首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Despite long-standing interest in character displacement, little is known of its underlying proximate causes. Here, we explore the role of maternal effects in character displacement. We specifically investigated whether differences in maternal body condition mediate divergence in the expression of resource-use traits between populations of spadefoot toads ( Spea multiplicata ) that occur in sympatry with a heterospecific competitor and those that occur in allopatry. In sympatry, S. multiplicata is forced by its competitor onto a less profitable resource. As a result, sympatric females mature in poorer condition and invest less into offspring. Consequently, their offspring produce a resource-use phenotype that minimizes competition with the other species and that also differs from the phenotype produced in allopatry. These differences in trait expression between allopatry and sympatry disappear once mothers are equilibrated in body condition in the laboratory. Thus, a condition-dependent maternal effect mediates population divergence and character displacement. Such effects potentially buffer populations from extinction (via competitive exclusion) while genetic changes accumulate, which produce divergent traits in the absence of the maternal effect. Maternal effects may therefore often be important in determining the initial direction and rate of evolution during the early stages of character displacement.  相似文献   

2.
Character displacement – trait evolution stemming from selection to lessen resource competition or reproductive interactions between species – has long been regarded as important in finalizing speciation. By contrast, its role in initiating speciation has received less attention. Yet because selection for character displacement should act only where species co‐occur, individuals in sympatry will experience a different pattern of selection than conspecifics in allopatry. Such divergent selection might favour reduced gene flow between conspecific populations that have undergone character displacement and those that have not, thereby potentially triggering speciation. Here, we explore these ideas empirically by focusing on spadefoot toads, Spea multiplicata, which have undergone character displacement, and for which character displacement appears to cause post‐mating isolation between populations that are in sympatry with a heterospecific and those that are in allopatry. Using mitochondrial sequence data and nuclear microsatellite genotypes, we specifically asked whether gene flow is reduced between populations in different selective environments relative to that between populations in the same selective environment. We found a slight, but statistically significant, reduction in gene flow between selective environments, suggesting that reproductive isolation, and potentially ecological speciation, might indeed evolve as an indirect consequence of character displacement. Generally, character displacement may play a largely underappreciated role in instigating speciation.  相似文献   

3.
Although sympatric character divergence between closely related species has been described in a wide variety of taxa, the evolutionary processes responsible for generating these patterns are difficult to identify. One hypothesis that can explain sympatric differences is ecological character displacement: the sympatric origin of morphologically divergent phenotypes in response to selection caused by interspecific competition. Alternatively, populations may adapt to different conditions in allopatry, with sympatric distributions evolving through selective colonization and proliferation of ecologically compatible phenotypes. In this study, I characterize geographic variation within two sibling species of rocky-shore gastropods that have partially overlapping distributions in central California. In sympatry, both Nucella emarginata and N. ostrina show significant differences in shell shape and shell ornamentation that together suggest that where the two species co-exist, divergent phenotypes arose as an evolutionary consequence of competition. To examine the evolutionary origins of divergent characters in sympatry, I used a comparative method based on spatial autocorrelation to remove the portion of the phenotypic variance among populations that is explained by genetic distance (using mitochondrial DNA sequences and allozyme frequency data). Because the remaining portion of the phenotypic variance represents the independent divergence of individual populations, a significant sympatric difference in the corrected dataset provides evidence of true character displacement: significant sympatric character evolution that is independent of population history. After removal of genetic distance effects in Nucella, shell shape differences remain statistically significant in N. emarginata, providing evidence of significant sympatric character divergence. However, for external shell ornamentation in both species and shell shape in N. ostrina, the significance of sympatric differences is lost in the corrected dataset, indicating that colonization events and gene flow have played important roles in the evolutionary history of character divergence in sympatry. Although the absence of a widely dispersing planktonic larva in the life cycle of Nucella will promote local adaptation, the results here indicate that once advantageous traits arise, demographic processes, such as recurrent gene flow between established populations and extinction and recolonization, are important factors contributing to the geographic pattern of sympatric character divergence.  相似文献   

4.
Interspecific competition can occur when species are unable to distinguish between conspecific and heterospecific mates or competitors when they occur in sympatry. Selection in response to interspecific competition can lead to shifts in signalling traits—a process called agonistic character displacement. In two fan-throated lizard species—Sitana laticeps and Sarada darwini—females are morphologically indistinguishable and male agonistic signalling behaviour is similar. Consequently, in areas where these species overlap, males engage in interspecific aggressive interactions. To test whether interspecific male aggression between Si. laticeps and Sa. darwini results in agonistic character displacement, we quantified species recognition and signalling behaviour using staged encounter assays with both conspecifics and heterospecifics across sympatric and allopatric populations of both species. We found an asymmetric pattern, wherein males of Si. laticeps but not Sa. darwini showed differences in competitor recognition and agonistic signalling traits (morphology and behaviour) in sympatry compared with allopatry. This asymmetric shift in traits is probably due to differences in competitive abilities between species and can minimize competitive interactions in zones of sympatry. Overall, our results support agonistic character displacement, and highlight the role of asymmetric interspecific competition in driving shifts in social signals.  相似文献   

5.
Abstract Character displacement has long been considered a major cause of adaptive diversification. When species compete for resources or mates, character displacement minimizes competition by promoting divergence in phenotypes associated with resource use (ecological character displacement) or mate attraction (reproductive character displacement). In this study, we investigated whether character displacement can also have pleiotropic effects that lead to fitness trade-offs between the benefits of avoiding competition and costs accrued in other fitness components. We show that both reproductive and ecological character displacement have caused spadefoot toads to evolve smaller body size in the presence of a heterospecific competitor. Although this shift in size likely arose as a by-product of character displacement acting to promote divergence between species in mating behavior and larval development, it concomitantly reduces offspring survival, female fecundity, and sexual selection on males. Thus, character displacement may represent the "best of a bad situation" in that it lessens competition, but at a cost. Individuals in sympatry with the displaced phenotype will have higher fitness than those without the displaced trait because they experience reduced competition, but they may have reduced fitness relative to individuals in allopatry. Such a fitness trade-off can limit the conditions under which character displacement evolves and may even increase the risk of "Darwinian extinction" in sympatric populations. Consequently, character displacement may not always promote diversification in the manner that is often expected.  相似文献   

6.
Ecological character displacement takes place when two closely related species co-occur in only part of their geographical range, and selection to minimize competition between them promotes divergence in resource-use traits in sympatry but not in allopatry. Because populations sympatric with the heterospecific competitor will experience a different competitive environment than conspecific populations in allopatry, conspecific populations from these two competitive environments will also diverge in resource traits as an indirect consequence of interspecific ecological character displacement. Ultimately, ecologically dependent postmating isolation may arise between conspecific populations from these divergent competitive environments if offspring produced by matings between them are competitively inferior in either type of competitive environment. Yet, there are no direct tests of character displacement's role in initiating such postmating isolation. Here, we present a test by comparing the phenotypes and performances of spadefoot toad tadpoles produced from between-competitive-environment (BCE) matings versus those produced from within-competitive-environment (WCE) matings. When raised with naturally occurring competitors, BCE offspring grew significantly less and were significantly smaller than WCE offspring. BCE offspring generally performed worse even when raised alone, suggesting that they may have harbored intrinsic genetic incompatibilities. Moreover, the difference in growth and body size of BCE versus WCE offspring was significantly greater when each was raised with competitors than when each was raised alone, suggesting that BCE tadpoles were competitively inferior to WCE tadpoles. Presumably, this enhanced difference arose because BCE tadpoles produced an intermediate resource-use phenotype that is less well adapted to either competitive environment. Because larval size is under strong, positive, directional selection, reduced growth and size of BCE offspring may diminish gene flow between populations in divergent competitive environments, thereby generating postmating isolation. Thus, postmating isolation between conspecific populations, and possibly even speciation, may arise as a by-product of interactions between species.  相似文献   

7.
Closely related species may evolve to coexist stably in sympatry through niche differentiation driven by in situ competition, a process termed character displacement. Alternatively, past evolution in allopatry may have already sufficiently reduced niche overlap to permit establishment in sympatry, a process called ecological sorting. The relative importance of each process to niche differentiation is contentious even though they are not mutually exclusive and are both mediated via multivariate trait evolution. We explore how competition has impacted niche differentiation in two monkeyflowers, Mimulus alsinoides and M. guttatus, which often co‐occur. Through field observations, common gardens, and competition experiments, we demonstrate that M. alsinoides is restricted to marginal habitats in sympatry and that the impacts of character displacement on niche differentiation are complex. Competition with M. guttatus alters selection gradients and has favored taller M. alsinoides with earlier seasonal flowering at low elevation and floral shape divergence at high elevation. However, no trait exhibits the pattern typically associated with character displacement, higher divergence between species in sympatry than allopatry. Thus, although character displacement was unlikely the process driving initial divergence along niche axes necessary for coexistence, we conclude that competition in sympatry has likely driven trait evolution along additional niche axes.  相似文献   

8.
Character displacement - the divergence of traits between species in response to competition for resources or mates - has long been viewed as a major cause of adaptive diversification and species coexistence. Yet, we lack answers to basic questions concerning the causes and consequences of character displacement, not the least of which is why some species are more prone than others to undergo character displacement. Here, we address these questions by describing how character displacement can proceed through two nonexclusive routes that differ in the source of phenotypic variation, and, hence, in the ease with which character displacement may unfold. During in situ evolution of novel phenotypes, new traits that are divergent from a heterospecific competitor are generated and spread in sympatry. During sorting of pre-existing variation, such traits are initially favoured in allopatry before the two species encounter one another. Later, when they come into contact, character displacement transpires when these pre-existing divergent phenotypes increase in frequency in sympatry relative to allopatry. Because such sorting of pre-existing variation should unfold relatively rapidly, we suggest that species that express resource or mating polymorphism prior to interactions with heterospecifics may be more prone to undergo character displacement. We discuss the key differences between these two routes, review possible examples of each, and describe how the distinction between them provides unique insights into the evolutionary consequences of species interactions, the origins of diversity, and the factors that govern species coexistence.  相似文献   

9.
Detailed studies of reproductive isolation and how it varies among populations can provide valuable insight into the mechanisms of speciation. Here we investigate how the strength of premating isolation varies between sympatric and allopatric populations of threespine sticklebacks to test a prediction of the hypothesis of reinforcement: that interspecific mate discrimination should be stronger in sympatry than in allopatry. In conducting such tests, it is important to control for ecological character displacement between sympatric species because ecological character divergence may strengthen prezygotic isolation as a by-product. We control for ecological character displacement by comparing mate preferences of females from a sympatric population (benthics) with mate preferences of females from two allopatric populations that most closely resemble the sympatric benthic females in ecology and morphology. No-choice mating trials indicate that sympatric benthic females mate less readily with heterospecific (limnetic) than conspecific (benthic) males, whereas two different populations of allopatric females resembling benthics show no such discrimination. These differences demonstrate reproductive character displacement of benthic female mate choice. Previous studies have established that hybridization between sympatric species occurred in the past in the wild and that hybrid offspring have lower fitness than either parental species, thus providing conditions under which natural selection would favor individuals that do not hybridize. Results are therefore consistent with the hypothesis that female mate preferences have evolved as a response to reduced hybrid fitness (reinforcement), although direct effects of sympatry or a biased extinction process could also produce the pattern. Males of the other sympatric species (limnetics) showed a preference for smaller females, in contrast to the inferred ancestral preference for larger females, suggesting reproductive character displacement of limnetic male mate preferences as well.  相似文献   

10.
When interactions with heterospecifics prevent females from identifying conspecific mates, natural selection can promote the evolution of mating behaviours that minimize such interactions. Consequently, mating behaviours may diverge among conspecific populations in sympatry and in allopatry with heterospecifics. This divergence in conspecific mating behaviours-reproductive character displacement-can initiate speciation if mating behaviours become so divergent as to generate reproductive isolation between sympatric and allopatric conspecifics. We tested these ideas by using artificial neural networks to simulate the evolution of conspecific mate recognition in populations sympatric and allopatric with different heterospecifics. We found that advertisement calls diverged among the different conspecific populations. Consequently, networks strongly preferred calls from their own population to those from foreign conspecific populations. Thus, reproductive character displacement may promote reproductive isolation and, ultimately, speciation among conspecific populations.  相似文献   

11.
Character displacement, in which coevolution of similar species alters their phenotypes, can be difficult to identify on the basis of observational data alone. In two-species systems, the most commonly identified (i.e., classic) resulting pattern is greater phenotypic difference between species in sympatry than allopatry. We show that restricting studies to this pattern may exclude many instances of character displacement, particularly in the presence of spatial environmental gradients. We present four spatial models of character displacement in quantitative traits affecting competition and hybridization between the species. Our models highlight the connections between range limits and character displacement in continuous space. We conclude that the classic pattern is less likely to occur for a trait affecting resource acquisition than for a trait affecting mate choice. We also show that interspecific hybridization (when hybrids are inviable), even in very small amounts, has marked effects on the shape and stability of borders between species and the nature of character displacement. A survey of the empirical literature shows that character displacement studies often lack analysis of spatial phenotype and abundance data. We recommend more careful spatial sampling in character displacement studies, and we illustrate how comparison of clines in mean phenotype in sympatry and allopatry can be used to suggest the action of character displacement.  相似文献   

12.
Reproductive character displacement--the evolution of traits that minimize reproductive interactions between species--can promote striking divergence in male signals or female mate preferences between populations that do and do not occur with heterospecifics. However, reproductive character displacement can affect other aspects of mating behaviour. Indeed, avoidance of heterospecific interactions might contribute to spatial (or temporal) aggregation of conspecifics. We examined this possibility in two species of hybridizing spadefoot toad (genus Spea). We found that in Spea bombifrons sympatric males were more likely than allopatric males to associate with calling males. Moreover, contrary to allopatric males, sympatric S. bombifrons males preferentially associated with conspecific male calls. By contrast, Spea multiplicata showed no differences between sympatry and allopatry in likelihood to associate with calling males. Further, sympatric and allopatric males did not differ in preference for conspecifics. However, allopatric S. multiplicata were more variable than sympatric males in their responses. Thus, in S. multiplicata, character displacement may have refined pre-existing aggregation behaviour. Our results suggest that heterospecific interactions can foster aggregative behaviour that might ultimately contribute to clustering of conspecifics. Such clustering can generate spatial or temporal segregation of reproductive activities among species and ultimately promote reproductive isolation.  相似文献   

13.
The roles of ecological speciation and reinforcement in the formation of contemporary diversity remain contentious. In the present study, we contrast phenotypic and molecular divergence within morphologically diverged bimodal sympatric and allopatric pairs of rainbow smelt, Osmerus mordax. We hypothesize that, in sympatry, evidence of selection associated with resource partitioning will be visible through strong divergence, reinforcement, and greater character displacement. Parallel morphological divergence was observed between the two trophic forms (macrophagous and microphagous), with several examples of greater trait divergence in sympatry than allopatry. Mitochondrial DNA sequence analysis indicated no association between historical clades and morphology; however, Bayesian clustering using microsatellites supported the isolation of these morphs under both allopatry and sympatry. Estimates of genetic isolation were one order of magnitude lower than measures of morphological divergence, consistent with a hypothesis of strong contemporary selection. Using experimental crosses, we obtained similar rates of fertilization success among the allopatric hybrid and pure crosses; whereas, in the sympatric hybrid crosses, fertilization rates dropped by 30–50%, suggesting a clear role for reinforcement through prezygotic incompatibilities. The present study supports the hypothesis that processes of post‐glacial radiation and diversification differ between sympatry and allopatry, and indicates a role for reinforcement and ecological processes in recent sympatric diversification. © 2010 The Linnean Society of London, Biological Journal of the Linnean Society, 2010, 101 , 583–594.  相似文献   

14.
Ecological character displacement is considered crucial in promoting diversification, yet relatively little is known of its underlying mechanisms. We examined whether evolutionary shifts in gene expression plasticity (‘genetic accommodation’) mediate character displacement in spadefoot toads. Where Spea bombifrons and S. multiplicata occur separately in allopatry (the ancestral condition), each produces alternative, diet‐induced, larval ecomorphs: omnivores, which eat detritus, and carnivores, which specialize on shrimp. By contrast, where these two species occur together in sympatry (the derived condition), selection to minimize competition for detritus has caused S. bombifrons to become nearly fixed for producing only carnivores, suggesting that character displacement might have arisen through an extreme form of genetic accommodation (‘genetic assimilation’) in which plasticity is lost. Here, we asked whether we could infer a signature of this process in regulatory changes of specific genes. In particular, we investigated whether genes that are normally expressed more highly in one morph (‘biased’ genes) have evolved reduced plasticity in expression levels among S. bombifrons from sympatry compared to S. bombifrons from allopatry. We reared individuals from sympatry vs. allopatry on detritus or shrimp and measured the reaction norms of nine biased genes. Although different genes displayed different patterns of gene regulatory evolution, the combined gene expression profiles revealed that sympatric individuals had indeed lost the diet‐induced gene expression plasticity present in allopatric individuals. Our data therefore provide one of the few examples from natural populations in which genetic accommodation/assimilation can be traced to regulatory changes of specific genes. Such genetic accommodation might mediate character displacement in many systems.  相似文献   

15.
Ecological character displacement (ECD) provides opportunities to test how resource competition generates diversifying selection that results in adaptive divergence. We quantify an association between phenotypic and ecological divergence between two similar small fishes, brook (Culaea inconstans) and ninespine (Pungitius pungitius) sticklebacks, in replicate northern Ontario lakes, Canada. The two species partition resources and habitat, where they coexist, and brooks that coexist with ninespines are more benthically specialized in body form and diet than brooks from local allopatric populations. Here we test various explanations for this pattern. Chance is unlikely to have been the primary cause because divergence is replicated in three separate populations. Preliminary comparisons indicate that resource availability and a variety of abiotic ecological conditions are generally similar between sympatric and allopatric sites, and so do not readily account for the divergence. Biased colonization or extinction is less likely to account for the divergence because character values in sympatry tend to exceed those in allopatry, as expected if they have repeatedly evolved under diversifying selection. Recent studies have also demonstrated that these two species compete, and that competitive effects are more severe for allopatric compared to sympatric brook forms, as predicted if divergence reflects the ghost of competition past. Ongoing studies indicate heritable variation in this system. Our results suggest that even small amounts of character shifts can influence competition and hence relative fitness, further implicating a role for ECD in the evolution of biodiversity.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

16.
Selection on Arctic charr generated by competition from brown trout   总被引:4,自引:0,他引:4  
We experimentally explored population‐ and individual‐level effects on Arctic charr (Salvelinus alpinus) resulting from resource competition with its common European competitor, the brown trout (Salmo trutta). At the population level, we compared performance of the two species in their natural sympatric state with that of Arctic charr in allopatry. At the individual level, we established selection gradients for morphological traits of Arctic charr in allopatric and in sympatric conditions. We found evidence for interspecific competition likely by interference at the population level when comparing differences in average performance between treatments. The growth and feeding rates did not differ significantly between allopatric and sympatric Arctic charr despite lower charr densities (substitutive design) in sympatric enclosures indicating that inter‐ and intraspecific competition are of similar strength. The two species showed distinct niche segregation in sympatry, and brown trout grew faster than Arctic charr. Arctic charr did not expand their niche in allopatry, indicating that the two species compete to a limited degree for the same resources and that interference may suppress the growth of charr in sympatric enclosures. At the individual level, however, we found directional selection in sympatric enclosures against individual Arctic charr with large head and long fins and against individuals feeding on zoobenthos rather than zooplankton indicating competition for common resources (possibly exploitative) between trout and these charr individuals. In allopatric enclosures these relations were not significant. Diets were correlated to the morphology supporting selection against the benthic‐feeding type, i.e. individuals with morphology and feeding behaviour most similar to their competitor, the benthic feeding brown trout. Thus, this study lends support to the hypothesis that Arctic charr have evolved in competition with brown trout, and through ecological character displacement adapted to their present niche.  相似文献   

17.
Interspecific competition for shared resources should select for evolutionary divergence in resource use between competing species, termed character displacement. Many purported examples of character displacement exist, but few completely rule out alternative explanations. We reared genetically diverse populations of two species of bean beetles, Callosobruchus maculatus and Callosobruchus chinensis, in allopatry and sympatry on a mixture of adzuki beans and lentils, and assayed oviposition preference and other phenotypic traits after four, eight, and twelve generations of (co)evolution. C. maculatus specializes on adzuki beans; the generalist C. chinensis uses both beans. C. chinensis growing in allopatry emerged equally from both bean species. In sympatry, the two species competing strongly and coexisted via strong realized resource partitioning, with C. chinensis emerging almost exclusively from lentils and C. maculatus emerging almost exclusively from adzuki beans. However, oviposition preferences, larval survival traits, and larval development rates in both beetle species did not vary consistently between allopatric versus sympatric treatments. Rather, traits evolved in treatment‐independent fashion, with several traits exhibiting reversals in their evolutionary trajectories. For example, C. chinensis initially evolved a slower egg‐to‐adult development rate on adzuki beans in both allopatry and sympatry, then subsequently evolved back toward the faster ancestral development rate. Lack of character displacement is consistent with a previous similar experiment in bean beetles and may reflect lack of evolutionary trade‐offs in resource use. However, evolutionary reversals were unexpected and remain unexplained. Together with other empirical and theoretical work, our results illustrate the stringency of the conditions for character displacement.  相似文献   

18.
Divergence of male sexual signals and female preferences for those signals often maintains reproductive boundaries between closely related, co‐occurring species. However, contrasting sources of selection, such as interspecific competition, can lead to weak divergence or even convergence of sexual signals in sympatry. When signals converge, assortative mating can be maintained if the mating preferences of females diverge in sympatry (reproductive character displacement; RCD), but there are few explicit examples. Pied flycatchers (Ficedula hypoleuca) are sympatric with collared flycatchers (F. albicollis) on the Baltic island of Öland, where males from both species compete over nestboxes, their songs converge, and the two species occasionally hybridize. We compare song discrimination of male and female pied flycatchers on Öland and in an allopatric population on the Swedish mainland. Using field choice trials, we show that male pied flycatchers respond similarly to the songs of both species in sympatry and allopatry, while female pied flycatchers express stronger discrimination against heterospecific songs in sympatry than in allopatry. These results are consistent with RCD of song discrimination of female pied flycatchers where they co‐occur with collared flycatchers, which should maintain species assortative mating despite convergence of male sexual signals.  相似文献   

19.
Character displacement is a process by which interactions between two species that exhibit similar traits, results in geographical patterns of trait divergence in one or both species. These traits evolve to reduce costs of interspecific interactions in sympatry and thus differ from their condition in allopatry. In male damselflies Calopteryx splendens, large wing spots are sexually selected. However, in sympatric populations with Calopteryx virgo, wing spot size decreases as C. virgo abundance increases. The stability of this pattern is unclear, because previous studies have focused on sympatric populations with potentially fluctuating relative abundances. We studied the wing spot sizes of C. splendens in both sympatric and allopatric populations. Our data show that male C. splendens’ wing spots are larger in allopatry than in sympatry with C. virgo. We suggest that both interspecific aggression and avoidance of interspecific reproductive interactions may result in this pattern, although their relative importance remains unclear.  相似文献   

20.

Background and Aims

Reproductive character displacement (RCD) is often an important signature of reinforcement when partially cross-compatible taxa meet in secondary sympatry. In this study, floral evolution is examined during the Holocene range expansion of Clarkia xantiana subsp. parviflora from eastern Pleistocene refugia to a western zone of sympatry with its sister taxon, subsp. xantiana. Floral divergence between the two taxa is greater in sympatry than allopatry. The goal was to test an alternative hypothesis to reinforcement – that floral divergence of sympatric genotypes is simply a by-product of adaptation to pollination environments that differ between the allopatric and sympatric portions of the subspecies'' range.

Methods

Floral trait data from two common garden studies were used to examine floral divergence between sympatric and allopatric regions and among phylogeographically defined lineages. In natural populations of C. x. parviflora, the magnitude of pollen limitation and reproductive assurance were quantified across its west-to-east range. Potted sympatric and allopatric genotypes were also reciprocally translocated between geographical regions to distinguish between the effects of floral phenotype versus contrasting pollinator environments on reproductive ecology.

Key Results

Sympatric populations are considerably smaller flowered with reduced herkogamy. Pollen limitation and the reproductive assurance value of selfing are greater in sympatric than in allopatric populations. Most significantly, reciprocal translocation experiments showed these differences in reproductive ecology cannot be attributed to contrasting pollinator environments between the sympatric and allopatric regions, but instead reflect the effects of flower size on pollinator attraction.

Conclusions

Floral evolution occurred during the westward range expansion of parviflora, particularly in the zone of sympatry with xantiana. No evidence was found that strongly reduced flower size in sympatric parviflora (and RCD between parviflora and xantiana) is due to adaptation to limited pollinator availability. Rather, floral divergence appears to have been driven by other factors, such as interactions with congenerics in secondary sympatry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号