首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Karin Johst  Martin Drechsler 《Oikos》2003,103(3):449-456
The survival of species in dynamic landscapes (characterised by patch destruction and subsequent regeneration) depends on both the species' attributes and the disturbance pattern. Using a spatially explicit model we explored how the mean time to extinction of a metapopulation depends on the spatial correlation of patch destruction in relation to the population growth and dispersal abilities of species. Two contrasting answers are possible. On the one hand, increasing spatial correlation of patch destruction increases the spatial correlation of population growth and this is known to decrease metapopulation persistence. On the other hand, spatially correlated patch destruction and regeneration can lead to clustered habitat patches and this is known to increase metapopulation persistence. Therefore, we hypothesised that some species are better off under spatially correlated and alternatively uncorrelated disturbance regimes. However, contrary to this hypothesis, in all kinds of cases spatial correlation reduced metapopulation persistence. We found this to be due to the fact that the spatial correlation of patch destruction causes increasing temporal fluctuations in the regional carrying capacity of the metapopulation and is hence generally disadvantageous for long-term persistence. The main consequence for conservation biology is that reducing spatial correlation in disturbances is likely to be a reliable strategy in a dynamic landscape that will benefit practically all species with a low risk of adverse side effects .  相似文献   

3.
4.
Summary Every one of eleven different strains randomly selected from 10 different randomly selected genera have shown the same high frequency of occurrence of colony mutants as did almost all strains ofAcetobacter (previously considered outstanding in this respect). Correlation of other properties with such mutant colony forms was not specifically studied, but in 4 strains correlation was noticed, suggesting its presence in the others, as was so often found inAcetobacter. It is suggested from this, that a similar study of strains of other genera might reveal a similarly high frequency of occurrence of mutants, most so-called pure cultures being thus probably mixtures of different cells with different properties. Also the proportion of each cell-type in the culture may vary from predominance to extinction according to the biochemical and other tests applied for the purpose of the ‘characterization’ of the species for taxonomic purposes. If the classification of such varying mixtures is considered of doubtful use, then it seems to follow that ‘species’ of bacteria are virtually unclassifiable, and that even the conception of a genus should be on a broader basis than is often the case at present.  相似文献   

5.
Summary The concerted action of two flavone-skeleton modifying genes, P and Me, and the alleles of three independently segregating loci g, gl and fg involved in flavone-glycosylation lead to the 33 different flavones so far identified in Silene. The alleles of the different loci involved in flavone-glycosylation control enzymes which differ in substrate specificity, a phenomenon not often described in higher organisms. The alleles of the different loci are variously distributed over the different species. The possible evolutionary implications of these distributions are discussed.  相似文献   

6.
7.
Slow-growing juveniles of shade-tolerant plant species are predicted to have tough leaves because of the high cost of leaf replacement in shade relative to potential carbon gain. We assessed the degree of correlated evolution among eight traits associated with leaf toughness and the relationships of those traits with the growth and mortality rates of 197 tree and shrub species from the understory of the 50-ha forest dynamics plot on Barro Colorado Island, Panama. Path analysis with phylogenetically independent contrasts revealed that leaves attained material toughness (resistance to fracture per unit fracture area) through increases in tissue density, percent cellulose per unit dry mass, and vein fracture toughness. Lamina density and cellulose content evolved independently and thus represent different paths to material toughness. Structural toughness (resistance to fracture per unit fracture length) depended on material toughness and lamina thickness. Mortality rates of individuals 1-10 cm in stem diameter were negatively correlated with material toughness and lamina density but were independent of structural toughness and cell wall fiber contents. Leaf toughness traits were uncorrelated with relative growth rates. Results imply that material toughness enhances resistance to natural enemies, which increases survival and offsets the biomass allocation cost of producing tough leaves in the shaded understory.  相似文献   

8.
An attempt was made to detect the fluorescent bodies (F-body), using Quinacrine mustard (Q-M) staining in the spermatozoa from eight mammalian species (human, bull, boar, dog, rabbit, rat, mouse, and mastomys) as well as in the cock (used as negative control). Sperm suspension, prepared after rinsing by repeated centrifugation with phosphate buffered saline (PBS), was either stained with Q-M for 24 h or treated with protease and then stained with Q-M for 60 min. The final concentration of Q-M in the mixed staining sperm suspension was 0.025 mg/ml. The examination using a reflecting fluorescent microscope revealed that the F-body found in human sperm was also present in the sperm of all the mammals but not in the cock after 24 h of staining. The enzyme-treated specimens showed higher incidences of F-bodies than specimens stained for 24 h without enzymatic digestion. These findings strongly suggest that the F-body is commonly present in the spermatozoa of many mammalian species.  相似文献   

9.
Kano, Y., Kimura, S., Kimura, T. & Warén, A. (2012) Living Monoplacophora: morphological conservatism or recent diversification? —Zoologica Scripta, 41, 471–488. The molluscs of the class Monoplacophora are classic and probably the most striking case of a ‘living fossil’ in the deep sea. Until the discovery of the first living specimens in 1950s, the group was thought to be extinct since the Devonian period, almost 400 million years ago. Morphological conservatism over a long span of time in a ‘living‐fossil’ lineage may theoretically result in distant but closely resembling taxa, and this idea apparently led some authors to recognise as many as six families and three superfamilies for less than three dozen living monoplacophoran species. However, no genetic or fossil data have been available regarding the history of their diversification. Here we describe Veleropilina seisuimaruae sp. n., the first member of the class from the north‐western Pacific, based on the shell, radular and anatomical characteristics. Phylogenetic analyses of 6‐kb DNA sequences estimate that the divergence of V. seisuimaruae and Laevipilina hyalina, the only other monoplacophoran available for genetic studies, dates back only to the Late Cretaceous, despite their significant morphological differences among the living members of the class. The recent Monoplacophora might have radiated fairly recently from a cryptic lineage with ordinary rates of morphological evolution, possibly after the global deep‐sea anoxia at the Cenomanian/Turonian boundary.  相似文献   

10.
A major goal of evolutionary biology and ecology is to understand why species richness varies among clades. Previous studies have suggested that variation in richness among clades might be related to variation in rates of morphological evolution among clades (e.g., body size and shape). Other studies have suggested that richness patterns might be related to variation in rates of climatic‐niche evolution. However, few studies, if any, have tested the relative importance of these variables in explaining patterns of richness among clades. Here, we test their relative importance among major clades of Plethodontidae, the most species‐rich family of salamanders. Earlier studies have suggested that climatic‐niche evolution explains patterns of diversification among plethodontid clades, whereas rates of morphological evolution do not. A subsequent study stated that rates of morphological evolution instead explained patterns of species richness among plethodontid clades (along with “ecological limits” on richness of clades, leading to saturation of clades with species, given limited resources). However, they did not consider climatic‐niche evolution. Using phylogenetic multiple regression, we show that rates of climatic‐niche evolution explain most variation in richness among plethodontid clades, whereas rates of morphological evolution do not. We find little evidence that ecological limits explain patterns of richness among plethodontid clades. We also test whether rates of morphological and climatic‐niche evolution are correlated, and find that they are not. Overall, our results help explain richness patterns in a major amphibian group and provide possibly the first test of the relative importance of climatic niches and morphological evolution in explaining diversity patterns.  相似文献   

11.
William Godsoe 《Ecography》2012,35(9):769-779
A major problem in ecology is to understand how environmental requirements change over space and time. To this end, numerous authors have attempted to use comparisons of species’ distributions as a surrogate for comparisons of environmental requirements. Unfortunately, it is currently unclear when comparisons of species’ distributions produce reliable inferences about changes in environmental requirements. To address this problem, I develop an analytic model that identifies the conditions under which a comparison of species’ distribution models can serve as surrogate for a comparison of environmental requirements. This work demonstrates that 1) comparisons of species’ distributions typically produce biased comparisons of environmental requirements, 2) assuming distribution models are fit appropriately, it is possible to compare environmental requirements of distinct taxa, 3) there are multiple biologically relevant questions we can address using comparisons of distribution models, with each question corresponding to a distinct measure of the difference between distribution models. By developing an analytic model for comparisons of species’ distributions this work helps to clarify and remedy poorly understood sources of error associated with existing methods.  相似文献   

12.
We discuss the possible links between the fossil record of marine biodiversity, nutrient availability and primary productivity. The parallelism of the fossil records of marine phytoplankton and faunal biodiversity implicates the quantity (primary productivity) and quality (stoichiometry) of phytoplankton as being critical to the diversification of the marine biosphere through the Phanerozoic. The relatively subdued marine biodiversity of the Palaeozoic corresponds to a time of relatively low macronutrient availability and poor food quality of the phytoplankton as opposed to the diversification of the Modern Fauna through the Mesozoic–Cenozoic. Increasing nutrient runoff to the oceans through the Phanerozoic resulted from orogeny, the emplacement of Large Igneous Provinces (LIPs), the evolution of deep-rooting forests and the appearance of more easily decomposable terrestrial organic matter that enhanced weathering. Positive feedback by bioturbation of an expanding benthos played a critical role in evolving biogeochemical cycles by linking the oxidation of dead organic matter and the recycling of nutrients back to the water column where they could be re-utilized. We assess our conclusions against a recently published biogeochemical model for geological time-scales. Major peaks of marine diversity often occur near rising or peak fluxes of silica, phosphorus and dissolved reactive oceanic phosphorus; either major or minor 87Sr/86Sr peaks; and frequently in the vicinity of major (Circum-Atlantic Magmatic Province) and minor volcanic events, some of which are associated with Oceanic Anoxic Events. These processes appear to be scale-dependent in that they lie on a continuum between biodiversification on macroevolutionary scales of geological time and mass extinction.  相似文献   

13.
With the aim of protecting Mexican diversity, one current governmental task is to complete national biological inventories. In the case of odonate insects, several researchers have hypothesized that species richness is complete (205 dragonflies and 151 damselflies), but there has not been any formal exercise to test this. Thus, we have investigated whether odonate species richness (for Mexican endemics, dragonflies (suborder Anisoptera), damselflies (suborder Zygoptera) and total species) is complete using sample-based and coverage-based rarefaction curves. Along with this, we also showed how good distribution data are in the country. The rarefaction curves have indicated 100% completeness for all groups suggesting that the inventory is complete. However, species' distribution data is highly patchy regarding areas either well (e.g. central Mexico) or badly (e.g. coast of Guerrero and Oaxaca) collected. We encourage researchers to continue odonate sampling in order to support at least three conservation actions: (i) conservation assessment of endangered species; (ii) knowledge of range shifts given rising global temperatures; and (iii) increase public interest and awareness in protected, touristic areas.  相似文献   

14.
The link between species invasions and the extinction of natives is widely accepted by scientists as well as conservationists, but available data supporting invasion as a cause of extinctions are, in many cases, anecdotal, speculative and based upon limited observation. We pose the question, are aliens generally responsible for widespread extinctions? Our goal is to prompt a more critical synthesis and evaluation of the available data, and to suggest ways to take a more scientific, evidence-based approach to understanding the impact of invasive species on extinctions. Greater clarity in our understanding of these patterns will help us to focus on the most effective ways to reduce or mitigate extinction threats from invasive species.  相似文献   

15.
Invasive species are widely accepted as one of the leading direct causes of biodiversity loss. However, much of the evidence for this contention is based on simple correlations between exotic dominance and native species decline in degraded systems. Although appealing, direct causality is not the only possible interpretation. A plausible alternative hypothesis is that exotic dominance could be the indirect consequence of habitat modification driving native species loss. In a new paper, MacDougall and Turkington now provide the first direct test of whether invasive species are the drivers of community change, or merely 'passengers' along for the environmental ride.  相似文献   

16.
Are viruses driving microbial diversification and diversity?   总被引:9,自引:1,他引:9  
Viruses can influence the genetic diversity of prokaryotes in various ways. They can affect the community composition of prokaryotes by 'killing the winner' and keeping in check competitive dominants. This may sustain species richness and the amount of information encoded in genomes. Viruses can also transfer (viral and host) genes between species. Such mechanisms have probably influenced the speciation of prokaryotes. Whole-genome sequencing has clearly revealed the importance of (virus-mediated) gene transfer. However, its significance for the ecological performance of aquatic microbial communities is only poorly studied, although the few available reports indicate a large potential. Here, we present data supporting the hypothesis that viral genes and viral activity generate genetic variability of prokaryotes and are a driving force for ecological functioning and evolutionary change.  相似文献   

17.
To investigate the reported correlation between adrenal and testicular serum androgen levels, testosterone, DHEAS and androstenedione were measured in the serum of 92 healthy young males. Testosterone and androstenedione were found to have a weak but statistically significant correlation, while no correlation existed between testosterone and DHEAS, or DHEAS and androstenedione. These results indicate that although common steroidogenic pathways lead to androgen synthesis in both adrenals and testes, the regulation of steroid production in these glands is influenced by different factors. The correlation of testosterone with androstenedione can be attributed to their peripheral interconversion as well as to the fact that half of androstenedione is of testicular origin. Various other aspects of the androgen regulation mechanism such as ACTH stimulation and the role of aging, are presented and discussed.  相似文献   

18.
1. Most theories of plant strategies assume the presence of certain 'trade-offs'. One such evolutionary trade-off assumes a decrease in growth rate with increasing investment in chemical defences in species adapted to different levels of habitat fertility.
2. To test this hypothesis, we grew 31 herbaceous species of Asteraceae under controlled conditions of temperature (25 °C), humidity (80%), light (500 μmol m–2 s–1) and photoperiod (16 h day–1) in a modified Hoagland hydroponic solution. The plants grew from seed for 35 days post-germination and were harvested at 14, 21, 28 and 35 days. Relative growth rate (RGR) was calculated as well as a general measure of potential phytochemical toxicity (LC50) using an alcohol extraction of secondary compounds followed by Brine Shrimp bioassay and an assay of total phenolics.
3. The interspecific correlation between RGR and the potential phytochemical toxicity was weak and non-significant ( r S = 0·12, P = 0·53). The correlation between RGR and total phenolics was weak, positive but significant ( r S = 0·40, P = 0·03).
4. These results suggest that such an evolutionary trade-off does not exist in this group of Asteraceae.  相似文献   

19.
Abstract. Past explanations of the large disjunctions in the distribution of New Zealand's four Nothofagus species have emphasized displacement during glacial cycles followed by slow re-occupation of suitable sites, or the effects of plate tectonics coupled with ecological and/or environmental limitations to further spread. In this study the degree of equilibrium between Nothofagus distribution and environment was compared with that of other widespread tree species by statistical analysis. Generalized additive regression models were used to relate species distribution data to estimates of temperature, solar radiation, soil water deficit, atmospheric humidity, lithology and drainage. For each species, the amount of spatial patterning remaining unexplained by environment was assessed by adding a variable describing species presence/absence on adjacent plots. Results indicate that Nothofagus species occur more frequently in environments suboptimal for tree growth, i.e. having various combinations of cool temperatures, low winter solar radiation, high root-zone water deficit, low humidity, and infertile granitic substrates. Despite these demonstrated preferences, they exhibit substantially more spatial clustering which is unexplained by environment, than most other widespread tree species. Predictions formed from regressions using environment alone confirm that several major Nothofagus disjunctions are not explicable in terms of the environmental factors used in this analysis, but more likely reflect the effects of historic displacement coupled with slowness to invade forest dominated by more rapidly dispersing endomycorrhizal species. The technique used in this study for detecting residual spatial autocorrelation after fitting explanatory variables has potentially wide application in other studies where either regression or ordination techniques are used for analysis of compositional data.  相似文献   

20.
John T. Smiley 《Oecologia》1985,65(4):580-583
Summary The association between heliconiine butterflies and Passion flower vines is composed of three or more subassociations, in which each Heliconius species group feeds on a different Passiflora subgenus. The relationships are consistent with the adaptive zone hypothesis of Ehrlich and Raven, which would suggest that (1) species of the subgenus Plectostemma proliferated as a result of chemical barriers to herbivory, which created a herbivore-free adaptive zone in which speciation and diversification took place, and (2) species of the H. erato-charitonia group overcame these barriers and entered a competitor-free adaptive zone, in which they proliferated and speciated with those plants as hosts. The hypothesis that plant secondary chemicals were responsible for creating such barriers to herbivory was tested using heliconiine species as bioassays, in which reduced growth rates indicated presence of chemical barriers to feeding. Contrary to expectation, plants of the subgenus Plectostemma showed little or no chemical defense against any species of heliconiine caterpillar. In contrast many plants of the primitive subgenus Granadilla possessed significant chemical barriers against herbivory by heliconiine larvae, excepting those species in the H. numata-melpomene species group. I concluded that chemical barriers to feeding were not responsible for proliferation and diversification in the subgenus Plectostemma, nor did chemicals create a competitor-free adaptive zone in which the H. erato-charitonia species-group could proliferate and speciate. Chemical barriers may have been important in the evolution of the subgenus Granadilla-heliconiine association. I suggest that plant allelochemics are only one of many possible barriers to herbivory which can help create adaptive zones for plants and their herbivores, and that the patterns of butterfly foodplant specialization discussed by Ehrlich and Raven (1964) are not necessarily the result of biochemical adaptation and counteradaptation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号