首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2′-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g–1 to µg g–1. Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub µg l–1 to mg l–1 and were correlated with the level of economic development.  相似文献   

2.
Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally.  相似文献   

3.
Plastic pollution in the form of small particles (diameter less than 5 mm)-termed 'microplastic'-has been observed in many parts of the world ocean. They are known to interact with biota on the individual level, e.g. through ingestion, but their population-level impacts are largely unknown. One potential mechanism for microplastic-induced alteration of pelagic ecosystems is through the introduction of hard-substrate habitat to ecosystems where it is naturally rare. Here, we show that microplastic concentrations in the North Pacific Subtropical Gyre (NPSG) have increased by two orders of magnitude in the past four decades, and that this increase has released the pelagic insect Halobates sericeus from substrate limitation for oviposition. High concentrations of microplastic in the NPSG resulted in a positive correlation between H. sericeus and microplastic, and an overall increase in H. sericeus egg densities. Predation on H. sericeus eggs and recent hatchlings may facilitate the transfer of energy between pelagic- and substrate-associated assemblages. The dynamics of hard-substrate-associated organisms may be important to understanding the ecological impacts of oceanic microplastic pollution.  相似文献   

4.
Despite concerns regarding the environmental impacts of microplastics, knowledge of the incidence and levels of synthetic particles in large marine vertebrates is lacking. Here, we utilize an optimized enzymatic digestion methodology, previously developed for zooplankton, to explore whether synthetic particles could be isolated from marine turtle ingesta. We report the presence of synthetic particles in every turtle subjected to investigation (n = 102) which included individuals from all seven species of marine turtle, sampled from three ocean basins (Atlantic [ATL]: n = 30, four species; Mediterranean (MED): n = 56, two species; Pacific (PAC): n = 16, five species). Most particles (n = 811) were fibres (ATL: 77.1% MED: 85.3% PAC: 64.8%) with blue and black being the dominant colours. In lesser quantities were fragments (ATL: 22.9%: MED: 14.7% PAC: 20.2%) and microbeads (4.8%; PAC only; to our knowledge the first isolation of microbeads from marine megavertebrates). Fourier transform infrared spectroscopy (FT‐IR) of a subsample of particles (n = 169) showed a range of synthetic materials such as elastomers (MED: 61.2%; PAC: 3.4%), thermoplastics (ATL: 36.8%: MED: 20.7% PAC: 27.7%) and synthetic regenerated cellulosic fibres (SRCF; ATL: 63.2%: MED: 5.8% PAC: 68.9%). Synthetic particles being isolated from species occupying different trophic levels suggest the possibility of multiple ingestion pathways. These include exposure from polluted seawater and sediments and/or additional trophic transfer from contaminated prey/forage items. We assess the likelihood that microplastic ingestion presents a significant conservation problem at current levels compared to other anthropogenic threats.  相似文献   

5.
Plastic marine debris (PMD) affects spatial scales of life from microbes to whales. However, understanding interactions between plastic and microbes in the “Plastisphere”—the thin layer of life on the surface of PMD—has been technology‐limited. Research into microbe–microbe and microbe–substrate interactions requires knowledge of community phylogenetic composition but also tools to visualize spatial distributions of intact microbial biofilm communities. We developed a CLASI‐FISH (combinatorial labelling and spectral imaging – fluorescence in situ hybridization) method using confocal microscopy to study Plastisphere communities. We created a probe set consisting of three existing phylogenetic probes (targeting all Bacteria, Alpha‐, and Gammaproteobacteria) and four newly designed probes (targeting Bacteroidetes, Vibrionaceae, Rhodobacteraceae and Alteromonadaceae) labelled with a total of seven fluorophores and validated this probe set using pure cultures. Our nested probe set strategy increases confidence in taxonomic identification because targets are confirmed with two or more probes, reducing false positives. We simultaneously identified and visualized these taxa and their spatial distribution within the microbial biofilms on polyethylene samples in colonization time series experiments in coastal environments from three different biogeographical regions. Comparing the relative abundance of 16S rRNA gene amplicon sequencing data with cell‐count abundance data retrieved from the microscope images of the same samples showed a good agreement in bacterial composition. Microbial communities were heterogeneous, with direct spatial relationships between bacteria, cyanobacteria and eukaryotes such as diatoms but also micro‐metazoa. Our research provides a valuable resource to investigate biofilm development, succession and associations between specific microscopic taxa at micrometre scales.  相似文献   

6.
Quantifying sublethal effects of plastics ingestion on marine wildlife is difficult, but key to understanding the ontogeny and population dynamics of affected species. We developed a method that overcomes the difficulties by modelling individual ontogeny under reduced energy intake and expenditure caused by debris ingestion. The predicted ontogeny is combined with a population dynamics model to identify ecological breakpoints: cessation of reproduction or negative population growth. Exemplifying this approach on loggerhead turtles, we find that between 3% and 25% of plastics in digestive contents causes a 2.5–20% reduction in perceived food abundance and total available energy, resulting in a 10–15% lower condition index and 10% to 88% lower total seasonal reproductive output compared to unaffected turtles. The reported plastics ingestion is insufficient to impede sexual maturation, but population declines are possible. The method is readily applicable to other species impacted by debris ingestion.  相似文献   

7.
《Current biology : CB》2020,30(4):723-728.e3
  1. Download : Download high-res image (283KB)
  2. Download : Download full-size image
  相似文献   

8.
Background: Persistent organic pollutants (POPs), despite their considerably low levels in humans, are an increasing concern for the general populations given their various adverse health problems, including metabolic and carcinogenic effects. DNA methylation deregulation is thought to be a key mechanism in the development of human chronic diseases including cancer.

Methods: In an attempt to identify biomarkers monitoring low-dose exposure and hazard, we explored whether organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) may influence the methylation of tumour suppressor gene E-cadherin (CDH1) using peripheral blood cells from 364 healthy Korean subjects.

Results: CDH1 methylation was observed in 78.3% of study subjects. Serum concentrations of OCPs or PCBs compounds were higher in CDH1 methylation-positive subjects than in methylation-negative ones. After adjusting for various covariates, the odds ratio of CDH1 methylation of the summary measure of PCBs were 1.0, 2.5 (95% confidence interval: 1.2–5.3), 3.6 (1.6–8.1), 3.6 (1.4–8.6), and 2.5 (1.1–5.7) across quintiles of PCBs (Ptrend?=?0.01). The values of OCPs were 1.0, 0.9, 1.2, 2.4 (1.0–5.9), and 1.7 (Ptrend?=?0.05).

Conclusions: In this exploratory study with a small sample, CDH1 methylation might be served as the epigenetic biomarker associated with POPs exposure and adverse health effect.  相似文献   

9.
生态毒理基因组学和生态毒理蛋白质组学研究进展   总被引:1,自引:0,他引:1  
戴家银  王建设 《生态学报》2006,26(3):930-934
将基因组学和蛋白质组学知识整合到生态毒理学中形成了生态毒理基因组学和生态毒理蛋白质组学.通过生态毒理基因组学和生态毒理蛋白质组学的研究能够在基因组和蛋白质组水平更深入理解毒物的作用机制,寻找更敏感、有效的生物标记物,形成潜在的强有力的生态风险评价工具.介绍了生态毒理基因组学和生态毒理蛋白质组学的研究进展,以及DNA芯片技术和2D-凝胶电泳技术在持久性有毒污染物的生态毒理学研究中的应用.  相似文献   

10.
持久性有机污染土壤的植物修复及其机理研究进展   总被引:9,自引:0,他引:9  
随着人类对化学品的依赖程度越来越高,环境的有机污染状况也越来越严重.有机污染土壤的植物修复是指利用植物在生长过程中,吸收、降解、钝化有机污染物的一种原位处理污染土壤的方法,具有应用成本低、生态风险小、对环境副作用小等特点.本文综述了近年来国内外有机污染土壤的植物修复研究进展情况,重点介绍了多氯联苯、多环芳烃、农药和硝基芳香化合物等持久性有机污染物的植物修复,阐述了有机污染土壤植物修复的关键机制,并分析了该技术在实际工程应用中的局限性及应考虑的因素.最后,指出了今后该领域的重点研究方向.  相似文献   

11.
Since the mid-1900s, the global environment has become increasingly contaminated with Persistent Organic Pollutants (POPs), including many with dioxin-like properties. These compounds generally have low water solubility, do not degrade readily in the environment, bioaccumulate in food chains, and have been linked to adverse health effects in both humans and wildlife. The presence of such compounds in terrestrial and aquatic food chains is relevant to those concerned with both human health and environmental protection because of the many common exposure pathways and biological effects among different species. In the past, some chemicals with health risks for humans have been identified following reports of adverse effects in wildlife. Integrating human and ecological risk assessments may improve society's ability to manage the design, manufacture, use and disposal of chemicals in a safe and efficient manner. This can be demonstrated with this case study, which summarizes approaches to evaluating the sources, transport and fate of certain POPs, used largely in the past, and their associated health risks to humans and biota.  相似文献   

12.
Hexachlorobenzene (HCB), one of twelve compounds classified as persistent organic pollutants (POP), is a byproduct of the manufacture of organochlorine compounds, and is a cause of environmental contamination in several parts of the world. Its degradation by Brazilian basidiomycetes was studied through chromatographic analyses and monitoring of the production of 14CO2 from [14C]HCB in the soil. Nineteen strains of basidiomycetes were found to be capable of tolerating concentrations of 5000 to 50,000 mg of HCB kg–1 of soil. In spite of the low rates of production of 14CO2, Psilocybe cf. castanella CCB444 and Lentinus cf. zeyheri CCB274 were capable of removing nearly 3150 and 1400 mg of HCB kg–1 from respective soil samples, during a 65-day study period.  相似文献   

13.
Previous studies have shown that zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under field conditions are good and poor accumulators, respectively, of persistent organic pollutants from soil. Here, each species was grown under three cultivation regimes: dense (five plants in 5 kg soil): nondense (one plant in 80 kg soil): and field conditions (two to three plants in approximately 789 kg soil). p,p'-DDE and inorganic element content in roots, stems, leaves, and fruit were determined. In addition. rhizosphere, near-root, and unvegetated soil fractions were analyzed for concentrations of 11 low-molecular-weight organic acids (LMWOA) and 14 water-extractable inorganic elements. Under field conditions, zucchini phytoextracted 1.3% of the weathered p,p'-DDE with 98% of the contaminant in the aerial tissues. Conversely, cucumber removed 0.09% of the p,p'-DDE under field conditions with 83% in the aerial tissues. Under dense cultivation, cucumber produced a fine and fibrous root system not observed in our previous experiments and phytoextracted 0.78% of the contaminant, whereas zucchini removed only 0.59% under similar conditions. However. cucumber roots translocated only 5.7% of the pollutant to the shoot system, while in zucchini 48% of the p,p'-DDE in the plant was present in the aerial tissue. For each species, the concentrations of LMWOA in soil increased with increasing impact by the root system both within a given cultivation regime (i.e., rhizosphere > near-root > unvegetated) and across cultivation regimes (i.e., dense > nondense > field conditions). Under dense cultivation, the rhizosphere concentrations of LMWOAs were significantly greater for cucumber than for zucchini; no species differences were evident in the other two cultivation regimes. To enable direct comparison across cultivation regimes, total in planta p,p'-DDE and inorganic elements were mass normalized or multiplied by the ratio of plant mass to soil mass. For cucumber, differences in total p,p'-DDE and inorganic element content among the cultivation regimes largely disappear upon mass normalization, indicating that greater uptake of both types of constituents in the dense condition is due to greater plant biomass per unit soil. Conversely, for zucchini the mass normalized content of p,p'-DDE and inorganic elements is up to two orders of magnitude greater under field conditions than under dense cultivation, indicating a unique physiological response of C. pepo in the field. The role of cultivation conditions and nutrient availability in controlling root morphology, organic acid exudation, and contaminant uptake is discussed.  相似文献   

14.
15.
1.  Persistent organic pollutants (POPs) can be trapped by and accumulate in cold regions. To understand POP accumulation in temperate high mountain lakes, we collected samples of snow from the catchments of several high mountain lakes in Europe.
2.  Organochlorine compounds (OCs) are regularly found in snow collected in European high mountain sites. Polychlorobiphenyls (PCBs) were found in all samples examined. Hexachlorocyclohexanes (HCHs) are also common whereas DDTs and hexachlorobenzene were found less frequently.
3.  Comparison of the concentrations of these pollutants in snow with OC levels in the waters of these lakes or atmospheric deposition during cold periods shows that the snowpack constitutes a significant seasonal PCB reservoir in all catchments and that snow trapping is a major mechanism for the incorporation of HCHs in the lakes situated in the coldest sites, e.g. Gossenköllesee in the Alps.
4.  Correlation of the concentrations of the PCB congeners in snow versus mean annual winter temperature shows higher accumulation at lower temperatures. The less volatile PCBs exhibit higher temperature dependences than the more volatile congeners. This trend differs from altitudinal dependences observed in other sites such as Canada and may be related to the specific range of winter temperature in each area of study.  相似文献   

16.
Coarse woody debris (CWD) may create a spatially discrete soil imprint through the release of carbon rich, acidic dissolved organic matter (DOM). DOM has been implicated in many soil processes such as humus formation, nutrient immobilization, podzolization, and the dissolution of soil minerals. We investigated a potential CWD imprint on soil chemistry by sampling leachates and soil solutions under CWD at different stages of decay and under the forest floor as controls. Solutions were analyzed for total dissolved organic carbon (DOC) and polyphenol concentrations. DOC was further separated by chemical fractionation. We also sampled soil from underneath CWD and from control areas without CWD. Samples were analyzed for pH, base saturation, exchangeable acidity, and several aluminum and iron fractions. The pH of CWD leachates was lower (p 0.001) and contained more polyphenols (p 0.0001) and DOC than control leachates, although chemical DOC fractions from CWD and the forest floor were similar. Surface mineral soils under CWD were lower in pH (p 0.005), had more exchangeable acidity (p 0.002) and more exchangeable aluminum (p 0.04) and iron (p 0.06) than forest floor soils. At depths greater than 5 cm, there were no differences between forest floor soils and soils under CWD. Our results suggest that CWD in the middle stages of decay acidifies the surface soil as it decomposes by decreasing exchangeable bases and increasing exchangeable acidity and aluminum. Soils under the most highly decayed CWD, or deeper soils were not affected by CWD. Although we hypothesized that well-decayed CWD would show a spatially explicit imprint on soils, the effect of CWD on soil chemistry was small and limited to surface mineral soils.  相似文献   

17.
Coarse woody debris (CWD) may play a role in nutrient cycling in temperate forests through the leaching of solutes, including dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), to the underlying soil. These fluxes need to be considered in element budget calculations, and have the potential to influence microbial activity, soil development, and other processes in the underlying soil, but studies on leaching from CWD are rare. In this study, we collected throughfall, litter leachate, and CWD leachate in situ at a young mixed lowland forest in NY State, USA over one year. We measured the concentrations of DOC, DON, NH4+, NO3, dissolved organic sulfur, SO42−, Cl, Al, Ca, K, Mg, Na, and P, estimated the flux of these solutes in throughfall, and measured the cover of CWD to gain some insight into possible fluxes from CWD. Concentrations of DOC were much higher in CWD leachate than in throughfall or litter leachate (15 vs. 0.7 and 1.6 mM, respectively), and greater than reported values for other leachates from within forested ecosystems. Other solutes showed a similar pattern, with inorganic N being an exception. Our results suggest that microsite scale fluxes of DOC from CWD may be An high relative to throughfall and litter leaching fluxes, but since CWD covered a relatively small fraction (2%) of the forest floor in our study, ecosystem scale fluxes from CWD may be negligible for this site. Soil directly beneath CWD may be influenced by CWD leaching, in terms of soil organic matter, microbial activity, and N availability. Concentrations of some metals showed correlations to DOC concentrations, highlighting the possibility of complexation by DOM. Several solute concentrations in throughfall, including DOC, showed positive correlations to mean air temperature, and fewer showed positive correlations in litter leachate, while negative correlations were observed to precipitation, suggesting both biological and hydrologic control of solute concentrations.  相似文献   

18.
森林粗死木质残体的概念及其分类   总被引:24,自引:2,他引:24  
森林粗死木残体 (Coarse woody debris,CWD)在不同的文献中有不同的定义 ,没有通用而确切的概念用来描述 CWD,对研究结果的比较造成了很大障碍。 2 0世纪 90年代以来 ,随着景观生态学的发展 ,以及对 CWD生态功能的深入研究 ,国外的森林管理和研究机构 (例如 USDA Forest Service和 L TER)为了把 CWD放在区域以及景观尺度上进行比较 ,对 CWD的概念等进行了统一 ,将其直径标准由原来的≥ 2 .5 cm调整到≥ 10 cm,但是我国在此方面还没有与国际接轨 ,仍采用旧标准 (≥ 2 .5 cm ) ,这样的研究结果难于和国外进行比较 ,不利于我国 CWD的长期深入研究。另外 ,有关 CWD的分类一直以来也没有形成一个完整的分类系统 ,我国也缺少 CWD分类方法的介绍。鉴于以上情况 ,综合国内外近年来在 CWD方面的研究动态 ,综述了 CWD的概念和分类情况 ,并初步提出较综合的 CWD概念及其分类系统 ,以供相关研究者讨论和参考 ,为我国的 CWD研究起到推动作用  相似文献   

19.
Plastic marine debris pollution is rapidly becoming one of the critical environmental concerns facing wildlife in the 21st century. Here we present a risk analysis for plastic ingestion by sea turtles on a global scale. We combined global marine plastic distributions based on ocean drifter data with sea turtle habitat maps to predict exposure levels to plastic pollution. Empirical data from necropsies of deceased animals were then utilised to assess the consequence of exposure to plastics. We modelled the risk (probability of debris ingestion) by incorporating exposure to debris and consequence of exposure, and included life history stage, species of sea turtle and date of stranding observation as possible additional explanatory factors. Life history stage is the best predictor of debris ingestion, but the best‐fit model also incorporates encounter rates within a limited distance from stranding location, marine debris predictions specific to the date of the stranding study and turtle species. There is no difference in ingestion rates between stranded turtles vs. those caught as bycatch from fishing activity, suggesting that stranded animals are not a biased representation of debris ingestion rates in the background population. Oceanic life‐stage sea turtles are at the highest risk of debris ingestion, and olive ridley turtles are the most at‐risk species. The regions of highest risk to global sea turtle populations are off of the east coasts of the USA, Australia and South Africa; the east Indian Ocean, and Southeast Asia. Model results can be used to predict the number of sea turtles globally at risk of debris ingestion. Based on currently available data, initial calculations indicate that up to 52% of sea turtles may have ingested debris.  相似文献   

20.
Atmospheric deposition in the lagoon of Venice and river inputs from the watershed were collected and analysed from 1998 to 1999 using the same analytical methods. The input from riverine sources largely prevails (>70%) over that from the atmosphere for As, Cr, Fe, Mn, Ni, nitrogen and phosphorus. Equivalent amounts of Hg, Pb, PCBs, HCB are discharged into the lagoon from the two sources, whilst atmospheric inputs prevail for Cd, ammonia and dioxins. A comparison with figures of maximum allowable discharges (MAD) for various compounds, recently set by the Italian Ministry for the Environment, showed that total inputs (riverine + atmospheric) of trace metals were below the MAD thresholds only for Cr, Cu, Ni and Zn. The total inputs of Cu and Ni, and Cr and Zn were approximately 20 and 40% of the MAD limit, respectively. The total phosphorus input of 284 t was close to the imposed limit, whilst the inorganic nitrogen load alone (>4000 t) was much higher than the MAD for total nitrogen. For those metals (As, Cd, Hg and Pb) and persistent organic pollutants, such as polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) where the MAD states that the load should tend to ‘0’ (no discharge), the measured inputs of 4.8 (As) and 5.1 t (Pb), 151 (Cd) and 39 kg (Hg), 18 g (PCDD/Fs) and 440 mg (Toxicity Equivalents, TEQs, of PCDD/Fs) are by definition ‘above’ the MAD. The principal component analysis (PCA) of loading data and input profiles (markers) of production typologies showed that river and atmosphere contributions can be easily separated and recognised due to their different fingerprints. Riverine inputs were similar to chemical and glass work production markers, whereas atmospheric loadings were mainly influenced by chemical industry (PVC and VCM production), metallurgy and paper-mill.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号