首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Since April 2009, a serious pandemic infection has been rapidly spread across the world. These infections are caused due to the novel swine origin influenza A (H1N1) virus and hence these are commonly called as "Swine Flu". This new virus is the reassortment of avian, human and swine influenza viruses and thus it has a unique genome composition. There are 16 different types of hemagglutinin (HA) and 9 different types of neuraminidase (NA) that can be genetically and antigenetically differentiated. The first influenza A virus isolated from pigs was of the H1N1 subtype and these viruses have been reported to cause infection in pigs in many countries. The outbreak of this virus has been transmitted from pigs to humans. This new reassorted (exchange of genes) virus which is the cause of 2009 pandemic infections has the ability to spread from human to human. This spread of infection should be brought to an end. In this study, a phylogenetic analysis of the nucleotide sequences of the RNA segments of human H1N1 viruses was carried using MEGA version 4.0 to demonstrate the route map of infection to India. Phylogenetic analysis of the sequences from India, published in Influenza Virus Resource (a database that integrates information gathered from the Influenza Genome Sequencing Project of the National Institute of Allergy and Infectious diseases (NIAID) and the genbank of the (NCBI)) was retrieved and used for the analysis. The results showed that the various segments of the Indian isolates clustered well with the sequences from American, Asian and European countries and thus indicating the transmission of viruses from these places to India.  相似文献   

2.
In late April of 2009, a global outbreak of human influenza was reported. The causative agent is a highly unusual reassortant H1N1 influenza virus carrying genetic segments derived from swine, human and avian influenza viruses. In this study, we compared the HA, NA and other gene segments of a swine H3N2 influenza A virus, A/Swine/Guangdong/z5/2003, which was isolated from pigs in 2003 in Guangdong Province, China, to the predominant human and swine H3N2 viruses. We found that the similarity of gene segments of A/Swine/Guangdong/z5/2003 was closer to Moscow/99-like human H3N2 virus than Europe swine H3N2 viruses during 1999-2002. These results suggest that A/Swine/Guangdong/z5/2003 may be porcine in origin, possibly being driven by human immune pressure induced by either natural H3N2 virus infection or use of A/Moscow/10/99 (H3N2)-based human influenza vaccine. The results further confirm that swine may play a dual role as a “shelter” for hosting influenza virus from humans or birds and as a “mixing vessel” for generating reassortant influenza viruses, such as the one causing current influenza pandemic.  相似文献   

3.
从广东省疑似流感发病猪分离到1株H3N2亚型猪流感病毒(A/Swine/Guangdong/01/2005(H3N2)),对其各个基因进行克隆与测序,并与GenBank中收录的其它猪流感、禽流感和人流感的相关基因进行比较,结果表明,HA全基因与广东2003~2004年分离的H3N2猪流感毒株的核苷酸序列同源性在99%以上,与纽约90年代末分离的H3N2人流感毒株同源性在98.5%以上;NA基因与纽约1998~2000年分离的H3N2人流感毒株的核苷酸序列同源性在99%以上;NS基因、M基因的核苷酸序列与H1N1亚型猪流感毒株A/swine/HongKong/273/1994(H1N1)的核苷酸序列同源性较高,分别为97.9%、98.4%,与美洲A/swine/Iowa/17672/1988(H1N1)的核苷酸序列同源性分别为96.7%、97.1%;其他基因的核苷酸序列与H3N2人流感毒株具有很高的同源性。因此,推测其M和NS基因来源于H1N1亚型猪流感病毒,HA、NA及其他基因均来源于H3N2亚型人流感病毒。表明此H3N2亚型猪流感病毒为H3N2亚型人流感病毒和H1N1亚型猪流感病毒经基因重排而得到的重组病毒。  相似文献   

4.
A/H1N1流感—世界关注的焦点   总被引:1,自引:0,他引:1  
2009年4月,A/H1N1流感在墨西哥和美国暴发。随后,疫情迅速蔓延到美洲、欧洲、亚洲多个国家。A/H1N1流感病毒是一种以前在人或动物身上从未观测到的新病毒。遗传进化和抗原特性分析表明该病毒和猪流感病毒密切相关,与人类的季节性流感病毒有明显区别。但是流行病学信息表明A/H1N1流感病毒只攻击人类,并在人与人之间传播,尚未发现动物向人类传播的情况。本文从A/H1N1流感病毒的生物学特性、临床特征、公共卫生意义等方面全面阐述了A/H1N1流感的最新研究进展,为正确认识和科学防控A/H1N1流感提供参考。  相似文献   

5.
A recently emerged novel influenza A (H1N1) virus continues to spread globally. The pandemic caused by this new H1N1 swine influenza virus presents an opportunity to analyze the evolutionary significance of the origin of the new strain of swine flu. Our study clearly suggests that strong purifying selection is responsible for the evolution of the novel influenza A (H1N1) virus among human. We observed that the 2009 viral sequences are evolutionarily widely different from the past few years’ sequences. Rather, the 2009 sequences are evolutionarily more similar to the most ancient sequence reported in the NCBI Influenza Virus Resource Database collected in 1918. Analysis of evolutionary rates also supports the view that all the genes in the pandemic strain of 2009 except NA and M genes are derived from triple reassorted swine viruses. Our study demonstrates the importance of using complete-genome approach as more sequences will become available to investigate the evolutionary origin of the 1918 influenza A (H1N1) swine flu strain and the possibility of future reassortment events.  相似文献   

6.
On 15 April and 17 April 2009, novel swineorigin influenza A (H1N1) virus was identifi ed in specimens obtained from two epidemiologically unlinked patients in the United States. The ongoing outbreak of novel H1N1 2009 influenza (swine influenza) has caused more than 3,99,232 laboratory confi rmed cases of pandemic influenza H1N1 and over 4735 deaths globally. This novel 2009 influenza virus designated as H1N1 A/swine/California/04/2009 virus is not zoonotic swine flu and is transmitted from person to person and has higher transmissibility then that of seasonal influenza viruses. In India the novel H1N1 virus infection has been reported from all over the country. A total of 68,919 samples from clinically suspected persons have been tested for influenza A H1N1 across the country and 13,330 (18.9%) of them have been found positive with 427 deaths. At the All India Institute of Medical Sciences, New Delhi India, we tested 1096 clinical samples for the presence of novel H1N1 influenza virus and seasonal influenza viruses. Of these 1096 samples, 194 samples (17.7%) were positive for novel H1N1 influenza virus and 197 samples (18%) were positive for seasonal influenza viruses. During outbreaks of emerging infectious diseases accurate and rapid diagnosis is critical for minimizing further spread through timely implementation of appropriate vaccines and antiviral treatment. Since the symptoms of novel H1N1 influenza infection are not specifi c, laboratory confi rmation of suspected cases is of prime importance.  相似文献   

7.
Since its initial identification in Mexico and the United States, concerns have been raised that the novel H1N1 influenza virus might cause a pandemic of severity comparable to that of the 1918 pandemic. In late April 2009, viruses phylogenetically related to pandemic H1N1 influenza virus were isolated from an outbreak on a Canadian pig farm. This outbreak also had epidemiological links to a suspected human case. Experimental infections carried out in pigs using one of the swine isolates from this outbreak and the human isolate A/Mexico/InDRE4487/2009 showed differences in virus recovery from the lower respiratory tract. Virus was consistently isolated from the lungs of pigs infected with A/Mexico/InDRE4487/2009, while only one pig infected with A/swine/Alberta/OTH-33-8/2008 yielded live virus from the lung, despite comparable amounts of viral RNA and antigen in both groups of pigs. Clinical disease resembled other influenza virus infections in swine, albeit with somewhat prolonged virus antigen detection and delayed viral-RNA clearance from the lungs. There was also a noteworthy amount of genotypic variability among the viruses isolated from the pigs on the farm. This, along with the somewhat irregular pathobiological characteristics observed in experimentally infected animals, suggests that although the virus may be of swine origin, significant viral evolution may still be ongoing.The zoonotic potential of swine influenza viruses is well recognized (18), and pigs have been considered a leading candidate for the role of intermediate host in the generation of reassortant influenza A viruses with pandemic potential. This has been largely based on genomic analysis of influenza A viruses isolated from swine and the fact that α2,3-linked sialic acid (avian-like) and α2,6-linked sialic acid (human-like) receptors are both abundant in the swine respiratory tract (12). Despite this, there is no direct evidence that the reassortment of the 1957 and the 1968 human pandemic viruses occurred in pigs (28). Furthermore, it is very likely that the 1918 pandemic virus was introduced to pigs from humans (8, 31). The origins of influenza A viruses that have been isolated from pigs include those that are wholly human or avian, as well as reassortants containing swine, human, and avian genes (2, 20, 29). Although there have been several instances of swine-to-human transmission, for example, that of triple-reassortant swine influenza (H1) viruses (rH1N1), which appeared after 1998, they did not lead to establishment of sustained transmission in the human population (23).In the early spring of 2009, Mexico and the United States reported clusters of human pneumonia cases caused by a novel H1N1 influenza A virus. This virus subsequently spread across the globe at an unprecedented rate, prompting the WHO to declare a pandemic in June 2009. Phylogenetic analysis has inferred that the virus is likely a reassortant between a North American triple-reassortant swine H1N1 or H1N2 virus and a Eurasian lineage H1N1 swine influenza virus (7, 19). Bayesian molecular-clock analysis of each gene of this novel H1N1 virus (24) concluded that the mean evolutionary rate is typical of that of swine influenza viruses but that the duration of unsampled diversity for each gene segment had means that ranged from 9.24 to 17.15 years, suggesting that the proposed ancestors of this virus may have been circulating undetected for nearly a decade. Inadequate surveillance and characterization of influenza A viruses that circulate in swine have been blamed for this evolutionary gap.On 28 April 2009 the Canadian Food Inspection Agency (CFIA) became involved in a suspected outbreak of swine influenza on a pig farm in Leslieville, Alberta, Canada. The farm was a 220-sow farrow-to-finish operation consisting of approximately 2,200 animals that ranged from newborn piglets to market weight pigs. The animals were not vaccinated against swine influenza, and although there had been prior problems with porcine reproductive and respiratory syndrome virus and Mycoplasma hypopneumoniae, two etiologic agents of the swine respiratory disease complex, the herd had been stable with respect to respiratory disease. Beginning 20 April, approximately 25% of the pregrower and grower pigs in two of the barns exhibited respiratory problems with clinical signs that included an acute onset of coughing, lethargy, and loss of appetite. These clinical signs were preceded by the hiring of a carpenter on 14 April to work on the ventilation system in the same two barns. This individual had been ill for 2 days after his return from Mexico on 12 April (10). Given the evolving situation in Mexico and the United States, the CFIA and Alberta Agriculture and Rural Development decided to place the herd under quarantine and to carry out a full epidemiological and laboratory investigation.Here, we report on the characterization of the first pandemic H1N1 2009 viruses to be isolated from a naturally infected pig herd. Genetic sequence data from several viruses isolated from this outbreak have provided a glimpse into the mutation frequencies associated with replication of the virus in the swine host. Experimental infections of pigs comparing one of these swine isolates with the human isolate A/Mexico/InDRE4487/2009(H1N1) were also carried out and have provided insights into the pathobiological behavior of these viruses in pigs.  相似文献   

8.
The triple reassortant H2N3 virus isolated from diseased pigs in the United States in 2006 is pathogenic for certain mammals without prior adaptation and transmits among swine and ferrets. Adaptation, in the H2 hemagglutinin derived from an avian virus, includes the ability to bind to the mammalian receptor, a significant prerequisite for infection of mammals, in particular humans, which poses a big concern for public health. Here we investigated the pathogenic potential of swine H2N3 in Cynomolgus macaques, a surrogate model for human influenza infection. In contrast to human H2N2 virus, which served as a control and largely caused mild pneumonia similar to seasonal influenza A viruses, the swine H2N3 virus was more pathogenic causing severe pneumonia in nonhuman primates. Both viruses replicated in the entire respiratory tract, but only swine H2N3 could be isolated from lung tissue on day 6 post infection. All animals cleared the infection whereas swine H2N3 infected macaques still presented with pathologic changes indicative of chronic pneumonia at day 14 post infection. Swine H2N3 virus was also detected to significantly higher titers in nasal and oral swabs indicating the potential for animal-to-animal transmission. Plasma levels of IL-6, IL-8, MCP-1 and IFNγ were significantly increased in swine H2N3 compared to human H2N2 infected animals supporting the previously published notion of increased IL-6 levels being a potential marker for severe influenza infections. In conclusion, the swine H2N3 virus represents a threat to humans with the potential for causing a larger outbreak in a non-immune or partially immune population. Furthermore, surveillance efforts in farmed pig populations need to become an integral part of any epidemic and pandemic influenza preparedness.  相似文献   

9.
刘超  陈薇  李艳梅 《生命科学》2011,(10):1034-1039
2009年4月初,在墨西哥和美国出现一种新型甲型(H1N1)流感病毒。该病毒通过人-人传播迅速在全球范围蔓延。该病毒拥有来自人流感病毒、禽流感病毒和猪流感病毒的基因片段,其HA基因与引发1918年大流行的流感病毒株的HA基因同源性很高。该病毒倾向于感染儿童、青少年、孕妇,以及具有心肺疾病的人。据观察,它在人群中的传播能力高于季节性流感。部分感染患者具有在季节性流感中罕见的呕吐和腹泻症状。先前的流感病毒大流行和2009年爆发的甲型H1N1流感病毒大流行表明,由于流感病毒变异速度快、容易发生基因重排,新产生的变异毒株很可能造成新的大流行,威胁人类健康。由于禽流感病毒和人流感病毒都能感染猪,猪被认为是通过基因重排生成新的大流行病毒的"混合容器"。  相似文献   

10.
[目的]为了研究2006年从广西病猪肺组织中分离的H1N2亚型猪流感病毒(SIV)A/Swine/Guangxi/13/2006(H1N2)(Sw/Gx/13/06)的遗传学特性和8个基因的来源.[方法]运用RT PCR方法对其全基因进行了克隆并运用分子生物学软件对其基因序列进行了遗传进化分析.[结果]血凝素(HA)、核蛋白(NP)、基质蛋白(M)和非结构蛋白(NS)基因来源于猪古典H1N1亚型流感病毒;神经氨酸酶(NA)和聚合酶蛋白(PB1)基因来源于人的H3N2亚型流感病毒;聚合酶蛋白(PA)和聚合酶蛋白(PB2)基因来自于禽流感病毒.[结论]可见Sw/GX/13/06是一株"人-猪-禽"三源基因重排H1N2亚型SIV且与美国(1999-2001年)和韩国(2002年)分离到该型病毒的有明显的亲缘关系.据我们所知,这是中国首次报道含有禽流感病毒基因片段的重排H1N2 SIV,该病毒是否对养猪业和人类公共卫生健康具有潜在的威胁,有待于进一步研究.  相似文献   

11.
Ten influenza virus isolates were obtained from infected pigs from different places in Shandong province showing clinical symptoms from October 2002 to January 2003. All 10 isolates were identified in China's National Influenza Research Center as influenza A virus of H9N2 subtype. The complete genome of one isolate, designated A/Swine/Shandong/1/2003(H9N2), was sequenced and compared with sequences available in GenBank. The results of analyses indicated that the sequence of A/Swine/Shandong/1/2003(H9N2) was similar to those of several chicken influenza viruses and duck influenza viruses recently prevalent in South China. According to phylogenetic analysis of the complete gene sequences, A/Swine/Shandong/1/2003(H9N2) possibly originated from the reassortment of chicken influenza viruses and duck influenza viruses. It was found that the amino acid sequence at the HA cleavage site in Sw/SD/1/2003 is R-S-L-R-G, differing clearly from that of other H9N2 subtype isolates of swine influenza and avian influenza, which is R-S-S-R-G.  相似文献   

12.
Swine influenza virus isolates originating from outbreaks in Sweden from 1983, 2002 and 2009 were subjected to nucleotide sequencing and phylogenetic analysis. The aim of the studies was to obtain an overview on their potential relatedness as well as to provide data for broader scale studies on swine influenza epidemiology. Nonetheless, analyzing archive isolates is justified by the efforts directed to the comprehension of the appearance of pandemic H1N1 influenza virus. Interestingly, this study illustrates the evolution of swine influenza viruses in Europe, because the earliest isolate belonged to 'classical' swine H1N1, the subsequent ones to Eurasian 'avian-like' swine H1N1 and reassortant 'avian-like' swine H1N2 lineages, respectively. The latter two showed close genetic relatedness regarding their PB2, HA, NP, and NS genes, suggesting common ancestry. The study substantiates the importance of molecular surveillance for swine influenza viruses.  相似文献   

13.
Since the 2009 pandemic human H1N1 influenza A virus emerged in April 2009, novel reassortant strains have been identified throughout the world. This paper describes the detection and isolation of reassortant strains associated with human pandemic influenza H1N1 and swine influenza H1N2 (SIV) viruses in swine populations in South Korea. Two influenza H1N2 reassortants were detected, and subtyped by PCR. The strains were isolated using Madin- Darby canine kidney (MDCK) cells, and genetically characterized by phylogenetic analysis for genetic diversity. They consisted of human, avian, and swine virus genes that were originated from the 2009 pandemic H1N1 virus and a neuraminidase (NA) gene from H1N2 SIV previously isolated in North America. This identification of reassortment events in swine farms raises concern that reassortant strains may continuously circulate within swine populations, calling for the further study and surveillance of pandemic H1N1 among swine.  相似文献   

14.
对2009 年长沙麓山国际学校流感暴发疫情进行实验室诊断, 并探索新分离的A(H1N1)亚型流感病毒血凝素(HA)的基因特性。对流感暴发疫情的25 份鼻/咽拭子标本进行RT-PCR检测和流感病毒分离, 然后利用CEQ?8000 Genetic Analysis System对病毒分离株(A/Yuelu/314/2009)进行测序, 测序结果提交至GenBank(登录号: FJ912843)并用ClustalX和Mega4.1软件进行序列分析。结果显示, 分离出A(H1N1)亚型流感毒株18株, 检出21份A(H1N1)亚型流感病毒核酸阳性; A/Yuelu/314/2009(H1N1) HA基因序列与2008~2009 年疫苗株(A/Brisbane/59/2007)比较显示: 核苷酸和氨基酸同源性均为99%, 有6个位点的氨基酸发生了变异(V148A、S158N、G202A、I203D、A206T、W435R), 其中一个S158N氨基酸变异位于B抗原表位, HA基因序列上共有潜在糖基化位点9 个(27、28、40、71、151、176、303、497、536), 与A/Brisbane/59/2007相同且氨基酸序列保守。本实验诊断出此次流感暴发疫情的病原体为A(H1N1)型季节性流感病毒, 研究还发现A/Yuelu/314/2009(H1N1)长沙分离株与A/Brisbane/59/2007 疫苗株基因序列比较显示并未形成一个新的变种, 推测是由于分离株与疫苗株之间基因特性的改变和人群对A(H1N1)亚型流感病毒免疫力降低导致了此次长沙麓山国际学校A(H1N1)亚型流感的暴发。  相似文献   

15.
Pigs are proposed to be “mixing vessel” hosts that can produce genetically novel reassortant viruses with pandemic potential. The appearance of any novel influenza viruses among pigs should pose concerns for human health. Here, we report the complete genome sequence of a novel H4N1 influenza virus [A/Swine/HuBei/06/2009(H4N1)] isolated from a pig in Central China in 2009. The genomic sequence analysis indicates that this virus is a wholly avian-original influenza virus. Each gene may come from different avian influenza viruses outside mainland China, suggesting the role of migratory birds in the dispersal of influenza virus.  相似文献   

16.
Swine influenza viruses (SIV) naturally infect pigs and can be transmitted to humans. In the pig, genetic reassortment to create novel influenza subtypes by mixing avian, human, and swine influenza viruses is possible. An SIV vaccine inducing cross-protective immunity between different subtypes and strains circulating in pigs is highly desirable. Previously, we have shown that an H3N2 SIV (A/swine/Texas/4199-2/98 [TX98]) containing a deleted NS1 gene expressing a truncated NS1 protein of 126 amino acids, NS1black triangle126, was attenuated in swine. In this study, 4-week-old pigs were vaccinated with the TX98 NS1black triangle126 modified live virus (MLV). Ten days after boosting, pigs were challenged with wild-type homologous H3N2 or heterosubtypic H1N1 SIV and sacrificed 5 days later. The MLV was highly attenuated and completely protected against challenge with the homologous virus. Vaccinated pigs challenged with the heterosubtypic H1N1 virus demonstrated macroscopic lung lesions similar to those of the unvaccinated H1N1 control pigs. Remarkably, vaccinated pigs challenged with the H1N1 SIV had significantly lower microscopic lung lesions and less virus shedding from the respiratory tract than did unvaccinated, H1N1-challenged pigs. All vaccinated pigs developed significant levels of hemagglutination inhibition and enzyme-linked immunosorbent assay titers in serum and mucosal immunoglobulin A antibodies against H3N2 SIV antigens. Vaccinated pigs were seronegative for NS1, indicating the potential use of the TX98 NS1black triangle126 MLV as a vaccine to differentiate infected from vaccinated animals.  相似文献   

17.
The 2009 H1N1 pandemic has slowed down its spread after initial speed of transmission. The conventional swine influenza H1N1 virus (SIV) in pig populations worldwide needs to be differentiated from pandemic H1N1 influenza virus, however it is also essential to know about the exact role of pigs in the spread and mutations taking place in pig-to-pig transmission. The present paper reviews epidemiological features of classical SIV and its differentiation with pandemic influenza.  相似文献   

18.

Background

Swine influenza is an infectious acute respiratory disease of pigs caused by influenza A virus. We investigated the time of entry of swine influenza into the Finnish pig population. We also describe the molecular detection of two types of influenza A (H1N1) viruses in porcine samples submitted in 2009 and 2010.This retrospective study was based on three categories of samples: blood samples collected for disease monitoring from pigs at major slaughterhouses from 2007 to 2009; blood samples from pigs in farms with a special health status taken in 2008 and 2009; and diagnostic blood samples from pigs in farms with clinical signs of respiratory disease in 2008 and 2009.The blood samples were tested for influenza A antibodies with an antibody ELISA. Positive samples were further analyzed for H1N1, H3N2, and H1N2 antibodies with a hemagglutination inhibition test.Diagnostic samples for virus detection were subjected to influenza A M-gene-specific real-time RT-PCR and to pandemic influenza A H1N1-specific real-time RT-PCR. Positive samples were further analyzed with RT-PCRs designed for this purpose, and the PCR products were sequenced and sequences analyzed phylogenetically.

Results

In the blood samples from pigs in special health class farms producing replacement animals and in diagnostic blood samples, the first serologically positive samples originated from the period July–August 2008. In samples collected for disease monitoring, < 0.1%, 0% and 16% were positive for antibodies against influenza A H1N1 in the HI test in 2007, 2008, and 2009, respectively.Swine influenza A virus of avian-like H1N1 was first detected in diagnostic samples in February 2009. In 2009 and 2010, the avian-like H1N1 virus was detected on 12 and two farms, respectively. The pandemic H1N1 virus (A(H1N1)pdm09) was detected on one pig farm in 2009 and on two farms in 2010.

Conclusions

Based on our study, swine influenza of avian-like H1N1 virus was introduced into the Finnish pig population in 2008 and A(H1N1)pdm09 virus in 2009. The source of avian-like H1N1 infection could not be determined. Cases of pandemic H1N1 in pigs coincided with the period when the A(H1N1)pdm09 virus was spread in humans in Finland.
  相似文献   

19.
The HA protein is responsible for influenza virus attachment and the subsequent fusion of viral and cellular membranes. Antigenic drift is driven by an accumulation of point mutations in the HA. And, the receptor-binding specificity of HA is responsible for the host range restriction of the virus. In April 2009, large outbreaks of novel H1N1 influenza in human population were reported from North America. The pandemic H1N1 virus originated from swine influenza virus. Evolutionary process of the pandemic virus after its introduction to human population remains to be clarified. We conducted phylogenetic analyses constructing a phylogenetic tree for and calculating site-by-site selective pressures in the HA gene. Phylogenetic tree showed that pandemic viruses were not clustered clearly by their geographical location or isolation time in the phylogenetic tree. The virus has been circulating the globe extensively with multiple introductions into most geographical areas. We found 3 sites positively selected in the HA gene for pandemic H1N1 virus. Among them, position 206 is located in an antigenic site. We did not find significant negative selection on any of the receptor binding sites. The virus has been evolving under unique selective pressure.  相似文献   

20.
Zhao X  Sun Y  Pu J  Fan L  Shi W  Hu Y  Yang J  Xu Q  Wang J  Hou D  Ma G  Liu J 《PloS one》2011,6(7):e22091
Pandemic H1N1/2009 influenza virus, derived from a reassortment of avian, human, and swine influenza viruses, possesses a unique gene segment combination that had not been detected previously in animal and human populations. Whether such a gene combination could result in the pathogenicity and transmission as H1N1/2009 virus remains unclear. In the present study, we used reverse genetics to construct a reassortant virus (rH1N1) with the same gene combination as H1N1/2009 virus (NA and M genes from a Eurasian avian-like H1N1 swine virus and another six genes from a North American triple-reassortant H1N2 swine virus). Characterization of rH1N1 in mice showed that this virus had higher replicability and pathogenicity than those of the seasonal human H1N1 and Eurasian avian-like swine H1N1 viruses, but was similar to the H1N1/2009 and triple-reassortant H1N2 viruses. Experiments performed on guinea pigs showed that rH1N1 was not transmissible, whereas pandemic H1N1/2009 displayed efficient transmissibility. To further determine which gene segment played a key role in transmissibility, we constructed a series of reassortants derived from rH1N1 and H1N1/2009 viruses. Direct contact transmission studies demonstrated that the HA and NS genes contributed to the transmission of H1N1/2009 virus. Second, the HA gene of H1N1/2009 virus, when combined with the H1N1/2009 NA gene, conferred efficient contact transmission among guinea pigs. The present results reveal that not only gene segment reassortment but also amino acid mutation were needed for the generation of the pandemic influenza virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号