首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Cell surface receptors of the integrin family are pivotal to cell adhesion and migration. The activation state of heterodimeric αβ integrins is correlated to the association state of the single-pass α and β transmembrane domains. The association of integrin αIIbβ3 transmembrane domains, resulting in an inactive receptor, is characterized by the asymmetric arrangement of a straight (αIIb) and tilted (β3) helix relative to the membrane in congruence to the dissociated structures. This allows for a continuous association interface centered on helix-helix glycine-packing and an unusual αIIb(GFF) structural motif that packs the conserved Phe-Phe residues against the β3 transmembrane helix, enabling αIIb(D723)β3(R995) electrostatic interactions. The transmembrane complex is further stabilized by the inactive ectodomain, thereby coupling its association state to the ectodomain conformation. In combination with recently determined structures of an inactive integrin ectodomain and an activating talin/β complex that overlap with the αβ transmembrane complex, a comprehensive picture of integrin bi-directional transmembrane signaling has emerged.Key words: cell adhesion, membrane protein, integrin, platelet, transmembrane complex, transmembrane signalingThe communication of biological signals across the plasma membrane is fundamental to cellular function. The ubiquitous family of integrin adhesion receptors exhibits the unusual ability to convey signals bi-directionally (outside-in and inside-out signaling), thereby controlling cell adhesion, migration and differentiation.15 Integrins are Type I heterodimeric receptors that consist of large extracellular domains (>700 residues), single-pass transmembrane (TM) domains, and mostly short cytosolic tails (<70 residues). The activation state of heterodimeric integrins is correlated to the association state of the TM domains of their α and β subunits.610 TM dissociation initiated from the outside results in the transmittal of a signal into the cell, whereas dissociation originating on the inside results in activation of the integrin to bind ligands such as extracellular matrix proteins. The elucidation of the role of the TM domains in integrin-mediated adhesion and signaling has been the subject of extensive research efforts, perhaps commencing with the demonstration that the highly conserved GFFKR sequence motif of α subunits (Fig. 1), which closely follows the first charged residue on the intracellular face, αIIb(K989), constrains the receptor to a default low affinity state.11 Despite these efforts, an understanding of this sequence motif had not been reached until such time as the structure of the αIIb TM segment was determined.12 In combination with the structure of the β3 TM segment13 and available mutagenesis data,6,9,10,14,15 this has allowed the first correct prediction of the overall association of an integrin αβ TM complex.12 The predicted association was subsequently confirmed by the αIIbβ3 complex structure determined in phospholipid bicelles,16 as well as by the report of a similar structure based on molecular modeling using disulfide-based structural constraints.17 In addition to the structures of the dissociated and associated αβ TM domains, their membrane embedding was defined12,13,16,18,19 and it was experimentally recognized that, in the context of the native receptor, the TM complex is stabilized by the inactive, resting ectodomain.16 These advances in integrin membrane structural biology are complemented by the recent structures of a resting integrin ectodomain and an activating talin/β cytosolic tail complex that overlap with the αβ TM complex,20,21 allowing detailed insight into integrin bi-directional TM signaling.Open in a separate windowFigure 1Amino acid sequence of integrin αIIb and β3 transmembrane segments and flanking regions. Membrane-embedded residues12,13,16,18,19 are enclosed by a gray box. Residues 991–995 constitute the highly conserved GFFKR sequence motif of integrin α subunits.  相似文献   

2.
3.
4.
In young Arabidopsis seedlings, retrograde signaling from plastids regulates the expression of photosynthesis-associated nuclear genes in response to the developmental and functional state of the chloroplasts. The chloroplast-located PPR protein GUN1 is required for signalling following disruption of plastid protein synthesis early in seedling development before full photosynthetic competence has been achieved. Recently we showed that sucrose repression and the correct temporal expression of LHCB1, encoding a light-harvesting chlorophyll protein associated with photosystem II, are perturbed in gun1 mutant seedlings.1 Additionally, we demonstrated that in gun1 seedlings anthocyanin accumulation and the expression of the “early” anthocyanin-biosynthesis genes is perturbed. Early seedling development, predominantly at the stage of hypocotyl elongation and cotyledon expansion, is also affected in gun1 seedlings in response to sucrose, ABA and disruption of plastid protein synthesis by lincomycin. These findings indicate a central role for GUN1 in plastid, sucrose and ABA signalling in early seedling development.Key words: ABA, ABI4, anthocyanin, chloroplast, GUN1, retrograde signalling, sucroseArabidopsis seedlings develop in response to light and other environmental cues. In young seedlings, development is fuelled by mobilization of lipid reserves until chloroplast biogenesis is complete and the seedlings can make the transition to phototrophic growth. The majority of proteins with functions related to photosynthesis are encoded by the nuclear genome, and their expression is coordinated with the expression of genes in the chloroplast genome. In developing seedlings, retrograde signaling from chloroplasts to the nucleus regulates the expression of these nuclear genes and is dependent on the developmental and functional status of the chloroplast. Two classes of gun (genomes uncoupled) mutants defective in retrograde signalling have been identified in Arabidopsis: the first, which comprises gun2–gun5, involves mutations in genes encoding components of tetrapyrrole biosynthesis.2,3 The other comprises gun1, which has mutations in a nuclear gene encoding a plastid-located pentatricopeptide repeat (PPR) protein with an SMR (small MutS-related) domain near the C-terminus.4,5 PPR proteins are known to have roles in RNA processing6 and the SMR domain of GUN1 has been shown to bind DNA,4 but the specific functions of these domains in GUN1 are not yet established. However, GUN1 has been shown to be involved in plastid gene expression-dependent,7 redox,4 ABA1,4 and sucrose signaling,1,4,8 as well as light quality and intensity sensing pathways.911 In addition, GUN1 has been shown to influence anthocyanin biosynthesis, hypocotyl extension and cotyledon expansion.1,11  相似文献   

5.
6.
A role for SR proteins in plant stress responses   总被引:1,自引:0,他引:1  
  相似文献   

7.
8.
9.
The receptors for the fungal elicitor EIX (LeEix1 and LeEix2) belong to a class of leucine-rich repeat cell-surface glycoproteins with a signal for receptor-mediated endocytosis. Both receptors are able to bind the EIX elicitor while only the LeEix2 receptor mediates defense responses. We show that LeEix1 acts as a decoy receptor and attenuates EIX induced internalization and signaling of the LeEix2 receptor. We demonstrate that BAK1 binds LeEix1 but not LeEix2. In plants where BAK1 was silenced, LeEix1 was no longer able to attenuate plant responses to EIX, indicating that BAK1 is required for this attenuation. We suggest that LeEix1 functions as a decoy receptor for LeEix2, a function which requires the kinase activity of BAK1.Key words: LRR-RLP, LeEix, Bak1, decoy receptor, endocytosisLeucine-rich-repeat receptor proteins (LRR-RLPs) have been linked with defense response signaling in plants.15 The tomato Cf genes which mediate resistance to Cladosporium fulvum encode LRR-RLPs. Additional LRR-RLPs include the tomato Verticillium (Ve) resistant proteins6,7 and the LeEix proteins.8 The Eix receptors (LeEix1 and LeEix2) contain a signal for receptor-mediated endocytosis, which we have previously shown to be essential for proper induction of defense responses.9,10 Both receptors are able to bind Eix, but only LeEix2 mediates EIX-induced defense.8 In a recent work we demonstrate that LeEix1 attenuates Eix-induced internalization and signaling, and heterodimerizes with LeEix2 upon application of Eix.11 Our work further shows that the brassinosteroid co-receptor Bri-Associated Kinase 1 (BAK1) binds LeEix1 but not LeEix2. In BAK1-silenced plants, LeEix1 was no longer able to attenuate plant responses to Eix, indicating that BAK1 is required for this attenuation and leading to the hypothesis that LeEix1 functions as a decoy receptor for LeEix2.11  相似文献   

10.
11.
12.
We investigated the role of nitric oxide (NO) in ABA-inhibition of stomatal opening in Vicia faba L. in different size dishes. When a large dish (9 cm diameter) was used, ABA induced NO synthesis and the NO scavenger reduced ABA-inhibition of stomatal opening. When a small dish (6 cm diameter) was used, ABA induced stomatal closure and inhibited stomatal opening. The NO scavenger was able to reduce ABA-induced stomatal closure, but unable to reverse ABA-inhibition of stomatal opening. Furthermore, NO was not synthesized in response to ABA, indicating that NO is not required for ABA-inhibition of stomatal opening in the small dish. These results indicated that an NO-dependent and an NO-independent signaling pathway participate in ABA signaling pathway. An NO-dependent pathway is the major player in ABA-induced stomatal closure. However, in ABA-inhibition of stomatal opening, an NO-dependent and an NO-independent pathway act: different signaling molecules participate in ABA-signaling cascade under different environmental condition.Key words: ABA, environmental condition, nitric oxide, stomata, Vicia faba LNitric oxide (NO) is a key signaling molecule in plants.1,2 It functions in disease resistance and programmed cell death,3,4 root development,5,6 and plant responses to various abiotic stresses.1,2,7,8 In addition, NO is required for stomatal closure in response to ABA in several species including Arabidopsis, Vicia faba, pea, tomato, barley, and wheat.911 ABA-inhibition of stomatal opening is a distinct process from ABA-induced stomatal closure.12,13 In V. faba, these two processes employ a similar signaling pathway; NO is also a second messenger molecule for ABA-inhibition of stomatal opening in a large dish.14 In this study, we examined the role of NO in ABA-inhibition of stomatal opening using different dish sizes. In a small dish, NO is not involved in ABA-inhibition of stomatal opening: the NO-independent signaling pathway is the major player in it.  相似文献   

13.
Fetal cells migrate into the mother during pregnancy. Fetomaternal transfer probably occurs in all pregnancies and in humans the fetal cells can persist for decades. Microchimeric fetal cells are found in various maternal tissues and organs including blood, bone marrow, skin and liver. In mice, fetal cells have also been found in the brain. The fetal cells also appear to target sites of injury. Fetomaternal microchimerism may have important implications for the immune status of women, influencing autoimmunity and tolerance to transplants. Further understanding of the ability of fetal cells to cross both the placental and blood-brain barriers, to migrate into diverse tissues, and to differentiate into multiple cell types may also advance strategies for intravenous transplantation of stem cells for cytotherapeutic repair. Here we discuss hypotheses for how fetal cells cross the placental and blood-brain barriers and the persistence and distribution of fetal cells in the mother.Key Words: fetomaternal microchimerism, stem cells, progenitor cells, placental barrier, blood-brain barrier, adhesion, migrationMicrochimerism is the presence of a small population of genetically distinct and separately derived cells within an individual. This commonly occurs following transfusion or transplantation.13 Microchimerism can also occur between mother and fetus. Small numbers of cells traffic across the placenta during pregnancy. This exchange occurs both from the fetus to the mother (fetomaternal)47 and from the mother to the fetus.810 Similar exchange may also occur between monochorionic twins in utero.1113 There is increasing evidence that fetomaternal microchimerism persists lifelong in many child-bearing women.7,14 The significance of fetomaternal microchimerism remains unclear. It could be that fetomaternal microchimerism is an epiphenomenon of pregnancy. Alternatively, it could be a mechanism by which the fetus ensures maternal fitness in order to enhance its own chances of survival. In either case, the occurrence of pregnancy-acquired microchimerism in women may have implications for graft survival and autoimmunity. More detailed understanding of the biology of microchimeric fetal cells may also advance progress towards cytotherapeutic repair via intravenous transplantation of stem or progenitor cells.Trophoblasts were the first zygote-derived cell type found to cross into the mother. In 1893, Schmorl reported the appearance of trophoblasts in the maternal pulmonary vasculature.15 Later, trophoblasts were also observed in the maternal circulation.1620 Subsequently various other fetal cell types derived from fetal blood were also found in the maternal circulation.21,22 These fetal cell types included lymphocytes,23 erythroblasts or nucleated red blood cells,24,25 haematopoietic progenitors7,26,27 and putative mesenchymal progenitors.14,28 While it has been suggested that small numbers of fetal cells traffic across the placenta in every human pregnancy,2931 trophoblast release does not appear to occur in all pregnancies.32 Likewise, in mice, fetal cells have also been reported in maternal blood.33,34 In the mouse, fetomaternal transfer also appears to occur during all pregnancies.35  相似文献   

14.
15.
Mitogen-activated protein kinase (MAPK) pathways play crucial roles in developmental and adaptive responses. Depending on the stimulus, MAPK activation regulates a wide variety of plant cell responses, such as proliferation, differentiation and cell death, which normally require precise spatial and temporal control. In this context, protein phosphatases play important roles by regulating the duration and magnitude of MAPK activities. During infection by non-host and incompatible host microorganisms, MAPK activity can promote a local cell death mechanism called hypersensitive response (HR), which is part of the plant defence response. HR-like responses require sustained MAPK activity and correlate with oxidative burst. We recently showed that MAPK phosphatase MKP2 positively controls biotic and abiotic stress responses in Arabidopsis. MKP2 interacts with MPK6 in HR-like responses triggered by fungal elicitors, suggesting that MKP2 protein is part of the mechanism involved in MAPK regulation during HR. Here we discuss the interplay of MAPK and MKP2 phosphatase signaling during cell death responses elicited by host-pathogen interactions.Key words: Arabidopsis, hypersensitive response (HR), MAPK, MPK6, MKP2, ROSDifferent studies have identified conserved components of MAPK pathways in plants and have provided evidence that MAPK signaling regulates a wide variety of plant biological responses.1 For example, MAPK signaling is required for the regulation of stomatal functions,24 hormone signaling5,6 and innate immunity responses.79 An increasing number of reports indicate that plant MAPKs, in particular tobacco SIPK/Ntf4 and WIPK and their Arabidopsis orthologs, MPK6 and MPK3, are converging points for signals elicited by different pathogens and play regulatory roles in disease responses.10One of the most efficient and immediate immune responses dependent on MAPK signaling is a mechanism of cell death called hypersensitive response (HR). HR is a rapid, localized cell death process at the site of pathogen infection, which is associated with specific molecular effects such as the generation of reactive oxygen species (ROS) and protein phosphorylation.11 The best evidence implicating MAPK activity in HR comes from gain-of-function studies overexpressing SIPK/Ntf4 and WIPK in tobacco leaves. In these experiments, activation of SIPK/Ntf4 kinases efficiently induces HR-like cell death,12,13 but the absence of endogenous WIPK function causes delayed induction of this HR phenotype, suggesting that WIPK activity facilitates or potentiates the SIPK signal.14 Similarly, overexpression analyses of Arabidopsis MPK3 and MPK6 proteins, either alone or co-expressed with activated upstream regulators (MKK proteins), also triggers a cell death phenotype,15 suggesting a coordinated role of MKK/MAPK signaling modules in HR.15 Thus, the involvement of MAPK activities such as SIPK/MPK6 in HR cell death responses is supported by different studies; however their regulation by phosphatases remains less understood.The main regulators of MAPKs are specific phosphatases belonging to various families, including PP2C Ser/Thr phosphatases, Tyr phosphatases (PTPs) or dual specificity phosphatases (DSPs) such as the MAPK phosphatase (MKP) subgroup.16,17 In general, dephosphorylation of MAPKs inactivates their function in many metabolic, developmental or adaptive responses. In the context of HR, we have recently shown that Arabidopsis MKP phosphatase MKP2 interacts with MPK6 in the response triggered by fungal elicitors. In particular, co-expression of MPK6 and MKP2 proteins in infected tobacco leaves significantly attenuates the cell death phenotype produced by expressing MPK6 alone, suggesting that MKP2 negatively regulates MAPK activities in this process.18  相似文献   

16.
The small phenolic molecule salicylic acid (SA) plays a key role in plant defense. Significant progress has been made recently in understanding SA-mediated defense signaling networks. Functional analysis of a large number of genes involved in SA biosynthesis and regulation of SA accumulation and signal transduction has revealed distinct but interconnecting pathways that orchestrate the control of plant defense. Further studies utilizing combinatorial approaches in genetics, molecular biology, biochemistry and genomics will uncover finer details of SA-mediated defense networks as well as further insights into the crosstalk of SA with other defense signaling pathways. The complexity of defense networks illustrates the capacity of plants to integrate multiple developmental and environmental signals into a tight control of the costly defense responses.Key words: salicylic acid, disease resistance, signal transduction, Arabidopsis, Pseudomonas syringaePlants have evolved sophisticated defense mechanisms to ward off attacks from pathogens. In addition to pre-formed physical/chemical barriers, plants can actively monitor the presence of pathogens and subsequently activate defense signaling networks, which in turn restrict the further growth and spread of pathogens.The small phenolic compound salicylic acid (SA) plays a central role in plant defense signaling. It is required for recognition of pathogen-derived components and subsequent establishment of local resistance in the infected region as well as systemic resistance at the whole plant level.13 SA accumulation is inducible upon infections of various pathogens, treatment with elicitors from pathogens, and stress conditions.35 Exogenous application of SA and its synthetic analogs to plants is sufficient to invoke disease resistance.69 Disruption of SA accumulation and/or signaling by mutations or by a transgenic SA hydrolase encoded by the bacterial gene nahG greatly compromises defense against pathogens.10 In addition, the phytohormones jasmonic acid (JA) and ethylene (ET) regulate SA-mediated defense as well as many aspects of plant development. Emerging evidence also implicates additional phytohormones in plant defense, two of which, auxin and abscisic acid, were recently shown to impact the SA pathway.11,12The past two decades have witnessed exciting progress made towards a comprehensive understanding of defense networks in the model plant Arabidopsis, especially those regulated by SA. The discovery of an expanding array of genes involved in SA-mediated defense suggests the complexity of defense networks. Surprisingly, information on functional relationships among many defense genes is sparse. Connecting the dots (genes) on the defense map to form pathways, which are further interconnected into complex defense networks, still remains a challenging task. This review focuses on our current understanding of the interactions among genes that regulate three key sub-circuits of the SA pathway: SA biosynthesis, SA accumulation and SA signal transduction. Discussions of the crosstalk between components involved in the SA pathway and those in other defense pathways can be found in some excellent reviews.1317  相似文献   

17.
18.
Peptide signaling regulates a variety of developmental processes and environmental responses in plants.16 For example, the peptide systemin induces the systemic defense response in tomato7 and defensins are small cysteine-rich proteins that are involved in the innate immune system of plants.8,9 The CLAVATA3 peptide regulates meristem size10 and the SCR peptide is the pollen self-incompatibility recognition factor in the Brassicaceae.11,12 LURE peptides produced by synergid cells attract pollen tubes to the embryo sac.9 RALFs are a recently discovered family of plant peptides that play a role in plant cell growth.Key words: peptide, growth factor, alkalinization  相似文献   

19.
As the newest plant hormone, strigolactone research is undergoing an exciting expansion. In less than five years, roles for strigolactones have been defined in shoot branching, secondary growth, root growth and nodulation, to add to the growing understanding of their role in arbuscular mycorrhizae and parasitic weed interactions.1 Strigolactones are particularly fascinating as signaling molecules as they can act both inside the plant as an endogenous hormone and in the soil as a rhizosphere signal.2-4 Our recent research has highlighted such a dual role for strigolactones, potentially acting as both an endogenous and exogenous signal for arbuscular mycorrhizal development.5 There is also significant interest in examining strigolactones as putative regulators of responses to environmental stimuli, especially the response to nutrient availability, given the strong regulation of strigolactone production by nitrate and phosphate observed in many species.5,6 In particular, the potential for strigolactones to mediate the ecologically important response of mycorrhizal colonization to phosphate has been widely discussed. However, using a mutant approach we found that strigolactones are not essential for phosphate regulation of mycorrhizal colonization or nodulation.5 This is consistent with the relatively mild impairment of phosphate control of seedling root growth observed in Arabidopsis strigolactone mutants.7 This contrasts with the major role for strigolactones in phosphate control of shoot branching of rice and Arabidopsis8,9 and indicates that the integration of strigolactones into our understanding of nutrient response will be complex. New data presented here, along with the recent discovery of phosphate specific CLE peptides,10 indicates a potential role for PsNARK, a component of the autoregulation of nodulation pathway, in phosphate control of nodulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号