首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Bacterial volatiles induce systemic resistance in Arabidopsis   总被引:16,自引:0,他引:16       下载免费PDF全文
Plant growth-promoting rhizobacteria, in association with plant roots, can trigger induced systemic resistance (ISR). Considering that low-molecular weight volatile hormone analogues such as methyl jasmonate and methyl salicylate can trigger defense responses in plants, we examined whether volatile organic compounds (VOCs) associated with rhizobacteria can initiate ISR. In Arabidopsis seedlings exposed to bacterial volatile blends from Bacillus subtilis GB03 and Bacillus amyloliquefaciens IN937a, disease severity by the bacterial pathogen Erwinia carotovora subsp. carotovora was significantly reduced compared with seedlings not exposed to bacterial volatiles before pathogen inoculation. Exposure to VOCs from rhizobacteria for as little as 4 d was sufficient to activate ISR in Arabidopsis seedlings. Chemical analysis of the bacterial volatile emissions revealed the release of a series of low-molecular weight hydrocarbons including the growth promoting VOC (2R,3R)-(-)-butanediol. Exogenous application of racemic mixture of (RR) and (SS) isomers of 2,3-butanediol was found to trigger ISR and transgenic lines of B. subtilis that emitted reduced levels of 2,3-butanediol and acetoin conferred reduced Arabidopsis protection to pathogen infection compared with seedlings exposed to VOCs from wild-type bacterial lines. Using transgenic and mutant lines of Arabidopsis, we provide evidence that the signaling pathway activated by volatiles from GB03 is dependent on ethylene, albeit independent of the salicylic acid or jasmonic acid signaling pathways. This study provides new insight into the role of bacteria VOCs as initiators of defense responses in plants.  相似文献   

3.
Farag MA  Ryu CM  Sumner LW  Paré PW 《Phytochemistry》2006,67(20):2262-2268
Chemical and plant growth studies of Bacilli strains GB03 and IN937a revealed that the volatile components 2,3-butanediol and acetoin trigger plant growth promotion in Arabidopsis. Differences in growth promotion when cytokinin-signaling mutants are exposed to GB03 versus IN937a volatiles suggest a divergence in chemical signaling for these two bacterial strains. To provide a comprehensive chemical profile of bacterial volatiles emitted from these biologically active strains, headspace solid phase microextraction (SPME) coupled with software extraction of overlapping GC-separated components was employed. Ten volatile metabolites already reported from GB03 and IN937a were identified as well as 28 compounds not previously characterized. Most of the newly identified compounds were branched-chain alcohols released from IN937a, at much higher levels than in GB03. Principal component analysis clearly separated GB03 from IN937a, with GB03 producing higher amounts of 3-methyl-1-butanol, 2-methyl-1-butanol and butane-1-methoxy-3-methyl. The branched-chain alcohols share a similar functional motif to that of 2,3-butanediol and may afford alternative structural patterns for elicitors from bacterial sources.  相似文献   

4.
5.
Bacteria and plant derived volatile organic compounds have been reported as the chemical triggers that elicit induced resistance in plants. Previously, volatile organic compounds (VOCs), including acetoin and 2,3-butanediol, were found to be emitted from plant growth-promoting rhizobacteria (PGPR) Bacillus subtilis GB03, which had been shown to elicit ISR and plant growth promotion. More recently, we reported data that stronger induced resistance could be elicited against Pseudomonas syringae pv maculicola ES4326 in plants exposed to C13 VOC from another PGPR Paenibacillus polymyxa E681 compared with that of strain GB03. Here, we assessed whether another long hydrocarbon C16 hexadecane (HD) conferred protection to Arabidopsis from infection of a biotrophic pathogen, P. syringae pv maculicola and a necrotrophic pathogen, Pectobacterium carotovorum subsp carotovorum. Collectively, long-chain VOCs can be linked to a plant resistance activator for protecting plants against both biotrophic and necrotrophic pathogens at the same time.  相似文献   

6.
7.
8.
The ability to recognize and respond to environmental signals is essential for plants. In response to environmental changes, the status of a plant is transmitted to other plants in the form of signals such as volatiles. Root-associated bacteria trigger the release of plant volatile organic compounds (VOCs). However, the impact of VOCs on the rhizosphere microbial community of neighbouring plants is not well understood. Here, we investigated the effect of VOCs on the rhizosphere microbial community of tomato plants inoculated with a plant growth-promoting rhizobacterium Bacillus amyloliquefaciens strain GB03 and that of their neighbouring plants. Interestingly, high similarity (up to 69%) was detected in the rhizosphere microbial communities of the inoculated and neighbouring plants. Leaves of the tomato plant treated with strain GB03-released β-caryophyllene as a signature VOC, which elicited the release of a large amount of salicylic acid (SA) in the root exudates of a neighbouring tomato seedling. The exposure of tomato leaves to β-caryophyllene resulted in the secretion of SA from the root. Our results demonstrate for the first time that the composition of the rhizosphere microbiota in surrounding plants is synchronized through aerial signals from plants.Subject terms: Microbial ecology, Soil microbiology  相似文献   

9.
10.
In ecosystems, plant and bacterial volatile organic compounds (VOCs) are known to influence plant growth but less is known about the physiological effects of fungal VOCs. We have used Arabidopsis thaliana as a model to test the effects of VOCs from the soil fungus Trichoderma viride. Mature colonies of T. viride cultured on Petri plates were placed in a growth chamber in a shared atmosphere with A. thaliana without direct physical contact. Compared to controls, plants grown in the presence of T. viride volatiles were taller, bigger, flowered earlier, and had more lateral roots. They also had increased total biomass (45 %) and chlorophyll concentration (58 %). GC–MS analysis of T. viride VOCs revealed 51 compounds of which isobutyl alcohol, isopentyl alcohol, and 3-methylbutanal were most abundant. We conclude that VOCs emitted by T. viride have growth promoting effects on A. thaliana in the absence of direct physical contact.  相似文献   

11.
Bacterial volatile compounds (BVCs) exert beneficial effects on plant protection both directly and indirectly. Although BVCs have been detected in vitro, their detection in situ remains challenging. The purpose of this study was to investigate the possibility of BVCs detection under in situ condition and estimate the potentials of in situ BVC to plants at below detection limit. We developed a method for detecting BVCs released by the soil bacteria Bacillus velezensis strain GB03 and Streptomyces griseus strain S4-7 in situ using solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS). Additionally, we evaluated the BVC detection limit in the rhizosphere and induction of systemic immune response in tomato plants grown in the greenhouse. Two signature BVCs, 2-nonanone and caryolan-1-ol, of GB03 and S4-7 respectively were successfully detected using the soil-vial system. However, these BVCs could not be detected in the rhizosphere pretreated with strains GB03 and S4-7. The detection limit of 2-nonanone in the tomato rhizosphere was 1 µM. Unexpectedly, drench application of 2-nonanone at 10 nM concentration, which is below its detection limit, protected tomato seedlings against Pseudomonas syringae pv. tomato. Our finding highlights that BVCs, including 2-nonanone, released by a soil bacterium are functional even when present at a concentration below the detection limit of SPME-GC-MS.  相似文献   

12.
Plant growth-promoting rhizobacteria stimulate plant growth and development via different mechanisms. In this study, we characterized the effect of volatiles from Bacillus methylotrophicus M4-96 isolated from the maize rhizosphere on root and shoot development, and auxin homeostasis in Arabidopsis thaliana. Phytostimulation occurred after 4 days of interaction between M4-96 and Arabidopsis grown on opposite sides of divided Petri plates, as revealed by enhanced primary root growth, root branching, leaf formation, and shoot biomass accumulation. Analysis of indole-3-acetic acid content revealed two- and threefold higher accumulation in the shoot and root of bacterized seedlings, respectively, compared to uninoculated plants, which was correlated with increased expression of the auxin response marker DR5::GUS. The auxin transport inhibitor 1-naphthylphthalamic acid inhibited primary root growth and lateral root formation in axenically grown seedlings and antagonized the plant growth-promoting effects of M4-96. Analysis of bacterial volatile compounds revealed the presence of four classes of compounds, including ten ketones, eight alcohols, one aldehyde, and two hydrocarbons. However, the abundance of ketones and alcohols represented 88.73 and 8.05%, respectively, of all airborne signals detected, with acetoin being the main compound produced. Application of acetoin had a different effect from application of volatiles, suggesting that either the entire pool or acetoin acting in concert with another unidentified compound underlies the strong phytostimulatory response. Taken together, our results show that B. methylotrophicus M4-96 generates bioactive volatiles that increase the active auxin pool of plants, stimulate the growth and formation of new organs, and reprogram root morphogenesis.  相似文献   

13.
Interactive effects of root restriction and atmospheric CO2 enrichment on plant growth, photosynthetic capacity, and carbohydrate partitioning were studied in cotton seedlings (Gossypium hirsutum L.) grown for 28 days in three atmospheric CO2 partial pressures (270, 350, and 650 microbars) and two pot sizes (0.38 and 1.75 liters). Some plants were transplanted from small pots into large pots after 20 days. Reduction of root biomass resulting from growth in small pots was accompanied by decreased shoot biomass and leaf area. When root growth was less restricted, plants exposed to higher CO2 partial pressures produced more shoot and root biomass than plants exposed to lower levels of CO2. In small pots, whole plant biomass and leaf area of plants grown in 270 and 350 microbars of CO2 were not significantly different. Plants grown in small pots in 650 microbars of CO2 produced greater total biomass than plants grown in 350 microbars, but the dry weight gain was found to be primarily an accumulation of leaf starch. Reduced photosynthetic capacity of plants grown at elevated levels of CO2 was clearly associated with inadequate rooting volume. Reductions in net photosynthesis were not associated with decreased stomatal conductance. Reduced carboxylation efficiency in response to CO2 enrichment occurred only when root growth was restricted suggesting that ribulose-1,5-bisphosphate carboxylase/oxygenase activity may be responsive to plant source-sink balance rather than to CO2 concentration as a single factor. When root-restricted plants were transplanted into large pots, carboxylation efficiency and ribulose-1,5-bisphosphate regeneration capacity increased indicating that acclimation of photosynthesis was reversible. Reductions in photosynthetic capacity as root growth was progressively restricted suggest sink-limited feedback inhibition as a possible mechanism for regulating net photosynthesis of plants grown in elevated CO2.  相似文献   

14.
15.
Bacteria emit volatile organic compounds with a wide range of effects on bacteria, fungi, plants, and animals. The antifungal potential of bacterial volatiles has been investigated with a broad span of phytopathogenic organisms, yet the reaction of oomycetes to these volatile signals is largely unknown. For instance, the response of the late blight-causing agent and most devastating oomycete pathogen worldwide, Phytophthora infestans, to bacterial volatiles has not been assessed so far. In this work, we analyzed this response and compared it to that of selected fungal and bacterial potato pathogens, using newly isolated, potato-associated bacterial strains as volatile emitters. P. infestans was highly susceptible to bacterial volatiles, while fungal and bacterial pathogens were less sensitive. Cyanogenic Pseudomonas strains were the most active, leading to complete growth inhibition, yet noncyanogenic ones also produced antioomycete volatiles. Headspace analysis of the emitted volatiles revealed 1-undecene as a compound produced by strains inducing volatile-mediated P. infestans growth inhibition. Supplying pure 1-undecene to P. infestans significantly reduced mycelial growth, sporangium formation, germination, and zoospore release in a dose-dependent manner. This work demonstrates the high sensitivity of P. infestans to bacterial volatiles and opens new perspectives for sustainable control of this devastating pathogen.  相似文献   

16.
A. V. Sturz 《Plant and Soil》1995,175(2):257-263
Healthy potato tubers (Solanum tuberosum L.) cv. Kennebec were found to be internally colonized by non-pathogenic bacterial populations originating from root zone soil. These endophytic bacteria were categorized, on the basis of bioassays, as plant growth promoting (PGP), plant growth retarding (PGR) and plant growth neutral (PGN). Genera isolated from tubers included Pseudomonas, Bacillus, Xanthomonas, Agrobacterium, Actinomyces and Acinetobacter. The PGP and PGR isolates were similarly distributed throughout these genera. Bacterial populations increased in the root zone soil directly adjacent to the seed piece during and immediately following seed piece decay. Bacteria sampled at this time were capable of promoting tuber number and weight. The proportions of PGP, PGR and PGN bacteria in the root zone were altered as endophytic bacteria were released from the decaying seed piece. The study indicates that endophytic bacteria present in the seed tubers may play an important role in seed piece decay, tuberization and plant growth.  相似文献   

17.

Backgrounds and aims

The functional role of volatile indole in interaction between rhizobacteria and plant remains unknown. In this study, we investigated the functional role of the volatile indole emitted by rhizobacterial strain Proteus vulgaris JBLS202 in plant growth promoting activity.

Methods

P. vulgaris strain JBLS202 was used to study the role of volatile organic compounds (VOCs) on growth stimulation of Chinese cabbage (cabbage) at seedling stage. SPME-GC/MS analysis employed to identify headspace VOCs emitted from the rhizobacterium. Synthetic indole was assayed at various concentrations for the growth stimulation of cabbage and the emission of indole from the bacterized cabbage seeds was identified.

Results

P. vulgaris JBLS202 promoted the growth of cabbage via volatiles in a dose-dependent manner. VOC emission assay by SPME-GC/MS revealed that indole was a major headspace volatile compound emitted from the rhizobacterium. Moreover, the growth of cabbage was promoted significantly in the presence of 0.63 μg of synthetic indole. The vigor index and fresh weight of the seedlings were increased by 39.9 % and 32.6 %, respectively when the seeds of cabbage were bacterized with P. vulgaris JBLS202 cells (1?×?107?CFU/ml). The emission of indole from the bacterized seeds was demonstrated by SPME-GC/MS.

Conclusions

Results indicated that either synthetic or biological/bacterial indole could increase the growth of cabbage significantly. Though the molecular biological role of indole in plant growth promotion remains to be investigated, this is the first report on detailed interaction between bacterial indole and plants.  相似文献   

18.

Bacillus methylotrophicus M4-96 is a beneficial rhizobacterium that has been isolated from the rhizosphere of maize (Zea mays). In this study, we investigated its efficacy as a plant growth promoter for strawberry in vitro, as well as its ability to induce callose deposition in leaves to reduce the severity of Botrytis cinerea infection. Two methods of plant-bacterial interaction were used: inoculation near the root and emission of volatile compounds with no physical contact. Plant biomass increased under both treatments, but with developmental parameters of the plants differentially stimulated by each method. Root inoculation increased petiole number and root length, whereas bacterial volatiles increased petiole length and root number. A chemical analysis of the bacterial culture revealed the presence of indole acetic acid (0.21 μg L−1) and gibberellic acid (6.16 μg L−1). Acetoin was previously identified as the major volatile produced by the bacteria, and its application to strawberry explants increased their growth and development. Furthermore, when acetoin and both phytoregulators were added to the culture media, these positive effects were enhanced. The inoculation method also affected the size and quantity of callose deposits in the leaves. Treatment with volatiles increased callose deposition in the leaves by up to five-fold, which promoted a rapid defense reaction that inhibited the incidence of gray mold by reinforcing cell wall. Taken together, our results show that B. methylotrophicus M4-96 promotes growth and induces systemic resistance in strawberry plants.

  相似文献   

19.
Many naturally occurring plant volatile compounds are known for their anti-fungal properties. In this study, acetaldehyde and 2E-hexenal were chosen as prototype volatiles in order to investigate the use of volatile compounds for control of blemish pathogens in fresh-pack potato packaging. Pure cultures of the three main potato blemish pathogens, Pectobacterium atrosepticum (bacterial soft rot), Colletotrichum coccodes (black dot), and Helminthosporium solani (silver scurf), were used in the study. Pathogen cultures were exposed to the pure volatiles that were injected into the atmosphere of sealed jars for 4–8 days at 23 °C. Results showed that 2E-hexenal was the most effective of the two volatiles with 5 μL/L providing complete inhibition of growth for all three pathogens in vitro. Cytological studies showed that a concentration of 2.5 μL/L of 2E-hexenal was capable of inhibiting germination in both fungal pathogens. These results suggest that the primary mode of action of 2E-hexenal was inhibiting germination for fungi and suppressing bacterial growth. The quantities required to achieve pathogen inhibition are extremely low. This study suggests that these volatiles may be used to effectively manage potato postharvest blemish diseases in storage.  相似文献   

20.
Recent studies have revealed that some bacteria can inhabit plant seeds, and they are likely founders of the bacterial community in the rhizosphere of or inside plants at the early developmental stage. Given that the seedling establishment is a critical fitness component of weedy plant species, the effects of seed endophytic bacteria (SEB) on the seedling performance are of particular interest in weed ecology. Here, we characterized the SEB in natural populations of Capsella bursapastoris, a model species of weed ecology. The composition of endophytic bacterial community was evaluated using deep sequencing of a 16S rDNA gene fragment. Additionally, we isolated bacterial strains from seeds and examined their plant growth‐promoting traits. Actinobacteria, Firmicutes, Alpha‐, and Gammaproteobacteria were major bacterial phyla inside seeds. C. bursapastoris natural populations exhibited variable seed microbiome such that the proportion of Actinobacteria and Alphaproteobacteria differed among populations, and 60 out of 82 OTUs occurred only in a single population. Thirteen cultivable bacterial species in six genera (Bacillus, Rhodococcus, Streptomyces, Staphylococcus, Paenibacillus, Pseudomonas) were isolated, and none of them except Staphylococcus haemolyticus were previously reported as seed endophytes. Eight isolates exhibited plant growth‐promoting traits like phosphate solubilization activity, indole‐3‐acetic acid, or siderophore production. Despite the differences in the bacterial communities among plant populations, at least one isolated strain from each population stimulated shoot growth of either C. bursapastoris or its close relative A. thaliana when grown with plants in the same media. These results suggest that a weedy plant species, C. bursapastoris, contains bacterial endophytes inside their seeds, stimulating seedling growth and thereby potentially affecting seedling establishment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号