was tested both on simulated data and on two bacterial data sets and compared with two well-established phylogenetic methods. Phylo SI is particularly efficient on short evolutionary distances where synteny footprints remain detectable, whereas the nucleotide substitution signal is too weak for reliable sequence-based phylogenetic reconstruction. The method is publicly available at http://research.haifa.ac.il/ssagi/software/PhyloSI.zip.  相似文献   

11.
Horizontal gene transfer (HGT) is a common event in prokaryotic evolution. Therefore, it is very important to consider HGT in the study of molecular evolution of prokaryotes. This is true also for conducting computer simulations of their molecular phylogeny because HGT is known to be a serious disturbing factor for estimating their correct phylogeny. To the best of our knowledge, no existing computer program has generated a phylogenetic tree with HGT from an original phylogenetic tree. We developed a program called HGT-Gen that generates a phylogenetic tree with HGT on the basis of an original phylogenetic tree of a protein or gene. HGT-Gen converts an operational taxonomic unit or a clade from one place to another in a given phylogenetic tree. We have also devised an algorithm to compute the average length between any pair of branches in the tree. It defines and computes the relative evolutionary time to normalize evolutionary time for each lineage. The algorithm can generate an HGT between a pair of donor and acceptor lineages at the same evolutionary time. HGT-Gen is used with a sequence-generating program to evaluate the influence of HGT on the molecular phylogeny of prokaryotes in a computer simulation study.

Availability

The database is available for free at http://www.grl.shizuoka.ac.jp/˜thoriike/HGT-Gen.html  相似文献   

12.
Summary. Tracing organismal histories on the timescale of the tree of life remains one of the challenging tasks in evolutionary biology. The hotly debated questions include the evolutionary relationship between the three domains of life (e.g., which of the three domains are sister domains, are the domains para-, poly-, or monophyletic) and the location of the root within the universal tree of life. For the latter, many different points of view have been considered but so far no consensus has been reached. The only widely accepted rationale to root the universal tree of life is to use anciently duplicated paralogous genes that are present in all three domains of life. To date only few anciently duplicated gene families useful for phylogenetic reconstruction have been identified. Here we present results from a systematic search for ancient gene duplications using twelve representative, completely sequenced, archaeal and bacterial genomes. Phylogenetic analyses of identified cases show that the majority of datasets support a root between Archaea and Bacteria; however, some datasets support alternative hypotheses, and all of them suffer from a lack of strong phylogenetic signal. The results are discussed with respect to the impact of horizontal gene transfer on the ability to reconstruct organismal evolution. The exchange of genetic information between divergent organisms gives rise to mosaic genomes, where different genes in a genome have different histories. Simulations show that even low rates of horizontal gene transfer dramatically complicate the reconstruction of organismal evolution, and that the different most recent common molecular ancestors likely existed at different times and in different lineages. Correspondence and reprints: Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269-3125, U.S.A. Present address: Genome Atlantic, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.  相似文献   

13.
Fungi contain a remarkable range of metabolic pathways, sometimes encoded by gene clusters, enabling them to digest most organic matter and synthesize an array of potent small molecules. Although metabolism is fundamental to the fungal lifestyle, we still know little about how major evolutionary processes, such as gene duplication (GD) and horizontal gene transfer (HGT), have interacted with clustered and non-clustered fungal metabolic pathways to give rise to this metabolic versatility. We examined the synteny and evolutionary history of 247,202 fungal genes encoding enzymes that catalyze 875 distinct metabolic reactions from 130 pathways in 208 diverse genomes. We found that gene clustering varied greatly with respect to metabolic category and lineage; for example, clustered genes in Saccharomycotina yeasts were overrepresented in nucleotide metabolism, whereas clustered genes in Pezizomycotina were more common in lipid and amino acid metabolism. The effects of both GD and HGT were more pronounced in clustered genes than in their non-clustered counterparts and were differentially distributed across fungal lineages; specifically, GD, which was an order of magnitude more abundant than HGT, was most frequently observed in Agaricomycetes, whereas HGT was much more prevalent in Pezizomycotina. The effect of HGT in some Pezizomycotina was particularly strong; for example, we identified 111 HGT events associated with the 15 Aspergillus genomes, which sharply contrasts with the 60 HGT events detected for the 48 genomes from the entire Saccharomycotina subphylum. Finally, the impact of GD within a metabolic category was typically consistent across all fungal lineages, whereas the impact of HGT was variable. These results indicate that GD is the dominant process underlying fungal metabolic diversity, whereas HGT is episodic and acts in a category- or lineage-specific manner. Both processes have a greater impact on clustered genes, suggesting that metabolic gene clusters represent hotspots for the generation of fungal metabolic diversity.  相似文献   

14.
The last two decades have witnessed an unsurpassed effort aimed at reconstructing the history of life from the genetic information contained in extant organisms. The availability of many sequenced genomes has allowed the reconstruction of phylogenies from gene families and its comparison with traditional single-gene trees. However, the appearance of major discrepancies between both approaches questions whether horizontal gene transfer (HGT) has played a prominent role in shaping the topology of the Tree of Life. Recent attempts at solving this controversy and reaching a consensus tree combine molecular data with additional phylogenetic markers. Translation is a universal cellular function that involves a meaningful, highly conserved set of genes: both rRNA and r-protein operons have an undisputed phylogenetic value and rarely undergo HGT. Ribosomal function reflects the concerted expression of that genetic network and consequently yields information about the evolutionary paths followed by the organisms. Here we report on tree reconstruction using a measure of the performance of the ribosome: antibiotic sensitivity of protein synthesis. A large database has been used where 33 ribosomal systems belonging to the three major cellular lineages were probed against 38 protein synthesis inhibitors. Different definitions of distance between pairs of organisms have been explored, and the classical algorithm of bootstrap evaluation has been adapted to quantify the reliability of the reconstructions obtained. Our analysis returns a consistent phylogeny, where archaea are systematically affiliated to eukarya, in agreement with recent reconstructions which used information-processing systems. The integration of the information derived from relevant functional markers into current phylogenetic reconstructions might facilitate achieving a consensus Tree of Life.  相似文献   

15.
The rapid increase in published genomic sequences for bacteria presents the first opportunity to reconstruct evolutionary events on the scale of entire genomes. However, extensive lateral gene transfer (LGT) may thwart this goal by preventing the establishment of organismal relationships based on individual gene phylogenies. The group for which cases of LGT are most frequently documented and for which the greatest density of complete genome sequences is available is the γ-Proteobacteria, an ecologically diverse and ancient group including free-living species as well as pathogens and intracellular symbionts of plants and animals. We propose an approach to multigene phylogeny using complete genomes and apply it to the case of the γ-Proteobacteria. We first applied stringent criteria to identify a set of likely gene orthologs and then tested the compatibilities of the resulting protein alignments with several phylogenetic hypotheses. Our results demonstrate phylogenetic concordance among virtually all (203 of 205) of the selected gene families, with each of the exceptions consistent with a single LGT event. The concatenated sequences of the concordant families yield a fully resolved phylogeny. This topology also received strong support in analyses aimed at excluding effects of heterogeneity in nucleotide base composition across lineages. Our analysis indicates that single-copy orthologous genes are resistant to horizontal transfer, even in ancient bacterial groups subject to high rates of LGT. This gene set can be identified and used to yield robust hypotheses for organismal phylogenies, thus establishing a foundation for reconstructing the evolutionary transitions, such as gene transfer, that underlie diversity in genome content and organization.  相似文献   

16.
17.
ABSTRACT. Horizontal gene transfer (HGT) and common descent interact in space and time. Because events of HGT co‐occur with phylogenetic evolution, it is difficult to depict evolutionary patterns graphically. Tree‐like representations of life's diversification are useful, but they ignore the significance of HGT in evolutionary history, particularly of unicellular organisms, ancestors of multicellular life. Here we integrate the reticulated‐tree model, ring of life, symbiogenesis whole‐organism model, and eliminative pattern pluralism to represent evolution. Using Entamoeba histolytica alcohol dehydrogenase 2 (EhADH2), a bifunctional enzyme in the glycolytic pathway of amoeba, we illustrate how EhADH2 could be the product of both horizontally acquired features from ancestral prokaryotes (i.e. aldehyde dehydrogenase [ALDH] and alcohol dehydrogenase [ADH]), and subsequent functional integration of these enzymes into EhADH2, which is now inherited by amoeba via common descent. Natural selection has driven the evolution of EhADH2 active sites, which require specific amino acids (cysteine 252 in the ALDH domain; histidine 754 in the ADH domain), iron‐ and NAD+ as cofactors, and the substrates acetyl‐CoA for ALDH and acetaldehyde for ADH. Alternative views invoking “common design” (i.e. the non‐naturalistic emergence of major taxa independent from ancestry) to explain the interaction between horizontal and vertical evolution are unfounded.  相似文献   

18.
Microbial eukaryotes may extinguish much of their nuclear phylogenetic history due to endosymbiotic/horizontal gene transfer (E/HGT). We studied E/HGT in 32,110 contigs of expressed sequence tags (ESTs) from the dinoflagellate Alexandrium tamarense (Dinophyceae) using a conservative phylogenomic approach. The vast majority of predicted proteins (86.4%) in this alga are novel or dinoflagellate‐specific. We searched for putative homologs of these predicted proteins against a taxonomically broadly sampled protein database that includes all currently available data from algae and protists, and reconstructed a phylogeny from each of the putative homologous protein sets. Of the 2,523 resulting phylogenies, 14%–17% are potentially impacted by E/HGT involving both prokaryote and eukaryote lineages, with 2%–4% showing clear evidence of reticulate evolution. The complex evolutionary histories of the remaining proteins, many of which may also have been affected by E/HGT, cannot be interpreted using our approach with currently available gene data. We present empirical evidence of reticulate genome evolution that combined with inadequate or highly complex phylogenetic signal in many proteins may impede genome‐wide approaches to infer the tree of microbial eukaryotes.  相似文献   

19.
Methods designed for inferring phylogenetic trees have been widely applied to reconstruct biogeographic history. Because traditional phylogenetic methods used in biogeographic reconstruction are based on trees rather than networks, they follow the strict assumption in which dispersal among geographical units have occurred on the basis of single dispersal routes across regions and are, therefore, incapable of modelling multiple alternative dispersal scenarios. The goal of this study is to describe a new method that allows for retracing species dispersal by means of directed phylogenetic networks obtained using a horizontal gene transfer (HGT) detection method as well as to draw parallels between the processes of HGT and biogeographic reconstruction. In our case study, we reconstructed the biogeographic history of the postglacial dispersal of freshwater fishes in the Ontario province of Canada. This case study demonstrated the utility and robustness of the new method, indicating that the most important events were south-to-north dispersal patterns, as one would expect, with secondary faunal interchange among regions. Finally, we showed how our method can be used to explore additional questions regarding the commonalities in dispersal history patterns and phylogenetic similarities among species.  相似文献   

20.
Ge F  Wang LS  Kim J 《PLoS biology》2005,3(10):e316
With the availability of increasing amounts of genomic sequences, it is becoming clear that genomes experience horizontal transfer and incorporation of genetic information. However, to what extent such horizontal gene transfer (HGT) affects the core genealogical history of organisms remains controversial. Based on initial analyses of complete genomic sequences, HGT has been suggested to be so widespread that it might be the “essence of phylogeny” and might leave the treelike form of genealogy in doubt. On the other hand, possible biased estimation of HGT extent and the findings of coherent phylogenetic patterns indicate that phylogeny of life is well represented by tree graphs. Here, we reexamine this question by assessing the extent of HGT among core orthologous genes using a novel statistical method based on statistical comparisons of tree topology. We apply the method to 40 microbial genomes in the Clusters of Orthologous Groups database over a curated set of 297 orthologous gene clusters, and we detect significant HGT events in 33 out of 297 clusters over a wide range of functional categories. Estimates of positions of HGT events suggest a low mean genome-specific rate of HGT (2.0%) among the orthologous genes, which is in general agreement with other quantitative of HGT. We propose that HGT events, even when relatively common, still leave the treelike history of phylogenies intact, much like cobwebs hanging from tree branches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号